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ABSTRACT 

 

Controlling the process is the main issue that rises in the process industry. It is very important to keep the process 

working probably and safely in the industry, for environmental issues and for the quality of the product being 

processed. PID control is a control strategy that has been successfully used over many years. Simplicity, robustness, 

a wide range of applicability and near-optimal performance are some of the reasons that have made PID control so 

popular in the academic and industry sectors. Recently, it has been noticed that PID controllers are often poorly 

tuned and some efforts have been made to systematically resolve this matter. In the paper a brief summary of PID 

theory is given, and then some of the most used PID tuning methods are discussed using five different higher order 

plants. 
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I: INTRODUCTION 

 

Controlling the process is the main issue that rises in the process industry. It is very important to keep the process working 

probably and safely in the industry, for environmental issues and for the quality of the product being processed. The control 

problems leak out into the most areas of human operations. It includes machine control and business control operations as 

well. In the areas of technical relevance the concept of PID controller (Proportional-Integral-Derivative) is widely known. 

The tuning process of PID controller can be solved by experimental way (the expert is needed) or determined as 

optimization task. An optimal PID control design includes more goals of optimal regulation process which are often 

contradictory. Optimal setting of PID controller is generally a task of nonlinear mathematical optimization which is 

furthermore done on top of dynamic system. 

 

The Proportional- Integral- Derivative (PID) controller is widely used in the process industries. The main reason is their 

simple structure, which can be easily understood and implemented in practice. Finding design methods that lead to the 

optimal operation of PID controllers is therefore of significant interest. A PID controller produces an output signal 

consisting of three terms – one proportional to error signal, another one proportional to integral of error signal and third one 

proportional to derivative of error signal. The combination of proportional control action, integral control action and 

derivative control action is called PID control action. The combined action has the advantage of each of the three individual 

control actions. The proportional controller stabilizes the gain but produces a steady-state error. The integral controller 

reduces or eliminates the steady-state error. The derivative controller reduces the rate of change error. The main advantages 
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of PID controllers are higher of stability, no offset and reduced overshoot. PID controllers are commonly used in process 

control industries. Fig 1 shows the block diagram of PID control system.[1] 

 

 
Fig.1:  Block diagram of a proportional (PID) control system. 

 

The actuating signal or output signal from a PID controller in time domain is given by 

 

                           
 

 
    

  

  
     (1.1) 

 

Taking Laplace transform, we get 

 

          
  

 
                 (1.2) 

 

II: CONTROLLER DESIGN 

 

The theory of control deals with methods which lead to change of behavior of controlled dynamic system. The desired 
output of a system is called the reference or set point. When one or more outputs of the system need to follow a certain 

reference over time then a controller modifies the inputs of system to obtain the desired value on the output of the system, 

as shown in fig 2.ThePID controller has three separate constant parameters: Proportional (P)Integral (I) and Derivative (D). 

It can be said the P depends on present error, I on accumulation of past errors and D is prediction of future errors based on 

rate of change. The PID controller calculates an error value as the difference between a measured process variable and a 

desired set point. The controller attempts to minimize the control error by adjusting the process controller outputs. After 

corrective action from the controller the system should reach point of stability as the result. Stability means the set point is 

being held on the output without oscillating around it. 

 

 
Fig.2: The general concept of the negative feedback loop to control the dynamic behavior of the system with 

description of the major parts. 
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The controller in control system is given by fig 2 is the classical one degree-of-freedom (1–DOF) controller. Basic block 

diagram of standard PID controller is based on parallel circuit, fig.3.  The proportional, integral and derivative terms are 

summed to calculate the output of the PID controller. Defining u(t) as the controller output, the general ideal form of the 

PID algorithm is: 

 

              
 

  
        
 

 
    

     

  
     (1.3) 

 

 
Fig. 3: The block diagram of PID controller. 

 

Where    is the single gain,     
  

  
,           ,     is the integral time constant and   is the derivative time constant. 

In many cases are used the variants of PID controller given in standard form by equation (1.4). 

Mutual conversion of controller’s constants is obvious. 

 

                          
 

 
   

      

  
                      (1.4) 

 

Here the parameters have a clear physical meaning. In particular, the inner summation produces a new single error value 

which is compensated for future and past errors. The addition of proportional and derivative components effectively 

predicts the error value at    seconds in the future, assuming that the loop control remains unchanged. The integral 

component adjusts the error value to compensate for sum of all past errors, with the intention of completely eliminating 

them in     seconds. The resulting compensated single error value is scaled by the single gain  . [1]. 

 

Using Laplace transformation the transfer function of PID controller looks like 

 

                  
  

 
                        (1.5) 

             
 

    
                         (1.6) 

 

Time Response Specifications: 

 

The various time response specifications include: 
 

1. Delay time Td: It is the time required for the response to reach 50% of the final value in the first attempt. 

2. Rise time Tr: It is the time required for the response to rise from 10% to 90% of the final value for over damped 

systems and 0 to 100% of final value for underdamped systems. The rise time is reciprocal of the slope of the 

response at the instant; the response is equal to 50% of the final value.  

3. Peak time Tp: It is the time required for the response to reach it’s peak value. It is also defined as the time at 

which response undergoes the first overshoot which is always peak overshoot.  

4. Peak overshoot Mp: It is the largest error between reference input and output during the transient period. It can 

also be defined as the amount by which output overshoots its reference steady state value during the first 

overshoot. 

5. Settling time Ts: This is defined as the time required for the response to decrease and stay within specified 
percentage of its final value. 
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Fig.4 Popup menu with specifications 

 

Tuning Methods of PID Controller: 
 

The different PID parameter tuning methods include [1]:  

 

i. The Ziegler-Nichols step response method:  The Ziegler-Nichols step response method is an experimental tuning 

method for determining values of the proportional gain KP, integral time Ti and derivative time Td based on the 

transient response characteristics of a given plants. The first step in this method is to calculate two parameters T (time 

constant) and L (delay time) that characterize the plant. These two parameters (T, L) can be determined graphically 

from a measurement of the step response of the plant as illustrated in fig 5. First, the point on the step response curve 

with the maximum slope is determined and the tangent is drawn with the time axis. Once T and L are determined, the 

PID controller parameters are then given in terms of T and L by the following formulas 

 

 
 

Fig.5: Graphical determination of parameters T and L. 
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The transfer function C(s)/U(s) may then be approximated by a first-order system with a transport lag as follows: 

    

    
 

     

    
 

The PID controller tuned by this method gives 

          
  

 
        

= 1.2
 

 
    

 

   
         

= 0.6T 
   

 

 
 
 

 
 

The PID controller has a pole at the origin and double zeros at s = -1/L. 

 

ii. The Ziegler-Nichols frequency-response method: 

 

The Ziegler-Nichols frequency-response method is a closed-loop tuning method. In this method, the two parameters to be 

calculated are the critical gain Kcr and the corresponding period Pcr which can be calculated experimentally in the following 

way: 

 

Set the Ti =  and Td = zero and hence the controller become in the proportional mode only. Close loop system is shown in 

fig 6. The proportional gain Kp is then increased slowly until a periodic oscillation in the output is observed. This critical 

value of Kp is called the critical gain Kcr. The resulting period of oscillation is referred to as the ultimate period Pcr. 

 

Based on Kcr  and Pcr, the Ziegler-Nichols frequency response method gives the following simple formulas for setting PID 
controller parameters according to table [1.1]  

 

 
 

Fig .6: The closed-loop system with the proportional 

 

TABLE.1.1:   PID controller parameters 

 

Type of controller Kp Ti Td 

PID 0.6Kcr 0.5Pcr 0.125Pcr 

 

The PID controller tuned by this method gives 

            
 

    
       

= 0.1Kcr    
 

        
              

= 0.075      
   

 

   
 
 

 
 

The PID controller has a pole at the origin and double zeros at s = - 4/Pcr.[2] 



International Journal of Enhanced Research in Science, Technology & Engineering 

ISSN: 2319-7463, Vol. 5 Issue 5, May-2016 

Page | 85 

iii. Computational Approach for obtaining Optimal sets of parameter values: 

 

To obtain optimal set of parameter values to satisfy the transient response specification it is desired to obtain a combination 

of K and a such that the closed-loop system is underdamped and the maximum overshoot in the unit-step response is less 

than 10%, but more than 5%, to avoid an overdamped or a close-to-overdamped response.[2] 

 
Solving by MATLAB, let us assume the region to search for K and a bounded by 

2       

and                                                                                  0.5         

Here, the PID Controller is given by                     

                                                                                       Gc(s) = K 
      

 
 

MATLAB Program 

t=0:0.01:8; 

for K=5:-0.2:2;%Starts the outer loop to vary the K values 

for a=1.5:-0.2:0.5;%Starts the inner loop to vary the a values 

num1=K*[1 2*a a^2]; 

den1=[0 1 0]; 

tf1=tf(num1,den1); 

num2=[0 0 0 t]; 

den2=[p q r s]; 

tf2=tf(num2,den2); 

tf3=tf1*tf2; 

sys=feedback(tf3,1); 
y=step(sys,t); 

m=max(y); 

if m<1.1 & m>1.05; 

plot(t,y); 

grid; 

title('Unit-Step Response') 

xlabel('t Sec') 

ylabel('Output') 

sol=[K;a;m] 

break;%Breaks the inner loop 

end 

end 
if m<1.1 & m>1.05; 

break;%Breaks the outer loop 

end 

end 

 

sol = 

 

u 

v 

w 

 
 

SIMULATION RESULTS: 

For our test we have taken five higher order plants on which above tuning rules are performed and the simulation results are 

obtained as under: 

1) Plant –I: 

Gp(s) = 
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First Method: 

Parameter Value 

Kp 6 

Ti 1.2 

Td 0.3 

 

 

Second Method: 

Parameter Rising 

time 

Peak 

Amplitude 

Overshoot 

(%) 

Time at 

which 

Overshoot 

occurs 

Settling 

time 

Steady 

state  

Kp Ti Td 

5.958 1.19 0.2975 0.547 1.47 47.2 1.45 6.49 1 
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Third Method: 

K a m 

4.2 0.7 1.0962 

 

 

2) Plant – II: 

Gp(s) = 
  

                     
 

First Method: 

Parameter Value 

Kp 5.67 

Ti 1.1 

Td 0.275 
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Second Method: 

Parameter Rising 

time 

Peak 

Amplitude 

Overshoot 

(%) 

Time at 

which 

Overshoot 

occurs 

Settling 

time 

Steady 

state  

Kp Ti Td 

7.56 1.405 0.3512 0.687 1.33 33.1 1.74 5.4 1 

 

 

Third Method: 

K a m 

4 0.9 1.0985 
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3) Plant – III: 

Gp(s) = 
 

      
 

First Method: 

Parameter Value 

Kp 6 

Ti 1.5 

Td 0.375 

 

 

Second Method: 

Parameter Rising 

time 

Peak 

Amplitude 

Overshoot 

(%) 

Time at 

which 

Overshoot 

occurs 

Settling 

time 

Steady 

state 

Kp Ti Td 

4.8 1.814 0.453 0.878 1.41 40.6 2.21 9.38 1 

 

 



International Journal of Enhanced Research in Science, Technology & Engineering 

ISSN: 2319-7463, Vol. 5 Issue 5, May-2016 

Page | 90 

Third Method: 

K a m 

5 0.5 1.0915 

 

 

4) Plant – IV: 

Gp(s) = 
   

                           
 

First Method: 

Parameter Value 

Kp 4.07 

Ti 0.36 

Td 0.09 
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Second Method: 

Parameter Rising 

time 

Peak 

Amplitude 

Overshoot 

(%) 

Time at 

which 

Overshoot 

occurs 

Settling 

time 

Steady 

state  

Kp Ti Td 

60.48 0.409 0.102 0.207 1.29 28.9 0.51 1.55 1 

 

 

Third Method: 

K a m 

32 0.1 1.0973 
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5) Plant – V: 

Gp(s) = 
  

               
 

First Method: 

Parameter Value 

Kp 6.45 

Ti 0.8 

Td 0.2 

 

 

Second Method: 

Parameter Rising 

time 

Peak 

Amplitude 

Overshoot 

(%) 

Time at 

which 

Overshoot 

occurs 

Settling 

time 

Steady 

state 

Kp Ti Td 

3.6 0.9935 0.25 0.474 1.38 38.3 1.18 6.35 1 
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Third Method: 

K a m 

4 0.5 1.0991 

 

 

III:  CONCLUSION 

 

This paper has presented an overview of PID control and three tuning methods are compared here on five different higher 
order plants.  However, it must also be pointed out that PID control may not be sufficient for some cases, for example, 

processes with more than one oscillatory mode or processes with large time delays or with complex disturbance behavior. It 

is concluded here that PID control is still of great interest, and is a promising control strategy that deserves further research 

and investigation. Both industry and academia have a lot to gain from this.  

 

APPENDIX 

 

MATLAB Codes of five plants: 

 

1.   Plant-1: 

 PID first method code: 

numgp=[0 0 0 1.2]; 
dengp=[0.36 1.86 2.5 1]; 

G=tf(numgp,dengp) 

Transfer function: 

              1.2 

------------------------------- 

0.36 s^3 + 1.86 s^2 + 2.5 s + 1  

k=dcgain(G) 

k = 

 

    1.2000 

 

PID second method code: 

numgff=[0 0 2.124 7.14 6]; 

dengff=[0.36 1.86 2.5 1 0]; 

gff=tf(numgff,dengff) 
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Transfer function: 

     2.124 s^2 + 7.14 s + 6 

--------------------------------- 

0.36 s^4 + 1.86 s^3 + 2.5 s^2 + s 

 

T=feedback(gff,1) 
 

Transfer function: 

           2.124 s^2 + 7.14 s + 6 

-------------------------------------------- 

0.36 s^4 + 1.86 s^3 + 4.624 s^2 + 8.14 s + 6 

 

step(T) 

 

PID third method code: 

t=0:0.01:8; 

for K=5:-0.2:2;%Starts the outer loop to vary the K values 

for a=1.5:-0.2:0.5;%Starts the inner loop to vary the a values 

num1=K*[1 2*a a^2]; 

den1=[0 1 0]; 

tf1=tf(num1,den1); 

num2=[0 0 0 1.2]; 

den2=[0.36 1.86 2.5 1]; 

tf2=tf(num2,den2); 

tf3=tf1*tf2; 
sys=feedback(tf3,1); 

y=step(sys,t); 

m=max(y); 

if m<1.1 & m>1.05; 

plot(t,y); 

grid; 

title('Unit-Step Response') 

xlabel('t Sec') 

ylabel('Output') 

sol=[K;a;m] 

break;%Breaks the inner loop 

end 
end 

if m<1.1 & m>1.05; 

break;%Breaks the outer loop 

end 

end 

 

sol = 

 

    4.2000 

    0.7000 

    1.0962 

 

2.  Plant-2: 

 

PID first method code: 

 

s=tf('s'); 

G=10/(s+1)/(s+2)/(s+3)/(s+4); 

step(G); 
k=dcgain(G) 
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k = 

 

    0.4167 

 

PID second method code: 

numgff=[0 0 0 26.6 75.6 53.81]; 

dengff=[1 10 35 50 24 0]; 

gff=tf(numgff,dengff) 

 

Transfer function: 

      26.6 s^2 + 75.6 s + 53.81 

------------------------------------- 

s^5 + 10 s^4 + 35 s^3 + 50 s^2 + 24 s 
 

T=feedback(gff,1) 

 

 

Transfer function: 

            26.6 s^2 + 75.6 s + 53.81 

------------------------------------------------- 

s^5 + 10 s^4 + 35 s^3 + 76.6 s^2 + 99.6 s + 53.81 

 

step(T) 

 

PID third method code: 

t=0:0.01:8; 

for K=5:-0.2:2;%Starts the outer loop to vary the K values 

for a=1.5:-0.2:0.5;%Starts the inner loop to vary the a values 

num1=K*[1 2*a a^2]; 

den1=[0 1 0]; 

tf1=tf(num1,den1); 

num2=[0 0 0 0 10]; 
den2=[1 10 35 50 24]; 

tf2=tf(num2,den2); 

tf3=tf1*tf2; 

sys=feedback(tf3,1); 

y=step(sys,t); 

m=max(y); 

if m<1.1 & m>1.05; 

plot(t,y); 

grid; 

title('Unit-Step Response') 

xlabel('t Sec') 
ylabel('Output') 

sol=[K;a;m] 

break;%Breaks the inner loop 

end 

end 

if m<1.1 & m>1.05; 

break;%Breaks the outer loop 

end 

end 

 

sol = 

 
    4.0000 
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    0.9000 

    1.0985 

 

3.  Plant-3: 

 

PID first method code: 
numg=[0 0 0 1]; 

deng=[1 3 3 1]; 

G=tf(numg,deng) 

Transfer function: 

          1 

--------------------- 

s^3 + 3 s^2 + 3 s + 1 

k=dcgain(G) 

 

k = 

 

     1 
step(G) 

 

PID second method code: 

numgff=[0 0 2.175 4.8 2.6466]; 

dengff=[1 3 3 1 0]; 

gff=tf(numgff,dengff) 

 
Transfer function: 

2.175 s^2 + 4.8 s + 2.647 

------------------------- 

s^4 + 3 s^3 + 3 s^2 + s 

 

 T=feedback(gff,1) 

 

Transfer function: 

       2.175 s^2 + 4.8 s + 2.647 

--------------------------------------- 

s^4 + 3 s^3 + 5.175 s^2 + 5.8 s + 2.647 

 
step(T) 

 

PID third method code: 

t=0:0.01:8; 

for K=5:-0.2:2;%Starts the outer loop to vary the K values 

for a=1.5:-0.2:0.5;%Starts the inner loop to vary the a values 

num1=K*[1 2*a a^2]; 
den1=[0 1 0]; 

tf1=tf(num1,den1); 

num2=[0 0 0 1]; 

den2=[1 3 3 1]; 

tf2=tf(num2,den2); 

tf3=tf1*tf2; 

sys=feedback(tf3,1); 

y=step(sys,t); 

m=max(y); 

if m<1.1 & m>1.05; 

plot(t,y); 

grid; 
title('Unit-Step Response') 
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xlabel('t Sec') 

ylabel('Output') 

sol=[K;a;m] 

break;%Breaks the inner loop 

end 

end 
if m<1.1 & m>1.05; 

break;%Breaks the outer loop 

end 

end 

 

sol = 

 

    5.0000 

    0.5000 

    1.0915 

 

4. Plant-4: 

 

PID first method code: 

s=tf('s'); 

G=150/(s+5)/(s+7)/(s+9)/(s+11) 

Transfer function: 

                 150 

-------------------------------------- 

s^4 + 32 s^3 + 374 s^2 + 1888 s + 3465 

step(G); 

k=dcgain(G) 

 
k = 

 

    0.0433 

 

PID second method code: 

numgff=[0 0 0 927.6 9070.5 22168.5]; 

dengff=[1 32 374 1888 3465 0]; 

gff=tf(numgff,dengff) 
 

Transfer function: 

      927.6 s^2 + 9071 s + 2.217e004 

------------------------------------------ 

s^5 + 32 s^4 + 374 s^3 + 1888 s^2 + 3465 s 

 

T=feedback(gff,1) 

 

Transfer function: 

              927.6 s^2 + 9071 s + 2.217e004 

----------------------------------------------------------- 
s^5 + 32 s^4 + 374 s^3 + 2816 s^2 + 1.254e004 s + 2.217e004 

 

step(T) 

 

PID third method code: 

t=0:0.01:5; 

for K=50:-1:2;%Starts the outer loop to vary the K values 

for a=2:-0.05:0.05;%Starts the inner loop to vary the a values 
num1=K*[1 2*a a^2]; 
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den1=[0 1 0]; 

tf1=tf(num1,den1); 

num2=[0 0 0 0 150]; 

den2=[1 32 374 1888 3465]; 

tf2=tf(num2,den2); 

tf3=tf1*tf2; 

sys=feedback(tf3,1); 

y=step(sys,t); 

m=max(y); 

if m<1.10 & m>1.02; 

plot(t,y); 

grid; 

title('Unit-Step Response') 

xlabel('t Sec') 

ylabel('Output') 

sol=[K;a;m] 

break;%Breaks the inner loop 

end 

end 

if m<1.10 & m>1.02; 

break;%Breaks the outer loop 

end 

end 

 

sol = 

 

   32.0000 

0.1000 

1.0973 

 

5. Plant-5: 

 

PID first method code: 

numgp=[0 0 0 10]; 

dengp=[1 7 10 10]; 

G=tf(numgp,dengp) 

 

Transfer function: 
          10 

----------------------- 

s^3 + 7 s^2 + 10 s + 10 

step(G) 

k=dcgain(G) 

 

k = 

 

     1 

PID second method code: 

numgff=[0 0 8.94 35.94 36.12]; 

dengff=[1 7 10 10 0]; 

gff=tf(numgff,dengff) 

 

Transfer function: 
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8.94 s^2 + 35.94 s + 36.12 

--------------------------- 

s^4 + 7 s^3 + 10 s^2 + 10 s 

 

T=feedback(gff,1) 

 
Transfer function: 

       8.94 s^2 + 35.94 s + 36.12 

----------------------------------------- 

s^4 + 7 s^3 + 18.94 s^2 + 45.94 s + 36.12 

 

step(T) 

 

PID third method code: 

t=0:0.01:8; 

for K=5:-0.2:2;%Starts the outer loop to vary the K values 

for a=1.5:-0.2:0.5;%Starts the inner loop to vary the a values 

num1=K*[1 2*a a^2]; 

den1=[0 1 0]; 

tf1=tf(num1,den1); 

num2=[0 0 0 10]; 

den2=[1 7 10 10]; 

tf2=tf(num2,den2); 

tf3=tf1*tf2; 

sys=feedback(tf3,1); 

y=step(sys,t); 

m=max(y); 

if m<1.1 & m>1.05; 

plot(t,y); 

grid; 

title('Unit-Step Response') 

xlabel('t Sec') 

ylabel('Output') 

sol=[K;a;m] 

break;%Breaks the inner loop 

end 

end 

if m<1.1 & m>1.05; 

break;%Breaks the outer loop 

end 

end 

 

sol = 

 

    4.2000 

    0.5000 

    1.0991 
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