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Abstract: The characterization of brain electrical activities in terms of neuronal complexity has recently received 

great attention. However, traditional complexity measures which are maximized for random sequences fail to quantify 

the inherent long-range correlation in brain dynamics. The recently introduced multiscale entropy (MSE) analysis 

accounts for the complexity over multiple time scales and therefore can reveal the complex structure of the brain 

electrical signal. The aim of this study is to test the applicability of MSE for electroencephalogram (EEG) signal 

characterization and classification. Besides, the MSE method has been tested against two other entropy metrics: 

permutation entropy (PermEn) and Lempel-Ziv entropy (LZEn) along with sample entropy (SampEn) in the context 

of discriminating EEG epochs recorded from different recording regions and for different brain states. It is shown 

that the MSE method with sample entropy as the complexity estimator outperforms other entropy measures for the 

cases considered and its potential is demonstrated as a feature extraction method for more sophisticated EEG signal 

classification scheme. 
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 Introduction 

 
The brain is an extremely complex biological structure consisting billions of interconnected neurons. The 
electroencephalography (EEG) records the collective spontaneous electrical activity of a large population of radially oriented 
pyramidal neurons of the cortex subsequently filtered through the skull and scalp. The filtered brain electrical signals are 
nonstationary, non-Gaussian and non-linear in nature, also have characteristic frequency ranges, spatial distributions, and are 
associated with different states of brain functions. As a result, EEG has found a widespread use in diagnostic application in 
many neurological diseases such as epilepsy, encephalopathies, tumors, stroke, and sleep disorders, in addition, for monitoring 
the depth of anesthesia in surgical operation, for brain function monitoring in intensive care units and in neuroscience, 
cognitive science, cognitive psychology, and psycho-physiological research [1].  

To understand the neurophysiological mechanisms underlying normal and disturbed higher brain functions, traditionally linear 
analysis methods such as Fourier transforms and spectral analysis are used to characterize EEG. Although these methods can 
identify the rhythmic oscillations in the EEG signal that fall primarily within five frequency bands: delta(<4Hz), theta(4-8Hz), 
alpha(8-14Hz), beta(14-30Hz) and gamma(>30Hz) and the results from these linear methods are quite easy to interpret in 
physiological terms, they are unable to yield information of the brain's inherent nonlinear complex dynamics. Dynamical 
behaviour of individual neurons exhibits nonlinear phenomena such as threshold and saturation [2] resulting in the assumption 
that EEG signals are generated by nonlinear deterministic processes with nonlinear coupling interactions between neuronal 
populations [3]. As a result, nonlinear dynamics is increasingly used to analyze EEG signal in order to better characterize and 
understand brain functions [4].  

Recently, Costa et al. [5] have introduced multiscale entropy (MSE) to measure the complexity of finite length time series. This 
tool can be applied both to physical and physiologic data sets and can be used with a variety of measures of entropy. 
Traditional entropy measures such as Shannon entropy, Kolmogorov-Sinai (KS) entropy, approximate entropy (ApEn) and 
sample entropy (SampEn) quantify only the regularity (predictability) of time series on a single scale by evaluating the 
appearance of repetitive patterns [5]. However, there is no straightforward correspondence between regularity and complexity. 
Neither completely predictable (e.g., periodic) signals nor completely unpredictable (e.g., uncorrelated random) signals are 
truly complex since at a global level they admit a very simple description. As a result, the output of complex systems is far 
from the two extrema of perfect regularity and complete randomness. Instead, they generally reveal structures with long-range 
correlations on multiple spatial and temporal scales. These multiscale features, ignored by conventional entropy calculations, 
are explicitly addressed by the MSE method [5].  

So far MSE has been successfully applied to investigate fluctuations of the human heartbeat under pathologic conditions like 
erratic cardiac arrhythmia and congestive heart failure [5], EEG and MEG recordings in patients with Alzheimer's disease [3], 
compare the complexity of human gait time series from healthy subjects under different conditions [6], examine variations in 
EEG complexity in response to photic stimulation during aging [7], study complex dynamics of human red blood cell 
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flickering and alterations with in vivo aging [8]. All the reported results strongly support the general „complexity-loss‟ theory 
with aging and disease.  

As pointed out in [1], the neural networks in the brain possess a structure which is intermediate between complete randomness 
(for example, gas) and perfect order (for example, crystal). So, it is apparent that MSE method should be applied to 
characterize brain electrical activity. The major aim of this study is to apply MSE to characterize EEG signals recorded 
extracranially in healthy subjects with eyes open and closed, and intracranially in epilepsy patients both during seizure-free 
intervals and epileptic seizures and thus compare the classification of different brain states with some other nonlinear methods 
particularly Lempel-Ziv entropy and permutation entropy. Besides, the MSE method is also tested against the above two 
entropy statistic along with sample entropy to determine the superiority of sample entropy in terms of classification accuracy. 
The structure of this paper is as follows. First, MSE and other nonlinear methods are introduced and followed by a brief 
summary of the EEG data and the statistical analysis method used. The results of the entropy analysis and classification are 
reported afterwards and finally the relevant results are discussed and conclusions are drawn. 

 

Quantitative Complexity Estimators 

 

In this paper, a set of different nonlinear entropy estimators has been applied to quantify the complexity of the EEG time 

series in multiscale entropy (MSE) analysis. They are sample entropy (SampEn), permutation entropy (PermEn) and Lempel-

Ziv entropy (LZEn). All the methods are suitable for analysis of time series of limited length. 

A. Multiscale Entropy Analysis 

Costa et al. [5] proposed multiscale entropy (MSE) as a meaningful physiologic complexity measure which evaluates the 
relative complexity of normalized time series across multiple scales. Briefly, the MSE methodology has two steps: 

 Multiple coarse-grained time series are generated from the original time series                               by averaging the 
data points within non-overlapping windows of increasing length ε, also known as scale factor. The elements of the 
coarse-grained time series of scale factor ε are calculated as the equation below: 

                            (1) 

 SampEn is calculated  for each coarse-grained time series, and then plotted as a function of the scale factor. 

In this paper, sample entropy is not only considered alone as complexity estimator in MSE method. Two other popular 
complexity estimator namely, permutation entropy and Lempel-Ziv entropy are also compared to establish the superiority of 
the sample entropy in the multi-scale framework. 

B. Sample Entropy 

Richman and Moorman [9] introduced the sample entropy (SampEn) which represents the conditional probability that two 
sequences of m consecutive data points, which are similar to each other within a tolerance level r will remain similar when next 
consecutive point is included, provided that self matches are not considered in calculating the probability. It is largely 
independent of time series length and displays relative consistency over a wide range of operating conditions. For a time series                                                                                                                                                                  

SampEn is defined as [9] in Table 1. 

 

C.  Permutation Entropy 

Bandt and Pompe [10] took an ordinal approach to quantify complexity of time series. They introduced permutation entropy 
(PermEn) that measures the local order structure of the time series in phase space. The use of ordinal statistics (rank) makes 
PermEn less sensitive to noise embedded in phase space.  In Table 1, PermEn is computed as [10] for a time series                                                             
.                                                           .. 

D.  Lempel-Ziv Entropy 

Another approach to quantify complexity of time series is to use the theory of symbolic dynamics. To compute the Lempel-Ziv 
complexity [11, the original time series is first mapped onto a finite symbol sequence. One popular approach is to convert the 
time series into a binary (0:1) sequence by comparing with a threshold Xth, i.e., whenever the original time series samples are 
larger than Xth, it maps onto 1, otherwise to 0. Usually the median of the series is used as the threshold Xth due to its robustness 
to outliers. The resulting symbol sequence {Si} with i=1, …, N is then went through the Lempel-Ziv parsing [11] algorithm to 
estimate the size c({Si}) of its vocabulary. In this algorithm, the symbol sequence {Si} is scanned from left to right and its 
complexity counter c({Si}) is increased by one unit every time a new subsequence of consecutive symbols is encountered and 
the scanning proceeds regarding the following symbol as the starting of the next symbol sequence. To obtain a complexity 
measure that is independent of the sequence length, c({Si}) should be normalized by the expected asymptotic value for a 
random sequence of symbols of length N which is                  ,where α is the number of symbols (for binary sequence it is 2). 
Thus, the normalized Lempel-Ziv complexity or Lempel-Ziv entropy is,                                                                     
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Table 1: Sample Entropy & Permutation Entropy Definition 

 

Data 

The EEG data used in this study are obtained from the EEG database available publicly from the University of Bonn and 

described in detail in [2]. In brief, the complete dataset was comprised of five sets denoted A-E, each consisting 100 single-

channel EEG epochs of duration 23.6 seconds each recorded with a sampling rate of 173.61 Hz. The first two sets A and B 

were obtained from EEG recorded extracranially using a standardized electrode placement scheme from five healthy volunteers 

with eyes open and closed respectively. The last three sets were obtained from EEG recorded intracranially using depth 

electrodes from five epileptic patients undergoing presurgical evaluations. Epochs in sets C and D were taken during seizure 

free intervals respectively from the hippocampal formation of the opposite hemisphere of the brain and within the 

epileptogenic zone. The epochs of set E were selected from all recording sites exhibiting ictal activity and thus contain seizure 

activity. As a pre-processing step, the downloaded data has been filtered using a band-pass filter with settings 0.53-40 Hz (12 

dB/octave). 

Statistical Analysis 

 
To evaluate the statistical difference of the calculated entropy statistics of different sets, Student's t-test as well as the Mann-
Whitney U test (also known as Wilcoxon rank sum test) has been applied. For more than two groups, one-way ANOVA 
(analysis of variance) which is a generalization of the Student's t-test for more than two groups is used as a parametric test 
whereas Kruskal-Wallis test, an extension of the Mann-Whitney U test for three or more groups is used as nonparametric one.  

Sample Entropy Permutation Entropy 

 

 

. 
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A multiple comparison procedure is also followed the ANOVA and Kruskal-Wallis test to find the information about which 
pairs of means/medians are significantly different, and which are not. In all cases, differences are considered statistically 
significant and the null hypothesis is rejected if the p value is lower than 0.01. 

Simulation Results 

Unless otherwise specified, the values of the parameters used to calculate SampEn are N=4097, m=2, and r=0.15 which are 
chosen on the basis of various previous studies indicating good statistical reproducibility [9]. For MSE, as the length of each 
coarse-grained sequence is ε (scale factor) times shorter than the length of the original series, so the highest scale factor 
calculated for analysis is 20. In that case the coarse-grained sequence has more than 200 data points which is well within the 
SampEn signal length requirement (10

m
 to 20

m
) [9]. For PermEn to satisfy the condition of m! <200 at highest scale factor, the 

value of m=5 is chosen. 

A. Entropy Analysis of EEG 

SampEn, PermEn and LZEn values are computed for the entire 500 EEG epochs in the five data sets described earlier. Table 2 
shows the different entropy statistic for the different EEG sets. 

Table 2: Summary of different entropy statistic measured in different sets 
 

 

From the table, it is clear that epileptic EEG (set E) is the least complex among the five data sets as it yields the least value of 
SampEn and PermEn statistic. To find the statistical significance of the differences among the different entropy values of the 
five sets, one-way ANOVA and Kruskal-Wallis test is used. Afterwards, multiple comparison procedure is applied on the 
result of the previous two tests to find the significant differences among different pairs. The result is shown in Table 3 where 
the entries represent the pairs which cannot be significantly differentiated according to the above two statistical tests. 

Table 3: Result of the two statistical tests 

 
 

After that, the multiscale procedure is applied with three entropy estimates. The result is shown in Fig. 1. For MSE analysis 
using SampEn (Fig. 1(a)), the MSE curves of sets A and B have similar patterns: a local maximum at scale factor 5 followed 
by decreasing entropy values. On the other hand, the MSE curves of sets C and D have a similar shape: steep increase followed 
by a smoother increase whereas MSE curve of set E increases until scale factor 8 and then decreases slightly. And for all scale 
factors, the curve of set E remains quite below from the others which prove the fact that EEG complexity decreases in seizures. 
From the statistical point of view, for most of the scale factors the SampEn values are significantly different among the sets for 
at least four sets. It is found by using one-way ANOVA and Kruskal-Wallis test followed by multiple comparison procedure. 
However, the LZEn measures (Fig. 1(b)) cannot differentiate in terms of MSE curves between sets A (healthy volunteer, eyes 
open) and B (healthy volunteer, eyes closed), and sets D (epileptogenic zone) and C (hippocampal formation of opposite 
hemisphere) and the PermEn measures (Fig. 1(c)) cannot discriminate any sets after scale factor 10. 

B. Classification 

In this section, the ability and effectiveness of the entropy measures studied in this paper are examined in the context of EEG 
classification. Every EEG epoch in the five different sets mentioned earlier has a desired label of the set from which it is taken 
and the classifier aims to correctly label each of the 500 EEG epochs. Two cases are considered here: the five-class case and 
the simplified three-class case, which groups classes A and B, and classes C and D. The classification is performed on the 
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feature vectors generated from the EEG epochs using SampEn, PermEn and LZEn individually and then with the multi-scale 
framework where the vector contains the entropy values for all the scale factors used.  

  

 

Figure 1: Multiscale entropy analysis using different entropy estimators. Symbols represent the mean values of entropy for 
each set and the bars represent the standard error 

Though there exists a great deal of classification methods, nearest neighbour classification (NNC) and leave-one-out 
classification (LOOC) from the supervised classification (as the desired labels are known a priori) paradigms are chosen for 
this investigation. These two methods can be interpreted as a lower and upper bound of possible classification systems. In 
NNC, the class prototypes are determined as the average of the feature vectors of all EEG epochs belonging to a certain set. 
The EEG epoch is classified to the class of its nearest neighbor, with the epoch being assigned to the class label of the 
prototype which is nearest in Euclidean norm to its feature vectors. In LOOC, the label of an EEG epoch (testing epoch) is 
determined by leaving out that epoch from the set and considering the remaining set of feature vectors as the set of labelled 
prototypes (training epochs). The label of the testing epoch is set equal to that of the nearest neighbour prototype in Euclidean 
norm sense. The classification accuracy is expressed as the fraction of correct classifications and is shown in Table 4 for single 
scale entropy metrics and in Table 5 for multiple scale framework for the different case setup. The classification performances 
for the MSE method with SampEn as the complexity measure outperform all the other entropy measures in single scale as well 
as for multiple scales for both case setups. 

 

Discussion and Conclusions 

In this study, recently introduced multiscale entropy (MSE) method with sample entropy as the complexity statistic is 
compared with other entropy estimators like permutation entropy (PermEn) and Lempel-Ziv (LZEn) in context of EEG signal 
characterization and classification. All of the entropy estimators provide a quantitative metric for the complexity measurement 
of different brain state. The complexity of EEG recordings of healthy volunteers with eyes open (set A) are found significantly 
(p<0.01) higher than the recordings with eyes closed (set B) using SampEn (in t-test only) and PermEn (both t-test and Mann-
Whitney U test) measures but LZEn measure cannot significantly differentiate between this two sets in any test. Moreover, 
MSE method with sample entropy as the complexity estimator significantly detects high degree of complexity in set A 
compared to set B for most of the scale factors.  



International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 

Vol. 2 Issue 11, November-2013, pp: (146-152), Available online at: www.erpublications.com 

Page | 151  

 

 

Table 4: The classification accuracy for the different single scale entropy measures 
 

 

Table 5: The classification accuracy for the different entropy measures in the Multiscale entropy framework 
 

 

 

These results are in agreement with the Hebb's concept of cell assemblies in brain function. The brain electrical activity (i.e., 
EEG) is generated from individual cell assembly activities. In eyes closed state, as there are no cognitive tasks involved, the 
number of independent, parallel functional processes active in the brain is less and brain goes into a passive state of relaxation. 
As a result, the neuronal networks display a state of synchrony and most of the neuronal groups within a cortex area oscillate at 
a certain frequency. This is associated with an increase in alpha frequencies in the brain waves. This makes EEG signals 
structure more regular and thus reduces its complexity. On the other hand, the task of processing large amount of visual 
information in eyes open state require more oscillating cell assemblies to change their oscillation patterns away from the 
preceding predominant one. This makes the EEG signal more irregular and thus increases complexity [1, 7]. 

All entropy measures were able to find significant (t-test and Mann-Whitney U test, p< 0.01) decrease of complexity in seizure 
activity (set E) compared to normal EEG (eyes open or closed) recordings. This indicates a reduction in the intra-cortical 
information flow and lower neuronal process in the brain. The result is in agreement with the previous studies on dimensional 
analysis of EEG that epileptic seizures are emergent states with reduced dimensionality compared to normal state. It was 
observed in [12] that neuronal hyper-synchrony, a phenomenon during which the number of independent variables required to 
describe the dynamical system is smaller than other times, underlies seizures. This reduction of the system's degree of freedom 
indicates either a strongly coupled system or the inactivation of previously active networks or a loss of dynamical brain 
responsiveness to the environmental conditions. Besides, the findings of our study support the more general concept of 
multiscale complexity loss with aging and disease which also reduces the adaptive capacity of biological organization at all 
levels [13]. 

Moreover, the classification result shows that the MSE method with sample entropy as complexity statistic provides a 
sufficiently detailed characterization of the EEG to discriminate among the different sets. The performance of a classifier is 
expected to lie between 84% and 90% in 3-class case. However, performance degrades for a more detailed classification in 5-
class case which further dissociates between sets A and B and sets C and D. Among the single scale entropy measures, LZEn 
performs better (72%-73.8%) in 3-class case. 

To conclude, the recently introduced multiscale entropy analysis (MSE) method has been examined against two other entropy 
statistics to reveal the hidden characteristics of the EEG signals. Compared with other traditional single scale entropy metrics, 
our study suggests that MSE with sample entropy as the complexity estimator can detect the long-range correlation and 
multiscale complexity in the brain and thus efficiently distinguish different dynamical properties of brain electrical activity. 
This method also has the potential to be used to extract features for more sophisticated EEG signal classification based on 
neural networks or support vector machines and hence characterize different brain conditions. 
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