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ABSTRACT 

 

A robust neural control is designed for nonlinear dynamic systems. The objective of this work is to control the 

motion of the nonlinear system without any knowledge of its dynamics. This method of control requires only the 

measurement of the system state and its inputs. A Lyapunov function is proposed to ensure the stability of the 

nonlinear system equipped with the robust neural control. The online neural network’s learning algorithm is 

concluded. A case study of a three dimensional rigid-link robotic manipulator is developed. Simulation results of 

the robot manipulator demonstrate the efficiency of the proposed robust neural control. 
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I. INTRODUCTION 

 

Control methods based on exact dynamic models and precise physical parameters of dynamic systems are ineffective in 

practice because of the presence of dynamics uncertainities and other perturbations, such as load changes, frictions, 
external disturbances [16], [20], [23], [28]. Having exact models may also means that the dynamic system is not able to 

adapt to changes and uncertainties in its parameters or environement. This issue has been discussed in many works [1], 

[2] and [10]. Thus, Cheah, Liu and Slotine proposed in 2006 an adaptive controller for robot tracking control where the 

uncertain kinematics and dynamics’ parameters are updated online [2]. According to them, even if the kinematics and 

dynamics parameters of robot manipulators, which are highly nonlinear, can be obtained with sufficient accuracy by 

calibration and parametric identification techniques, this can not be achieved for any object the robot manipulates.  

Hence, based on their universal approximation properties and learning abilities, neural network controllers seem to be a 

good alternative for online identification issues, motion planning and control of highly nonlinear dynamic systems. Thus, 

tracking control using neural networks has inspired a great number of researchers [3], [5], [7], [9], [18], [21], [26-27]. 

Moreover, this method has been extended to uncertain dynamical systems as in [4], [14], [22], [29-31]. This has been 

largely debated by Cheng, Hou and Tan who proposed in 2009 a neural network based tracking controller for robot 

manipulators with uncertain kinematics, dynamics and actuator model. They demonstrated that the neural controller is 
not only a controller for trajectory tracking but also a kinematics estimator and dynamics compensator. 

In this way, a simple and effective neural control for nonlinear dynamic systems with unknown kinematics and dynamics 

is designed in this paper. In section II, the nonlinear dynamic system is presented and the case of study is introduced. The 

neural control scheme, developed in section III, is composed by two components: the first corresponds to a neural 

network for the nonlinear system's inverse dynamics and any other modeled and unmodeled dynamics estimation, and the 

second is a visco-elastic component for the trajectory tracking. In this work, the dynamics of the nonlinear system is 

completely unknown. The absence of this knowledge is the reason for the choice of a neural control system, which will 

have as an objective the estimation of such elements. The online neural network learning algorithm is developed, in 

section IV, based on Lyapunov stability analysis of the nonlinear dynamic system, which ensures its global stability. This 

neural control is applied to a three dimensional three degrees of freedom robot manipulator. Perturbations in the end 

effector load and torques white noise are introduced in the robot dynamics to test and prove the robustness of the neural 
control through dynamic simulations, in section V, where the simulation results are presented and discussed. 

 

II. NONLINEAR DYNAMIC SYSTEM  

The dynamics of nonlinear systems can be considered as follows: 

                            (1) 
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Fig. 1. Three dimensional robot manipulator 

 

Here,   is the state vector of the nonlinear dynamic system,   is its input vector,   represents the variable of time and   is 
a nonlinear function of the system dynamics. The case study used in this paper corresponds to a three dimensional robotic 

system. The figure below (Fig. 1) describes the robot manipulator considered.  

This robot manipulator is a three-link three dimensional rigid arm articulated by three revolute joints. An exact dynamics 

model of this robot manipulator may be expressed in matrix form ([11] , [15]  and [15] ), such as:  

                                         (2) 

Let   be the number of robotic system degrees of freedom. Here,          is the control torques vector.           

    and        are respectively the vector of angular positions, velocities and accelerations.           is the robotic 

system matrix of inertia.              is the vector of Coriolis and centripetal forces.           is the vector of 

gravitational forces.       is the actuators action matrix.   symbolizes the time variable.           represents the 
modeled un-modeled dynamics, e.g., joints friction, end effector’s load perturbations and torques disturbances. 

In this work, the robot matrix of inertia , the Coriolis and centripetal forces vector   and the gravitaty vector   are 

completley unknown functions. The absence of this knowledge of the system dynamics is the reason for the choice of a 

neural control system, which will have as an objective the estimation of such elements. Equation (2) may be written in 
compact form as Equation (1), in order to be used for any nonlinear dynamic system, where the state vector is: 

                    (3) 
and the nonlinear function of its dynamics can be considered written as follows: 

                 
        
        

     
    

       
     

  

                         
    (4) 

Here,           is the identity matrix,           is the zeros matrix and         represents the zeros vector.  

III. NEURAL CONTROL 

The neural control of the nonlinear dynamic system is composed by two elements. The first one is the estimation of the 

robot inverse dynamics and any other unmodeled dynamics. This component is comptuted through the neural network. 

The second element corresponds to a visco-elastic component for tracking purposes.  

                                      (5) 

Here,                 
      

 
 
 

reprents the desired state vector, where          and            are 

respectively the vector of desired angular positions and velocities.        and         represent the visco-elastic 
gains and are positive definite diagonal matrices . The block diagram below, in Fig. 2, shows the structure of the neural 

control law. Here,   is the angular positions errors vector.    is the angular velocities errors vector.    is a nonlinear 
function of the neural network learning algorithm.  

 

Fig. 2. Neural control structure 
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The neural control only uses the measurment of the state of the system    and output of the neural network      , 
which is computed based on the robot input and its state.  

Since the neurol control     proposed has no knowledge of robot dynamic parameters, the proposed control is robust if 

stability conditions are fulfilled. A Lyaunov function is presented in the next section in order to prove the control 

robustness. 

IV. NEURAL NETWORK CHARACTERISTICS 

The neural network (NC) architecture is identical to that of the standard multi layer perceptron. Fig. 3 shows the structure 

of the neural network which is a two-layer feedforward neural network with a single hidden layer and an output layer.  

The neural network outputs vector is called         . The neural network inputs vector        is composed by the 
outputs of the nonlinear dynamic system: 

             
         

 
                     (6) 

The neural network weights in both hidden and output layers will be adjusted with the same learning algorithm. The 

activation function    of the neural network hidden layer is the hyperbolic tangent function. The activation function   of 
the neural network output layer is the linear function.  

A. Activation functions  

Let        be the weight of the    input and the    neuron of the hidden layer and        the weight of the    input and 

the    neuron of the output layer. The neural network outputs are computed by the neurons activation functions of the 
finite sums of the form: 

    
                          

 
      

                   (7) 

The activation function of the neural network output layer is the linear function, then the neural network equation can be 

expressed in the following compact matrix form: 

      
       

           (8) 

Here,        
    

      
  

 
          is the vector of the  hidden layer neurons weights fed by the  NC 

inputs, where the     hidden neurons weights vector is                           
 
     . 

       
    

      
  

 
         is the vector of the   output layer neurons weights vector fed by the  hidden 

layer outputs, where the     output neurons weights vector is                           
 
     . 

B. Learning algorithm and stability analysis 

All the weights in both hidden and output layers of the neural network are adjusted with the same online learning 

algorithm. Hence, let      
   

  
 

be the whole neural network weights vector.  

The neural network learning algorithm is elaborated based on the robotic system stability analysis, using the Lyapunov 

stability theorem.  

Consider the following Lyapunov candidate function : 

  
 

 
       

         
 

 
                                        (9) 

Its time derivative can be calculated as: 

            
 
                                (10) 

Using the established equation of the neural control (5), we obtain:  

            
 
                                       (11) 

After the Lyapunov function time derivative equation factorization: 

              
 
                     (12) 

 

Fig. 3. Neural Network for Control (NC) structure 
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To ensure that this time derivative   is negative, the following equality is imposed: 

                                    (13) 

With   is a known positive gain constant. The global stability of the robotic system is realized if (13) is verified. So, the 

Lyapunov function time derivative   is computed by: 

            
                         (14) 

Now, if we consider (8), the neural network outputs depend only on the vector   of the whole neural network weights 

and the vector  of the neural network inputs, such as: 

                  (15) 

The time derivative of     is computed by: 

     
    

  
   

    

  
            (16) 

The neural learning algorithm is developed as to verify (13). Substituting      in (13) by its value computed in (16), we 

can write the following equality: 

    
    

  
   

    

  
                      (17) 

The learning algorithm of the neural network is thus obtained: 

    
    

  
 
    

             
    

  
            (18) 

Note that since the Jacobian matrix  
    

  
  has more columns than rows, to compute its inversion, the pseudoinverse is 

required. The result is found using the Moore-Penrose pseudo- inverse [24] : 

 
    

  
 
    

  
    

  
 
 

  
    

  
  

    

  
 
 

 

  

         (19) 

This solution satisfies some properties that are defined in Appendix B. The particularity of this method that it construct 

the solution with its minimum Frobenius norm. That may make the neural network’s learning algorithm running faster. 

Since (13) is verified, applying this learning algorithm (18) to compute the neural control ensures the global stability of 

the robotic system. 

V. SIMULATION RESULTS AND DISCUSSION  

In this section, the simulation results of the developed neural control method is applied to the three degrees of freedom 

three dimensional robot manipulator, described in section II. 

According to the establishing link coordinate system of the robot manipulator presented in Fig. 1, the geometric 

parameters are defined using the Denavit-Hartenberg (D-H) representation  [11-12].  

The table below (Table 1) summarizes these geometric parameters of each joint  and the robot arm inertial parameters of 

each link  : 

The poles of the system are chosen such as the visco-elastic component gains are: 

 
                 

                 
  

The motion task is to move the robot end effector from the initial angular positions:             to the desired 

angular positions:                  . The learning law’s gain is   . 

Two types of disturbances have been introduced into the robotic system:  

The first one is a continuous white noise        applied to the actuators, with random normally distributed amplitude 

      . 
 

 
TABLE 1: LINKS AND JOINTS PARAMETERS OF THE ROBOTIC SYSTEM 

Joint                                     Link   
Length 
      

Mass 
       

Center of   
mass       

Inertia        
        

1         0.3 0.8 1 0.3 3  
    
    
    

   
      
     
     

  

2    0 0.45 0 2 0.45 2  
    
    
    

   
      
     
     

  

3    0 0.33 0 3 0.33 1  
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Fig.  4. Movement of the three links robot manipulator in space 

The second one is an external load imposition applied suddenly in the robot end effector.  

To calculate the neural control performance     , the torques vector of our neural control    is compared to the torques 

vector  resulting from the dynamics of the robot manipulator       , expressed in (2). The performance measure is 

obtained at the end of simulation (    ), such as: 

             
          

  
                    (20) 

The matrix of inertia , the Coriolis and centripetal forces vector  , gravitational forces vector   and the actuators action 

matrix   are defined and detailed in Appendix A. These matrices are used to simulate the robot dynamics but never used 

in computation of the neural control.  

The designed neural network (  ) has a single neuron in the hidden and three neurons in the output layers. The evolution 

of the robotic system with    is simulated in all cases considering the disturbance     .  
The  

Fig.  6 below illustrates the mouvement of the robot manipulator from its initial position to its Final position. 

First, the neural control has been computed considering a small continuous torques white noise as a disturbance 

     with a maximum amplitude       . The Fig.  7 below shows the angular positions and the input torques 

evolution with a small torques disturbance. 

At the end of simulation time, we find: 

 The performance measure:                  

 The neural control torques vector:                                    
Secondly, the neural control has been computed considering the same small random torques white noise, in addition to a 

sudden end effector load change. Here, the robot third link weight changes suddenly from     to     at time   
     . The Fig.  7 below gives the angular positions and the input torques evolution with a small torques disturbance and 

a sudden load change. 

At the end of simulation time, we find: 

 The performance measure:                  

 The neural control torques vector:                                    
Finally, the neural control has been computed considering a hard continuous torques white noise as a disturbance     . 
The maximum of this white noise amplitude        . The Fig.  7 below shows the angular positions and the input 

torques evolution with a hard torques disturbance. 

At the end of simulation time, we find: 

 The performance measure:                  

 The neural control torques vector:                                        
These simulation results demonstrate that the neural control stabilizes the nonlinear robotic system and brings it to its 

desired state even in presence of several perturbations.  

Indeed, we clearly see that even if we apply a sudden end effector mass change (Fig. 6) or a hard continuous disturbance 
on the robot torques (Fig. 7), the neural control is capable to quickly stabilize the system and drives it to its desired state. 

It gives excellent simulation results with negligible static positions errors ( ) and infinitely small performance measures 

(   . 
Therefore, we selected the simplest neural structure, with just one hidden neuron and only two layers, in order to 

minimize the time estimation due to the online application of  the proposed neural control. 

It is important to note that the neural network learning algorithm depends on the input torques vector time derivative that 

has been estimated using the mean value theorem. 

VI. CONCLUSION 

In this article, we developed a simple and effective robust neural control for nonlinear dynamic systems.  

The robust  neural control proposed is composed by two elements: first the output of a neural network which estimates 
the unknown nonlinear system inverse dynamics, and second, a visco-elastic component used to have a stable tracking 

behaviour. This neural control requires only the Only the state of this system and its inputs are available for its control. 
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The system parameters and dynamics are totally unknown. Furthermore, the neural network is designed with no more 

than one single neuron in the hidden layer and only two layers. The neural network learning algorithm is computed 

through a Lyapunov function which ensures the global stability of the nonlinear system.  

The neural control is applied to a three degrees of freedom three dimensional robot manipulator. The simulation results 

demonstrate the efficiency and prove the robustness of this neural control.  

This results lead us to conclude that more work needs to be realized in the selection of the neural network functions in 
order to minimize the inverse dynamics estimation time.  

 

 

 

Fig. 5. The evolution of the angular positions and the input torques with a small torques disturbance 

 

 

Fig.  6. The evolution of the angular positions and the input torques with a small torques disturbance and a sudden load 

change 

 

Fig.  7. The evolution of the angular positions and the input torques with a hard torques disturbance 
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VII. APPENDIX 

A. Dynamics’ model formulation  

The matrices composing the dynamics’ model of the three degrees of freedom three dimensional robotic manipulator, 

expressed in (2) are found by applying the Lagrange-Euler formulation [11], [12], such as:  
 

  
 
  

    
  

  

   
                    (21) 

Here,  is the Lagrangien function of the robotic system: 

         (22) 

   and   are respectively the kinetic and the potentiel energies of the robot manipulator, given by:  

  
 

 
                  

         
 
   

 
   

 
                  

   
                         (23) 

Let    
             

  be the homogeneous coordinates, expressed with respect to the     link coordinate frame. Thus, the 

matrix     is the transformation matrix of the points    
  on link   as the angular position    changes, relative to the inertial 

coordinate system. The matrix         
    

  
    is the inertia of all the points of link    [12].    

  is the same point    
  

with respect to the inertial coordinate system. The row vector                 is the gravity force vector expressed in the 

inertial coordinate system.  

Hence, the matrices of the robot dynamics described in (2) are identified through this Lagrange-Euler equation of motion 
(21) such as: 

The symmetric matrix of inertia           is computed by: 

 
                   

   
           

                                                     
         (24) 

The nonlinear Coriolis and centrifugal forces vector              is defined by: 

 
                  

 
             

 
   

 
   

                    
                     

        (25) 

The gravity loading forces vector           is: 

 
              

   
                       

                    
        (26) 

 

B. Pseudoinverse computing  

The Jacobian  
    

  
  has 3 rows and 9 columns. To compute its inversion, we used the Moore-Penrose pseudoinverse: 

 
    

  
 
    

  
    

  
 
 

  
    

  
  

    

  
 
 

 

  

       (27) 

Let   denotes the matrix  
    

  
 that we want to inverse and   its pseudoinverse, such as: 

   
    

  
       

    

  
 
    

(28) 

The solution computed of the Moore-Penrose pseudoinverse satisfies the following properties [24]: 

 

     
     

        

        

 (29) 

Note that the Moore-Penrose pseudoinverse construct the solution with minimum Frobenius norm:    
         , 

where        is the trace operator. 
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