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Abstract: In this paper we discuss the game coloring of planar graphs. This parameter provides an upper bound for the 

game chromatic number of graph. We describe the problem and its solution given by Xuding Zhu [1] and point out an 

error in it. 
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1. Introduction 

 

Let G= (V, E) be a graph and let X be a set of colors. The game chromatic number of G is defined through a two person 

game called coloring game. Alice and Bob take alternate turns with Alice having the first move. Each play of either 

player consists of coloring an uncolored vertex of G with a color from X. Adjacent vertices must be colored by distinct 

colors. If after n = |V| moves, the graph G is colored, Alice is the winner. Otherwise at any stage, if there is an uncolored 

vertex v such that each color of X is assigned to at least one of its neighbours, then Bobs is the winner. The game 

chromatic number of G, denoted by xₐ(G), is the least cardinality of a color set X for which Alice has a winning strategy. 

The coloring game on planar graphs was invented by Steven J. Brams, and was published by Gardner [2]. The game 

chromatic number of planar graphs was first studied by Keirstead and Trotter [3]. Recently Xuding Zhu made a 

significance contribution in this field[1,4]. Since it seems very difficult to determine the game chromatic number of even 

small graphs, Xuding Zhu in [1] discusses a variation of the game chromatic number, the game coloring number. 

 

2. Game Coloring 

 

Suppose (V,E) is a graph and X is an infinite set of colors. The game coloring number of G is defined through a two-

person game: the coloring game. Alice and Bob, with Alice playing first, take turns in playing the game. Each play by 

either player consists of coloring an uncolored vertex of G. A player during his/her turn must first select an uncolored 

vertex  u. If one of the already used colors, is not assigned to any of neighbours of u, then the player must assign one of 

the already used colors to u. Otherwise a new color must be used. The game ends when all vertices are colored. For a 

vertex v of G, let b(v) be the number of neighbours of v that are colored before v is colored. The score of the game is s = 

1 + maxb (v) where v ϵ V. Alices goal is to minimize the score, while Bobs goal is to maximize it . The game coloring 

number colₐ (G) of Gis the least s such that Alice has a strategy that results in a score at most s. It is easy to see that for 

any graph G, xₐ(G) ≤ colₐ (G).The next two Lemmas are trivial and we are quoting then without proof. 

 

Lemma 1. Suppose H is a spanning subgraph of G. Then colₐ(H) ≤ colₐ(G) 

Lemma 2. Suppose G=(V,E) and E=E₁UE₂. Let G₁=(V₁,E₁) and G₂=(V₂,E₂). Then colₐ(G) ≤ colₐ(G₁)+∆(G₂), where ∆(H) 

denotes maximum degree of graph H. 

 

2.1 Xuding Zhu’s Strategy of Game Coloring For Planar Graphs  

 

In [1] Xuding Zhu first decomposes the planar graph G into two graphs by partitioning its edges and occasionally adding 

some new edges such that these graphs satisfy some properties. He also orients the edges of these graphs. His strategy for 

Alice is to focus on only one of these graphs. The game coloring number is deduced by using Lemma 2. 

 

2.1.1 Decomposition of Planar Graphs  

 

In the following “i-vertex” will refer to a vertex of degree i and “I,j-edge” will refer to an edge between an i-vertex and a 

j-vertex. We call an edge „e‟ a light edge if it is either a 3, j-edge for some j ≤ 10, or a 4, j-edge for some j ≤ 8or a 5, j-

degree foe some j ≤ 6.Borodin in [5] has proved that, every planar graph with minimum degree ≥ 3 contains a light edge. 

Xuding Zhu uses this fact for the decomposition of planar graphs. 

Let G=(V,E) be a directed graph. If e=uvϵ  E, then we say that edge e is directed from u to v. u is called an in-neighbour 

of v and v is called an out-neighbour of u. The in-degree (resp. out-degree) of v is the number of in-neighbours (resp. 

outneighbours) of v. The degree of v is the sum of its in-degree and out-degree. 
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Lemma 3. [1] Suppose G=(V,E) is a connected planar graph without 2,2-edges and 1-vertices. Then there are two 

directed graphs G₁ = (V,E₁) and G₂ = (V,E₂) that satisfy the following conditions: 

 

1. EC E₁ U E₂ and E∩E=ø, where E₁ and  E₂ are undirected edges associated with E₁ and E₂ respectively. 

2. G₁ has maximum degree at most 8, and has maximum out-degree at most 3. 

3. G₂ is acyclic, and each vertex has out-degree 2, except two vertices, say r‟, r, which are joined by a directed 

edge r‟r, and have out-degree 1 and 0 respectively. 

4. Suppose u, v are the two out-neighbours of a vertex x in G₂, then either uvϵ E₁ U E₂ or vuϵ E₁ U E₂. 

 

In the following we give a sufficient description of an algorithm to compute G₁ and G₂. The edges of G₁ will referred 

as red and those of G₂ as blue. 

 

The graph G₁ and G₂ are more or less obtained from G by coloring its edges by two colors red and blue, and 

assigning an orientation at the same time. In the process of coloring the edges of G, we keep a track of a planar graph 

Gₐ, which is a subgraph of G and a few additional edges. The algorithm for constructing graphs G₁ and G₂ is given in 

Algorithm 1. 

 

Xuding Zhu claims that Gₐ is always planar without I-vertices, parallel edges, loops, and 2,2-edges, and that the 

coloring process terminates in O(│E│) steps. 

 

In section 2.2, we present a counter example which disproved the above claim. For completeness we are presenting 

Alice‟s strategy given by Xuding Zhu[1] in Appendix A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1: Algorithm for decomposition of planar graph. 

Input: A connected planar graph G=(V,E) without 2,2-edges and I-vertices. 

Output: Output two directed graphs G₁=(V,E₁) and G₂=(V,E₂). 

Initialize, Gₐ=G 

Repeat 

If Gₐ is isomorphic to K₃, then color all edges of Gₐ blue and assign orientations to 

the edges so that it is acyclic. Otherwise, suppose│V(Gₐ)│≥4. If Gₐ has a vertex 

say v, of degree 2 with edges vu and vw, then we do the following: 

1. Color the two edges incident on v blue, and orient these two blue edges from v 

to the respective neighbours. 

2. Delete v (together with the two incident edges ) from Gₐ. 

3. If uv is not an edge of Gₐ U G₁ U G₂, then add the edge uv to Gₐ. 

If Gₐ contains no vertex of degree 2, then Gₐ has a light edge, say ‟e‟. In this case 

we color „e‟ red, orient it from an end vertex of degree ≤ 5 to the other end vertex 

and delete „e‟ from Gu.   

Until Gu≠φ 

unt 
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2.2 Lacuna In The Decomposition Of The Planar Graph 

 

Consider the planar graph G=(V,E) given in figure 1.1 

 

j                               I                                  g                            f 

 

 

k                              h                                d                             e 

                                     b                         c 

 

                                                   a 

 
 

Figure 1.1: Planar graph G, without 2,2-edge and I-vertex: A counter example for the decomposition algorithm. 
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Figure 1.2: Resulting planar graph after applying steps 1, 2 and 3 of Algorithm 9 on vertex a of figure 6.1. 

 

We apply the decomposition algorithm on G. Initialize Gₐ=G. Clearly Gₐ has a vertex „a‟ of degree two, hence we color 

edges ab and ac blue and orient them away from a and then delete a from Gₐ. Since there is already an edge bc, we do not 

have to add any new edge. 

After inserting the above step we have a 2,2-edge, that is bc, disproving the claim of xuding Zhu that Gₐ is always free 

from 2,2-edge. The resulting planar graph is shown in figure 6.2 . If we resume with the algorithm even in the presence 

of the said 2,2-edge the partition process comes to completion without any hurdle. But this is not the case in general. 

 

Consider the graph Gₐ given below in figure 1.3. 

 

j                              I                                h                          g 
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                                              b 

 

 
Figure 1.3: Planar graph Gₐ, without 2,2-edge and I-vertex: Another counter example for the decomposition algorithm. 
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Figure 1.4: Resulting planar graph after applying steps 1,2 and 3 of Algorithm 9 on vertex b of figure 1.3. 
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Initially algorithm will color edges ba and bc blue and remove vertex b from Gₐ. The resulting graph will have a 2,2-edge 

ac as shown in figure 1.4. In this case the algorithm will fail to proceed any further since it will create aI-vertex. Hence 

we conclude that Xuding Zhu‟s claim of non-appearance of 2,2-edges is incorrect and in presence of these edges the 

decompositioning algorithm may fail. 

 

Appendix A 

 

In reference to the section 2.1, we are presenting Alice‟s strategy of coloring game proposed by Xuding Zhu [1]. 

 

Based on the decomposition of planar graph (section 2.1.1) into G₁ and G₂, Xuding Zhu in [1] has given a strategy for 

Alice, so that no matter how Bob plays the coloring game, the score of the game will be at most 19. In his strategy Alice 

will only take the graph G₂ into consideration. We need to define some terms before describing the strategy. 

  

Suppose xϵ V-{r,r‟} and u, v are the two out-neighbours of x in G₂, by Lemma 3, either uv or vu ϵ E₁ U E₂. Assume that 

vuϵ E₁ U E₂. We call u, v the parents of x, call u the major parent of x, and v the minor parent of x. We call x a major son 

of u, and call it the minor son of v. We call the edge xu a major edge and xv a minor edge. Two vertices x, y are called 

brothers if x and y have the same parents. We call the edge rr‟ a major edge, and r‟ has a single major parent, no minor 

parent, and r has no parents. 

   

Let T be a directed spanning tree of G₂ induced by the major edges of G₂. In the process of coloring game, Alice will 

keep track of a set, which includes r and induced graph on it is a sub-graph of T. We call this set the active set, and 

denote it by Tₐ. the vertices of Tₐ are called as active vertices. We define two operations on any directed graph in G₂, the 

extension and the switch as follows: 

 

Suppose P={y₁, y₂,…….,yₓ} is a directed path in G₂ not containing any Tₐ-vertex. Let P‟ be the unique directed path of T 

connecting yₓ to Tₐ (i.e, the first vertex of P‟ is yₓ, the last vertex of P‟ is a vertex of Tₐ, and all inner vertex of P‟(if any) 

are not in Tₐ ). The concatenation of P and P‟ is called the extension of P. If the last vertex of P is in Tₐ then, the 

extension of P is itself. 

 

Suppose P={y₁, y₂,…….,yₓ} is a directed path in G₂, and suppose that the last edge, yₓ₋₁yₓ, of P is a  major edge. Let y‟ be 

the minor parent of yₓ-₁. Then the directed path P‟= {y₁ y₂,….,yₓ₋₁, y‟} is called  the switch of P. Note that if the last edge 

of P is a major edge and not equal to r‟r, then its switch is unique. Otherwise its switch is not defined. 

 

Alice‟s strategy is as follows: 

 

Initially, Alice‟s color r, and set Tₐ={r}. Suppose at certain stage of the game,Bob has colored the vertex x. Then Alice 

select the next vertex to color by the following rule: 

 

Let y be the major parent of x, and let P₁=xy. Let P₂ be the extension of P₁. Alice will repeat the following procedure until 

she select a vertex to color. 

 

Suppose the presently found directed path is P₂ₑ for some e ≥ 1, and that the last edge of P₂ₑ is vu. 

 

1. If vu= r‟r, then select any free (uncolored) vertex x such that all its predecessors in G₂ have been colored. 

2. If vu is a major edge, and the no. of active brothers of v is even and that u is a free (uncolored) vertex, then select u. 

3. If vu is a major edge, and that either v has an odd number of active brothers, or u is a colored vertex, then let P₂ₑ₊₁ be 

the switch of P₂ₑ and let P₂ₑ₊₂ be the extension  of P₂ₑ₊₁, and go back to repeat the procedure (with P₂ₑ replaced by 

P₂ₑ₊₂). 
4. If vu is a minor edge, and u is a free (uncolored) vertex, then select u. 

5. If vu is a minor edge, and u is a colored vertex, then select any free (uncolored) vertex x such that all its predecessors 

in G₂ have been colored. 

 

After Alice selected the next vertex to color, say v, add the vertices of the directed path P₂ₑ and the vertex v to Tₐ, where 

P₂ₑ is the last path found in the procedure above. Also color the vertex v with the first available color from the color set 

X. 

 

For completeness, we quote the theorem of Xuding Zhu, which bounds the score of the coloring game to 19. 

 

Theorem 1. [1] If Alice uses the strategy described above, then the score of the coloring game is at most 19 
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Conclusion 

 

Initially algorithm will color edges ba and bc blue and remove vertex b from Gₐ. The resulting graph will have a 2,2-edge 

ac as shown in figure 1.4. In this case the algorithm will fail to proceed any further since it will create aI-vertex. Hence 

we conclude that Xuding Zhu‟s claim of non-appearance of 2,2-edges is incorrect and in presence of these edges the 

decompositioning algorithm may fail.  
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