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 Introduction 

 
Nonlinear partial differential equations (NPDEs) play an important role in such various fields as physics, chemistry, 
biology, mathematics and engineering. There are many interesting and useful features of physical systems hidden in their 
nonlinear behavior. The investigation of exact solutions of NPDEs is becoming an important aspect since it can help us 
well to understand the mechanism of the complicated physical phenomena modeled by NPDEs. 

The investigation of exact solutions of NPDEs plays an important role in the study of nonlinear physical phenomena. 
Many methods, exact, approximate and purely numerical are available in literature [1-9] for the solution of NPDEs.  

In this paper, we apply the reduced differential transform method for solving the generalized Ito system [10] 
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where , , , ,a b c d f  and g  are arbitrary constants. 

In recent years, different cases of the generalized Ito system has been studied analytically and numerically by many 
authors [11-16].The RDTM, which first proposed by the Turkish mathematician YildirayKeskin [17-20] in 2009, has 
received much attention due to its applications to solve a wide variety of problems [21-28]. 

This paper has been organized as follows: Section 2 deals with the analysis of the method. In Section 3, we apply the 
RDTM to solve three special cases of the generalized Ito system, Conclusions are given in Section 4. 

 

Analysis of the Method 

 

Consider a function of two variables ( , )u x t and suppose that it can be represented as a product of two single-variable 

functions, i.e., ( , ) ( ) ( )u x t f x g t . Based on the properties of one-dimensional differential transform, the function 

( , )u x t can be represented as 

0 0 0

( , ) ( ) ( ) ( )i j k

k

i j k

u x t F i x G j t U x t
  

  

  
   
  
          (2) 

where ( )kU x  is called t -dimensional spectrum function of ( , )u x t . 

The basic definitions of reduced differential transform method are introduced as follows [17-20]: 

Definition 2.1 If function ( , )u x t  is analytic and differentiated continuously with respect to time t  and space x in the 

domain of interest, then let 
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where the t -dimensional spectrum function ( )kU x  is the transformed function. In this paper, the lowercase ( , )u x t  

represent the original function while the uppercase ( )kU x  stand for the transformed function. 

Definition 2.2The differential inverse transform of ( )kU x  is defined as follows: 

0

( , ) ( ) k

k

k

u x t U x t




            (4) 

Then combining equation (3) and (4) we write 

0 0

1
( , ) ( , )

!

k
k

k
k t

u x t u x t t
k t



 

 
  

 
          (5) 

From the above definitions, it can be found that the concept of the reduced differential transform is derived from the 

power series expansion. 

To illustrate the basic concepts of the RDM, consider the following nonlinear partial differential equation written in an 

operator form 

( , ) ( , ) ( , ) ( , ),Lu x t Ru x t Nu x t g x t           (6) 

with initial condition 

( ,0) ( ),u x f x            (7) 

where L
t





, R is a linear operator which are partial derivatives, ( , )Nu x t  is a nonlinear operator and ( , )g x t  is an 

inhomogeneous term. 

According to the RDTM, we can construct the following iteration formula: 

1( 1) ( , ) G ( ) ( ) ( ),k k k Kk U x t x RU x NU x            (8) 

where ( ), ( ), ( )k k kU x RU x NU x  and ( )kG x  are the transformations of the functions ( , ), ( , ), ( , )Lu x t Ru x t Nu x t  and 

( , )g x t respectively. 

From initial condition (7), we write 

0 ( ) ( ),U x f x            (9) 

Substituting (9) into (8) and by straightforward iterative calculation, we get the following ( )kU x values. Then the 

inverse transformation of the set of values  
0

( )
n

k k
U x


 gives the n-terms approximate solution as 

0

( , ) ( ) ,
n

k

n k

k

u x t U x t


            (10) 

Therefore the exact solution of the problem is given by 

( , ) lim ( , ).n
n

u x t u x t


             (11) 

The fundamental mathematical operations performed by RDTM can be readily obtained and are listed in Table 1. 

 

Table 1: The fundamental operations of RDTM 

 
Functional Form Transformed Form 

( , )u x t  

0

1
( , ) ( , )

!

k

k k

t

U x t u x t
k x



 
  

 
 

( , ) ( , ) ( , )w x t u x t v x t   ( ) ( ) ( )k k kW x U x V x   

( , ) ( , )w x t u x t  ( ) ( )k kW x U x  (  is constant) 

( , ) m nw x t x t  ( ) ( )m

kW x x k n   

( , ) ( , )m nw x t x t u x t  ( ) ( )m

k k nW x x U x  
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( , ) ( , )w x t u x t
x





 ( ) ( )k kW x U x
x





 

 

Applications 

 
In this section, we employ the RDTM to solve some special cases of system (1), the results of test examples are compared 
with exact solutions to prove the efficiency of the proposed method. These results are shown in Figs. 1-3 and detailed in 
Tables 2-4. We use MAPLE software to obtain the solutions from the RDTM.  

Example 1  

Consider the system (1) for 37, 2, 1/ 2, 1, 2,a b c d f       and 2g  , which yields [13] 
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     (12) 

Subject to initial conditions 

2 27 7 1
( ,0) 2 tanh ( ), ( ,0) tanh ( ),

12 48 2

36 1 37
( ,0) tanh( ), ( ,0) 4 tanh( ).

37 6 12

u x x v x x

w x x p x x

    

    

       (13) 

According to the RDTM and Table 1, the differential transform of Eqs. (13)read 

1
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r
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where the t -dimensional spectrum functions ( ), ( ),W ( )k k kU x V x x  and ( )kP x   are the transformed functions. 

From initial conditions (13), we have 

2 2

0 0

0 0

7 7 1
( ) 2 tanh ( ), ( ) tanh ( ),

12 48 2

36 1 37
( ) tanh( ), ( ) 4 tanh( ).

37 6 12

U x x V x x

W x x P x x

    

    

       (15) 

Substituting Eqs.(15)intoEqs. (14)and by straightforward iterative steps, we can obtain 

 

 
1 3

sinh
( ) ,

cosh

x
U x

x


 

 
1 3

sinh1
( ) ,

4 cosh

x
V x

x
 

 
1 2

1
( ) ,

24cosh
W x

x
 

 
1 2

37
( ) ,

48cosh
P x

x
   

 

 

2

2 4

2cosh 31
( ) ,

8 cosh

x
U x

x




 

 

2

2 4

2cosh 31
( ) ,

32 cosh

x
V x

x


 

 

 
2 3

sinh1
( ) ,

96 cosh

x
W x

x
 

 

 
2 3

sinh37
( ) ,

192 cosh

x
P x

x
   



International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 

Vol. 2 Issue 11, November-2013, pp: (135-145), Available online at: www.erpublications.com 
 

Page | 138 

 

    
 

2

3 5

sinh cosh 31
( ) ,

24 cosh

x x
U x

x




    
 

2

3 5

sinh cosh 31
( ) ,

96 cosh

x x
V x

x


 

 

 

2

3 4

2cosh 31
( ) ,

1152 cosh

x
W x

x


   

 

 

2

3 4

2cosh 337
( ) .

2304 cosh

x
P x

x


 



 

and so on, in the same manner, the rest of components can be easily obtained. 

 

Taking the inverse transformation of the set of values  
0
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n

k k
U x


   

0 0
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 and  

0
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 gives n-

terms approximate solutions as 
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Therefore, the exact solution of problem is readily obtained as 

2 27 7 1
( , ) lim ( , ) 2 tanh ( ), ( , ) lim ( , ) tanh ( ),

12 4 48 2 4

36 1 37
( , ) lim ( , ) tanh( ), ( , ) lim ( , ) 4 tanh( ).

37 6 4 12 4

n n
n n

n n
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t t
u x t u x t x v x t v x t x

t t
w x t w x t x p x t p x t x

 

 

        

        

 



   (16) 

  

 

Fig.1 shows the 15-terms approximate solutions of problem (12) obtained by RDTM. The absolute errors of these 

solutions for different values of t  at 20x   are detailed in Table 2. 

 

 (a) (b) 
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Fig.1 The approximate solution (a) 
15 ( , )u x t  (b) 

15 ( , )v x t  (c) 
15 ( , )w x t  (d) 

15 ( , )p x t  obtained by RDTM 

Table 2: The absolute error of 
15 15 15( , ), ( , ), ( , )u x t v x t w x t    and 

15 ( , )p x t  for different values of t  at 20x   

 

t  15( , ) ( , )u x t u x t   15( , ) ( , )v x t v x t   15( , ) ( , )w x t w x t   15( , ) ( , )p x t p x t   

0.2 461.63400 10  
474.08500 10  

486.80834 10  
461.25954 10  

0.4 411.07723 10  
422.69307 10  

434.48845 10  
428.30363 10  

0.6 397.11797 10  
391.77949 10  

402.96582 10  
395.48676 10  

0.8 377.14460 10  
371.78615 10  

382.97692 10  
375.50729 10  

1.0 352.55361 10  
366.38402 10  

361.06400 10  
351.96841 10  

1.2 344.74990 10  
341.18747 10  

351.97912 10  
343.66138 10  

1.4 335.62959 10  
331.40740 10  

342.34566 10  
334.33948 10  

1.6 324.79741 10  
321.19935 10  

331.99892 10  
323.69800 10  

1.8 313.17775 10  
327.94438 10  

321.32406 10  
312.44952 10  

2.0 301.72555 10  
314.31387 10  

327.18978 10  
301.33011 10  

 

Example 2 

Consider the system (1) when 6, 7, 1, 1, 1,a b c d f      and 1,g  which yields [15] 
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      (17) 

with initial conditions 

2 2

2 2

31 31
( ,0) 4 tanh ( ), ( ,0) tanh ( ),

12 48

99
( ,0) 4 2 tanh ( ), ( ,0) 12 tanh ( ).

8

u x x v x x

w x x p x x

    

   

       (18) 

Taking the differential transform of Eqs.(17), we have 

1
( 1) ( ) ( ),

k k
k U x V x

x



 


 

(c) (d) 
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where the t -dimensional spectrum functions ( ), ( ),W ( )k k kU x V x x  and ( )kP x   are the transformed functions. 

From initial conditions(18), we write 
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( ) 4 tanh ( ), ( ) tanh ( ),
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99
( ) 4 2 tanh ( ), ( ) 12 tanh ( ).
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W x x P x x

    

   

       (20) 

Substituting Eqs.(20)intoEqs. (19)and by straightforward iterative steps, we can obtain 
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and so on, in the same manner, the rest of components can be easily computed. 
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Therefore, the exact solution of problem is readily obtained as 
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In Fig. 2, the 15-terms approximate solutions of problem (17) obtained by RDTM are shown graphically. The absolute 

errors of these solutions for different values of t  at 20x   are detailed in Table 3.    

 

 

 

 

Fig.2 The approximate solution (a) 15 ( , )u x t  (b) 15 ( , )v x t  (c) 
15 ( , )w x t  (d) 

15 ( , )p x t  obtained by RDTM 

 

Table 3: The absolute error of 
15 15 15( , ), ( , ), ( , )u x t v x t w x t    and 

15 ( , )p x t  for different values of t  at 20x   

 

t  15( , ) ( , )u x t u x t   15( , ) ( , )v x t v x t   15( , ) ( , )w x t w x t   15( , ) ( , )p x t p x t   

0.1 514.97187 10  
511.24297 10  

512.48594 10  
501.49156 10  

0.2 463.26800 10  
478.17001 10  

461.63400 10  
469.80401 10  

0.3 432.15292 10  
445.38231 10  

431.07646 10  
436.45877 10  

0.4 412.15445 10  
425.38614 10  

411.07723 10  
416.46336 10  

0.5 407.67697 10  
401.91924 10  

403.83849 10  
392.30309 10  

0.6 381.42359 10  
393.55898 10  

397.11797 10  
384.27078 10  

0.7 371.68203 10  
384.20508 10  

388.41015 10  
375.04609 10  

0.8 361.42892 10  
373.57230 10  

377.14460 10  
364.28676 10  

0.9 369.43527 10  
362.35882 10  

364.71764 10  
352.83058 10  

1.0 355.10721 10  
351.27680 10  

352.55361 10  
341.53216 10  

 

(a) (b) 

(c) (d) 
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Example 3 

Consider the system (1) for 0, 6, 6, 0, 0,a b c d f       and 0g  , which yields [11] 
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with initial conditions 
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   (23) 

where
2 0 1, , ,b t t  and 

1f  are arbitrary constants. 

Applying the RDTM to Eqs.(22), we obtain 
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where the t -dimensional spectrum functions ( ), ( ),W ( )k k kU x V x x  and ( )kP x   are the transformed functions. 

From initial conditions (23), we write 
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Substituting Eqs.(25)intoEqs. (24)and by straightforward iterative steps, we can obtain 
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and so on, in the same manner, the rest of components can be easily computed. 

Taking the inverse transformation of the set of values  
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 gives n-

terms approximate solutions as 
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Therefore, the exact solution of problem is readily obtained as 
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Fig.3 shows the 15-terms approximate solutions of problem (22) obtained by RDTM. In Table 4, we summarize the 

absolute errors of these solutions for various values of x and t with 0.5, 
2 0.03,b  0 0.4,t   1 0.1t   and 

1 0.6f 

. 

 

 (a) (b) 
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Fig.3: The approximate solution (a) 
15 ( , )u x t  (b) 

15 ( , )v x t  (c) 
15 ( , )w x t  (d) 

15 ( , )p x t  obtained by RDTM with 

2 0 10.5, 0.03, 0.4, 0.1b t t        and 
1 0.6f   

 

Table 4: The absolute error of 
15 15 15( , ), ( , ), ( , )u x t v x t w x t    and 

15 ( , )p x t  for various values of x and t with 

2 0 10.5, 0.03, 0.4, 0.1b t t        and 
1 0.6f   

 

t  x
 15( , ) ( , )u x t u x t   15( , ) ( , )v x t v x t   15( , ) ( , )w x t w x t   15( , ) ( , )p x t p x t   

 0.1 431.80034 10  
441.08020 10  

441.21829 10  
452.03048 10  

0.1 0.3 442.79404 10  
451.67643 10  

442.21409 10  
453.69015 10  

 0.5 431.64588 10  
459.87526 10  

458.59977 10  
451.43329 10  

      

 0.1 367.77078 10  
374.66246 10  

375.21138 10  
388.68563 10  

0.3 0.3 361.16915 10  
387.01488 10  

379.53584 10  
371.58931 10  

 0.5 367.08051 10  
374.24830 10  

373.73190 10  
386.21983 10  

      

 0.1 322.76184 10  
331.65710 10  

331.83554 10  
343.05924 10  

0.5 0.3 334.02489 10  
342.41493 10  

333.38181 10  
345.63636 10  

 0.5 322.50817 10  
331.50490 10  

331.33346 10  
342.22244 10  

 

 

Conclusion 

 
In this work, we implement the reduced form of differential transform method (DTM), so-called reduced differential 
transform method (RDTM), to solve the generalized Ito system. The proposed technique, which does not require 
linearization, discretization or perturbation, gives the solution in the form of convergent power series with elegantly 
computed components, essentially, the accuracy of the solution increases as the number of terms increased. Three test 
examples are presented to demonstrate the efficiency of the present method. The results of test examples showed that the 
RDTM is very accurate, consistent and powerful technique to solve nonlinear problems. 
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