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ABSTRACT 

 

Knowledge of membrane protein’s structure and function has significance in biological and pharmacological 

studies since more than 50% of drugs are targeted against membrane proteins. The experimental determination 

of membrane protein types, despite being more accurate and reliable, is not always feasible due to the high 

prices of laboratory procedures, there by creating a need for the development of automated bioinformatics 

methods. Consequently, an automated approach is particularly effective, that could help in identifying the new 

membrane protein types. In an existing work, three benchmark datasets (i.e.) data set1, data set2 and data set3 

of primary sequence of membrane proteins were used. From that primary sequence of the membrane proteins 

89 features were extracted and it is available online. SVM classifier was implemented and had obtained an 

accuracy of 88.2% for the data set3. In the proposed work, only data set3 with the readily available 89 features 

is used and two classifiers Naïve Bayes and K Nearest Neighbor are implemented. The overall accuracy achieved 

in this work is 93.51% for Naïve Bayes classifier and 95.72% for KNN classifier.  
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1. INTRODUCTION 

 

According to cellular anatomy, a cell consists of different functional units or organelles, most of which are enveloped 

by membranes and they are necessary to form any biological functions. Although the lipid bilayer is the basic structure 
of membranes, most of the specific functions of the cell membrane are performed by the membrane proteins(Alberts et 

al.1994;Lodish et al.1995)[1,2].Many researchers believe that membrane proteins constitute approximately 50% of 

possible targets for novel drugs[3]. Membrane proteins can generally be classified into eight types[1]: 1) Type-I 

transmembrane proteins, 2) Type-II transmembrane proteins, 3)Type-III transmembrane proteins 4)Type-IV 

transmembrane proteins 5) Multipass transmembrane proteins, 6) lipid chain-anchored membrane 7) GPI anchored 

membrane proteins 8) peripheral membrane proteins (Fig. 1) [4] . 

 

Figure 1: Graphical illustration shows the eight types of membrane proteins 
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In the last few years, numerous approaches have been evolved for predicting membrane protein types. Chou and Elrod 

(1999) first achieved the prediction of membrane protein types using Covariant Discriminant Algorithm(CDA) and 

Amino Acid Composition(AAC). Further, Caietal.(2004) used AAC together with Support Vector Machine (SVM) to 

predict membrane protein types. But sequence- order and sequence-length effects are lost. To avoid this short coming, 

the pseudo-amino acid composition (PseAAC) was proposed[17,18,19] to improve the prediction accuracy of 

membrane protein types. Then, numerous forms of the PseAAC method were proposed[5-15] for predicting membrane 
protein types and related tasks. Chou and Shen (2007)[4] proposed the Pse-PSSM method and developed a web server 

for predicting membrane protein types.  

 

2. MATERIALS AND METHODS 

 

Protein sequences were collected from the Swiss-Prot data base http://www.ebi.ac.uk/swissprot/ (Version 72 released 

on 2011- October-19) by using the annotation of „„protein subcellular localization‟‟. The dataset contains 6677 

sequence with both training and testing dataset. Number of proteins in each testing and training dataset has been shown 

in Table 1. The following exclusion criteria were implemented to ensure the quality of the dataset: (1) Proteins that are 

either annotated as fragments, or are shorter than 50 amino acid residues in length were excluded; (2) proteins that are 

either annotated with non-experimental qualifiers in topology, or with more than one topology were removed; (3) 

homologous sequences were removed by CD-hit if they share a high sequence identity (greater than 40%) with any 
sequence in the dataset. The resulting sequences were classified into their respective membrane protein types based on 

the annotation of the topology before they were randomly assigned into the training and the testing set by using the 

percentage distribution method[17] .  

 

Table 1: Training and Testing dataset of Membrane protein types 

 

Membrane Protein types Training Dataset Testing Dataset 

Single pass type I 561 245 

Single pass type II 316 79 

Single pass type III 32 9 

Single pass type IV 65 17 

Multipass transmembrane 1119 2478 

Lipid-chain-anchored membrane 142 36 

Gpi-anchored membrane 174 41 

Peripheral membrane 674 699 

Total 3073 3604 

 

Sequence features used in this study includes:(1) the length and the number of transmembrane segments; (2) the 

presence or absence of lipid-binding domains, signal peptides, signal anchors, GPI-anchoring signals, or intracellular 

N-terminal sequences; and (3) the composition of surface amino acids, the size of cationic patches, the protein 

flexibility, the degree of hydrophobicity of a protein segment, the propensity of protein lipidation, and the charge 

difference between the two flanking segments across the cell membrane. The sequence partition and the five-level 

grouping composition strategy to represent the aforementioned physical and biochemical properties for protein 

sequences was also used. The dataset along with features extracted are available in 

http://bsaltools.ym.edu.tw/predmpt/down load.html as Dataset3[17] .  

 

A. Machine Learning Algorithm  
 

The basic premises of all the machine learning algorithms are the same by using a set of known examples to obtain 

information about unknown example. The known examples are usually called training set and unknown examples are 

called testing set. Machine learning algorithms can be classified into supervised and unsupervised learning. Supervised 

learning usually consists of concerning a series of attributes of the data to a specific class or numerical value known as 

a label of that specific example. In contrast, in unsupervised learning, there are no predefined classes or labels. 

 

3. CLASSIFICATION 

 

Classification is the sub-discipline of data mining where data is assigned to the predefined groups. It is usually known 

as supervised learning because the labels of these groups or classes are known in advance. In a classification process, 
classes are determined on the basis of data attribute values and characteristics of already known data for which these 

classes are defined.  
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A. Naïve Bayes  

 

The Bayesian classification is a probabilistic learning approach .This classification technique is based totally on Bayes‟ 

Theorem. It assumes that the presence of a specific feature in a class is unrelated to the presence of any other feature. 

Bayes theorem provides a way of calculating posterior probability P(c|x) from prior probability P(c), evidence P(x) and 

likelihood P(x|c. 
 

Steps 

 

1. D : Set of tuples, 

2. Each Tuple is an „n‟ dimensional attribute vector 

3. X : (x1,x2,x3,….xn) 

4. Let there be „m‟ Classes :C1,C2,C3…Cm 

5. Naïve Bayes classifier predicts X belongs to Class C iff 

P(Ci/X) >P(Cj/X) for 1<= j <=m 

6. Maximum Posteriori Hypothesis  

P(Ci/X) = P(X/Ci) P(Ci) /P(X) 

7. Maximize P(X/Ci) P(Ci) as P(X) is constant 

8. With many attributes, it is computationally expensive to evaluate P(X/Ci). 

9. Naïve Assumption of “class conditional independence” 

10. P(X/Ci) = P(x1/Ci) * P(x2/Ci) *…* P(xn/Ci) 

 

B. K-Nearest Neighbor 
 

KNN is the most well known classifier in the area of pattern recognition, regression, and classification owing to its 

simplicity, adaptability, high performance, and simple to realize. Irrespective of its simplicity, it is able to provide 

competitive and incredible performance as compared to many different learning algorithms. KNN is a non-parametric 

classification algorithm and has no ahead information about the distribution of the data. It has no explicit training 

phase, while keeping all the training data in testing phase. The uncategorized instances are classified through nearest 

neighbors in the feature space. It is also called as instance base learner or lazy learner. The KNN learner primarily 

based at the perception of distance, which calculates the distance between the protein query and the training instances. 

Finally, the specified number of K instances from the feature space is selected, which has closest distance from protein 

query. Atlast, the most frequently occurring class is assigned to the protein query. When the number of K=1 it is called 

nearest neighbor classifier, otherwise, it refers to KNN classifier, which makes the decision on majority voting scheme. 

In case of a tie, the decision is made by assigning randomly one of the associated classes with the tie to protein query. 
However, this situation happens very rarely, because the number of K is mostly odd. The overall prediction 

performance of KNN classifier improves and reduces the impact of noise in the classification when the variety of 

nearest associates will increases. On the other hand, the computational cost rises and also makes the boundaries less 

distinct between classes. 

 

Pseudo code 

 

Classify (X,Y,x)//X: training data, Y: class labels of X, x: unknown sample, 

For i = 1 to m do 

Compute euclideandistance ,d(Xi,x) 

 

 𝑋𝑖, 𝑥 =
𝑋𝑖, 𝑥

1 − ( 𝑋𝑖  𝑥 )
 

 

End For 

Compute set I containing indices for the k-smallest distances d(Xi,x) Return majority label for {Yi} Where, ||Xi||||x|| is 

the dot product of the two vectors 

||Xi|| and ||x|| are the moduli 

 

4. PERFORMANCE EVALUATION 

 

In this present study metrics such as accuracy, sensitivity, specificity and MCC are used. 

 

A. Accuracy 

 

Accuracy determines the degree of true prediction of a model either true positive or true negative. It is the proportion of 

true predictions. It can be calculated as, 
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– 

𝐴𝑐𝑐 = 1 −
𝑁−

++𝑁+  
−

𝑁++𝑁− …(1)                        

where, 𝑁−
+is false negative, 𝑁+

−is false positive, N + is total number of positive samples, N – is the total 

number of negative samples[15,16]. The accuracy of classifiers is shown in Table 2. 

 

Table 2: Comparison of prediction accuracy among four methods of membrane protein identification 

 

Membrane Protein Types SVM(%) 

 

[17] 

MEMTYPE-2L(%) 

 

[17] 

NB(%) KNN(%) 

Single pass type I 85.3 69.0 94.8 94.5 

Single pass type II 64.6 58.2 87.4 95.7 

Single pass type III 22.2 55.6 97.3 99.1 

Single pass type IV 58.8 52.9 98 99.1 

Multipass transmembrane 92.5 90.7 97.5 98.9 

Lipid-chain-anchored membrane 50.0 33.3 96.8 95.8 

Gpi-anchored membrane 85.4 65.9 82.2 91.4 

Peripheral membrane 80.3 43.9 94.1 91.3 

Overall 88.2 78.3 93.52 95.72 

 

B. Sensitivity 
 

Itshowstheratiobetweenthepredictedtruepositiveinstancesandtotalnumberoftruepositiveinstances, 

 

𝑆𝑛 = 1 −
𝑁−

+

𝑁+ 

where, 𝑁−
+is false negative, N + is total number of positive samples[16]. The sensitivity of classifiers is 

shown in Table 3. 

 

Table 3: Comparison of sensitivity of membrane protein identification 

 

Membrane Protein Types SVM(%) 

 

[17] 

NB(%) KNN(%) 

Single pass type I 85.3 75.9 79.6 

Single pass type II 64.6 48.1 43.0 

Single pass type III 22.2 33.3 11.1 

Single pass type IV 58.8 70.6 23.5 

Multipass transmembrane 92.5 56.1 80.5 

Lipid-chain-anchored membrane 50.0 50 22.2 

Gpi-anchored membrane 85.4 74.3 89.5 

Peripheral membrane 80.3 78.4 70.8 

Overall 88.2 60.8 52.5 

 

C. Specificity 

 

It shows the ratio between the predicted true positive instances and total number of true positive instances, 
 

𝑠𝑝 = 1 −
𝑁+

−

𝑁−…(3)  

 

where, N_+^-is false negative, N– is the total number of negative samples [16].The specificity of classifiers 

is shown in Table 4. 
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Table 4: Comparison of specificity of membrane protein identification 

 

Membrane Protein Types SVM(%) 

 

[17] 

NB(%) KNN(%) 

Single pass type I 75.7 96.2 95.6 

Single pass type II 31.7 88.3 96.9 

Single pass type III 33.3 97.5 99.3 

Single pass type IV 41.7 98.1 99.4 

Multipass transmembrane 98.2 97.9 99.1 

Lipid-chain-anchored membrane 20.7 97.3 96.5 

Gpi-anchored membrane 71.4 99.5 95.7 

Peripheral membrane 84.4 97.9 96.2 

Overall 57.1 96.6 97.3 

 

D. Mathew’s Correlation Coefficient (MCC) 

 

It is considered as one of the most effective and rigorous performance parameters for any prediction method. MCC  

takes  values in the interval [-11], where by 1 indicates that the classifier predicts the entire examples as correct and -1 

indicates that the classifier predicts all the examples as incorrect. 

 

MCC is able to recover the disadvantage of accuracy concerning an unbalance data. For example, if positive examples 

are more than negative examples in the dataset, due to bias the classifier can predict most of the positive examples. 

Thus, the performance of classifier will be affected because it predicts majority of the negative examples incorrectly. 

Therefore, the MCC is deemed as the best performance parameter for the classification of unbalanced data. 

 

𝑀𝐶𝐶 =
1−(

𝑁−
+

𝑁+−
𝑁+

−

𝑁−)

  1+
𝑁+

−𝑁−
+

𝑁+   1+
𝑁−

+𝑁+
−

𝑁−
 

…(4) 

 

where, 𝑁−
+is false negative, 𝑁+

−is false positive, N + is total number of positive samples, N – is the total 
  

number of negative samples[15]The MCC of the classifiers is shown in Table 5. 

 

Table 5: Overall Mathew’s Correlation Coefficient 

 

Method MCC 

                                 SVM[17] 0.57 

NB 0.80 

KNN 0.71 

 

5. RESULTS AND DISCUSSION 

 

From Table 2 it can be seen that KNN and Naïve Bayes works well for all protein types compared to previous works. 

KNN is the first best classifier as it handles multiclass problems. For each protein type accuracy have increased ranging 

from 82% to 98% for NaïveBayes and 91% to 99% for KNN. TypeIV and III accuracy is highest as Naïve bayes can 
predict well with small amount of data. Multipass transmembrane has larger data samples yet Naïve Bayes can predict 

it with greater accuracy because the feature considered for training transmembrane i.e. the number of transmembrane 

segment and hydrophobicity of protein sequence, can provide better knowledge for the classifier likewise the feature 

used for idenfifying type III is signal peptide which also provides greater accuracy for its type.  

 

The overall sensitivity of SVM is greater than Naïve Bayes and KNN as they have less overfitting. Only type III and IV 

is increased by 11.1 and 11.8 for Naïve bayes as it works well with smaller samples of data. KNN is sensitive to all 

types except GPI as they are sensitive to neighbourhood structure.  

 

Overall specificity of KNN is greater as they work well in larger dataset and more or less same for Naïve Bayes as it 

can do well in practice with enough representative data. Type III, IV, multipass have 99% specificity because of less 

misclassification rate in KNN. Specificity of Gpi-anchor is increased because it is identified using False Positive rate of 
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GPI anchoring signals in NaïveBayes. 

 

The  MCC  of  Naïve Bayes and KNN is greater when compared to SVM as they are robust. 

 

CONCLUSION 

 
Classification of membrane protein types is an important task drug discovery and enzymes. It even helps researchers to 

discover a new drug. In this paper, we applied different data mining classification approach like KNN, Naïve Bayes. 

The used KNN and Naïve Bayes shows the better accuracy than the SVM approach and it has shown 7.52% and 5.32 

improvements. 
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