Starlikeness and Convexity for Analytic Functions in the Unit Disc

Mohammed Ahamed Osman Tom
${ }^{1}$ - University of Tabuk, College of Science, Department of Mathematics
${ }^{2}$-University of Bahri \& College of applied Science and Industrial, Department of Mathematics

Abstract

We investigate some results for sufficient conditions of functions $f(z)$ which are analytic in the open uint disc \mathbb{U} to be starlike and convex in \mathbb{U}. The objective of this paper is to derive some interesting sufficient conditions for $\mathrm{f}(\mathrm{z})$ to be starlike of order α and convex of order α in \mathbb{U} concerned with Jack's lemma. We consider the generalization of the starlikeness of complex order and the generalization of convexity of complex order for the analytic functions in the unit disc $\mathbb{U}=\{\mathrm{z}:|\mathrm{z}|<1\}$.

Keywords: Analatic, univalent, starlike of order α, convex of order α, subordination .

1-INTRODUCTION

In this paper we discuss two classes of function $f(z)$ which are analytic in the open unit disc \mathbb{U} under same conditions . Let \mathcal{A} denote the class of functions that
are analytic in the open unit disc $\mathbb{U}=\{\mathrm{z} \in \mathbb{C}:|\mathrm{z}|<1\}$, so that $\mathrm{f}(0)=\mathrm{f}^{\prime}(0)-1=0$. We denote by S the subclass of \mathcal{A} consisting of univalent functions $\mathrm{f}(\mathrm{z})$ in \mathbb{U}. Let $\mathrm{S}^{*}(\alpha)$ be the subclass of \mathcal{A} consisting of all functions $\mathrm{f}(\mathrm{z})$ which satisfy

$$
\operatorname{Re}\left(\frac{\mathrm{zf} f^{\prime}(\mathrm{z})}{\mathrm{f}(\mathrm{z})}\right)>\alpha \quad(\mathrm{z} \in \mathbb{U})
$$

for some $0 \leqq \alpha<1$.A function $\mathrm{f}(\mathrm{z}) \in \mathrm{S}^{*}(\alpha)$ is sais to be starlike of order α in \mathbb{U}. We denote by $\mathrm{S}^{*}=\mathrm{S}^{*}(0)$. Also, let $\mathcal{K}(\alpha)$ denote the subclass of \mathcal{A} consisting of all functions $\mathrm{f}(\mathrm{z})$ which satisfy

$$
\operatorname{Re}\left(1+\frac{\mathrm{zf}^{\prime \prime}(\mathrm{z})}{\mathrm{f}^{\prime}(\mathrm{z})}\right)>\alpha \quad(\mathrm{z} \in \mathbb{U})
$$

for some $0 \leqq \alpha<1$. A function $\mathrm{f}(\mathrm{z})$ in $\mathcal{K}(\alpha)$ is said to be convex of order α in \mathbb{U}. We say that $\mathcal{K}=\mathcal{K}(0)$. From the definitions for $\mathrm{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$, we know that $\mathrm{f}(\mathrm{z}) \in \mathcal{K}(\alpha)$ if and only if $\mathrm{zf}^{\prime}(\mathrm{z}) \in \mathrm{S}^{*}(\alpha)$.

Let $\mathrm{f}(\mathrm{z})$ and $\mathrm{g}(\mathrm{z})$ be analytic in . Then $\mathrm{f}(\mathrm{z})$ is said to be subordinate to $\mathrm{g}(\mathrm{z})$ if there exists an analytic function $\omega(\mathrm{z})$ in \mathbb{U} satisfying
$\omega(0)=0,|\omega(z)|<1(z \in \mathbb{U})$ and $f(z)=g(\omega(z))$. We denote this subordination by

$$
\mathrm{f}(\mathrm{z})<\mathrm{g}(\mathrm{z}) \quad(\mathrm{z} \in \mathbb{U}) .
$$

On the other hand let Ω be the family of functions $\omega(\mathrm{z})$ regular in the unit disc \mathbb{U} and satisfying the condition $\omega(0)=$ $0,|\omega(z)|<1$ for $z \in \mathbb{U}$. For arbitrary fixed numbers $A, B,-1 \leq B<A \leq 1$, denote by $P(A, B)$ the family of functions $p(z)=1+p_{1} z+p_{2} z^{2}+\cdots$ regular in \mathbb{U}, such that $p(z) \in P(A, B)$ if and only if $p(z)=\frac{1+A \omega(z)}{1+B \omega(z)}$ for some functions $\omega(\mathrm{z}) \in \Omega$ and for evey $\mathrm{z} \in \mathbb{U}$.This class was introduced by Janowski [8].
Further let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ and $g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\cdots$ be analytic functions in the disc \mathbb{U}. Then we say that the function $\mathrm{f}(\mathrm{z})$ is subordinate to (z), written $\mathrm{f}<\mathrm{g}$ or $\mathrm{f}(\mathrm{z})<\mathrm{g}(\mathrm{z})$, such that $\mathrm{f}(\mathrm{z})=\mathrm{g}(\omega(\mathrm{z})), \omega(\mathrm{z}) \in \Omega$, for all $\mathrm{z} \in \mathbb{U}$. In particular, if $g(z)$ is univalent in \mathbb{U}, then $f<g$ if and only if $f(0)=f(0)$ and $f(\mathbb{U}) \subseteq g(\mathbb{U})$.

Next we consider the following class of functions defined in \mathbb{U}. Let $\operatorname{CS}^{*}(A, B, b, q)$ denote the family of functions $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ regular in \mathbb{U} such that $f(z) \in C S^{*}(A, B, b, q)$ if and only if

$$
1+\frac{1}{\mathrm{~b}}\left(\mathrm{z}^{\mathrm{f}^{(\mathrm{q}+1)}(\mathrm{z})} \mathrm{f}^{(\mathrm{q})}(\mathrm{z}) \quad+\mathrm{q}-1\right)=\frac{1+\mathrm{A} \omega(\mathrm{z})}{1+\mathrm{B} \omega(\mathrm{z})}
$$

where $b \neq 0, b$ is a complex number, $f^{(q)}(z)$ denotes the derivative of $f(z)$ with respect to z of order $q \in\{0,1\}$ with $f^{(0)}(z)=f(z)$ and $\omega(z) \in \Omega$. The definition of the class $\operatorname{CS}^{*}(A, B, b, q)$ is equivalent to $f(z) \in \operatorname{CS}^{*}(A, B, b, q)$ if and only if
$1+\frac{1}{\mathrm{~b}}\left(\mathrm{z} \frac{\left.\mathrm{f}^{\mathrm{f}} \mathrm{q}+1\right)(\mathrm{z})}{\mathrm{f}(\mathrm{q})(\mathrm{z})}+\mathrm{q}-1\right) \prec \frac{1+\mathrm{Az}}{1+\mathrm{Bz}}$ for all $\mathrm{z} \in \mathbb{U}, \mathrm{B} \neq 0$
$1+\frac{1}{b}\left(\mathrm{z} \frac{\mathrm{f}(\mathrm{q}+1)(\mathrm{z})}{\mathrm{f}(\mathrm{q})(\mathrm{z})}\right)<1+\mathrm{Az} \quad$ for all $\mathrm{z} \in \mathbb{U}, \mathrm{B}=0$
The geometric meaning of (1) is that the image of \mathbb{U} by
$1+\frac{1}{b}\left(\mathrm{z} \frac{\mathrm{f}^{(\mathrm{q}+1)}(\mathrm{z})}{\mathrm{f}^{\mathrm{q}}(\mathrm{z})}+\mathrm{q}-1\right)$
is inside the open disc centered on the real axis with diameter end points
$\frac{1-\mathrm{A}}{1-\mathrm{B}}$ and $\frac{1+\mathrm{A}}{1+\mathrm{B}}, \mathrm{B} \neq 0$
$1-\mathrm{A}$ and $1+\mathrm{A}, \mathrm{B}=0$
Some examples of functions in the classes $C^{*}(A, B, b, 0), C^{*}(A, B, b, 1), C S^{*}(1,-1, b, 1)$ respectively, are the following
for $q=0, f(z)=\left\{\begin{array}{cc}z(1+B z)^{b(A-B) / B} B \neq 0 \\ z e^{A b z} & B=0\end{array}\right.$,
for $q=1, f(z)=\left\{\begin{array}{cc}\int_{0}^{z}(1+B \zeta)^{b(A-B) / B} d \zeta & B \neq 0 \\ \int_{0}^{z} e^{b A \zeta} d \zeta & B=0\end{array}\right.$

$$
\text { for } A=1, B=-1, q=0, f(z)=\frac{z}{(1-z)^{2 b}}
$$

for $A=1, B=-1, q=1, f(z)=\int_{0}^{z}(1-\zeta)^{-2 b} d \zeta$,
Clearly we have the following classes:
(i) For $\mathrm{q}=0, \mathrm{~A}=1, \mathrm{~B}=-1, \mathrm{C} \mathrm{S}^{*}(1,-1, \mathrm{~b}, 0)$ is the class of starlike functions of complex order . This class was introduced by Aouf [3] .
(ii) For $\mathrm{q}=1, \mathrm{~A}=-1, \mathrm{CS}^{*}(1,-1, \mathrm{~b}, 1)$ is the class of convex functions of complex order. This class was introduced by Nasr and Aouf [4].
(iii) For $\mathrm{q}=0, \mathrm{~B}=-1, \mathrm{~b}=1, \mathrm{CS}^{*}(0,1,-1,1)=\mathrm{S}^{*}$ is the class starlike functions [6] , [1].
(iv) For $\mathrm{q}=1, \mathrm{~A}=1, \mathrm{~B}=-1, \mathrm{~b}=1, \mathrm{CS}^{*}(1,-1,1,1)=\mathrm{C}$ is the class convex function. The class is well known [6],[1].

We note that by giving special values to be b (which are $\mathrm{b}=1-\alpha, 0 \leq \alpha<1 ; \mathrm{b}=1-(1-\alpha)(\cos \lambda) \mathrm{e}^{-\mathrm{i} \alpha}, 0 \leq \alpha<$ $1,|\lambda|<\pi / 2 ; \mathrm{b}=\left(1-(\cos \lambda) \mathrm{e}^{-\mathrm{i} \lambda}\right)$ we very important subclasses of starlike functions and convex functions,[6],[1].

Lemma 1. [2, 5]

Let $\omega(\mathrm{z})$ be analytic in \mathbb{U} with $\omega(0)=0$. Then if $|\omega(\mathrm{z})|$ attains its maximum value on the circle $|\mathrm{z}|=\mathrm{r}$ at a point $\mathrm{z}_{0} \in \mathbb{U}$,then we have $\mathrm{z}_{0} \omega^{\prime}\left(\mathrm{z}_{0}\right)=\mathrm{k} \omega\left(\mathrm{z}_{0}\right)$, where $\mathrm{k} \geqq 1$ is real number.

2- MAIN RESULTS

Applying Lemma 1, we drive the following result.

Theorem 1

If $\mathrm{f}(\mathrm{z}) \in \mathcal{A}$ satisfies

$$
\operatorname{Re}\left(1+\frac{\mathrm{zf}^{\prime \prime}(\mathrm{z})}{\mathrm{f}^{\prime}(\mathrm{z})}\right)<\frac{\alpha+1}{2(\alpha-1)} \quad(\mathrm{z} \in \mathbb{U})
$$

for some $\alpha(2 \leqq \alpha<3)$, or

$$
\operatorname{Re}\left(1+\frac{\mathrm{zf}^{\prime \prime}(\mathrm{z})}{\mathrm{f}^{\prime}(\mathrm{z})}\right)<\frac{5 \alpha-1}{2(\alpha+1)} \quad(\mathrm{z} \in \mathbb{U})
$$

for some $\alpha(1<\alpha \leqq 2)$, then

$$
\frac{\mathrm{zf}^{\prime}(\mathrm{z})}{\mathrm{f}(\mathrm{z})} \prec \frac{\alpha(1-\mathrm{z})}{\alpha-\mathrm{z}}
$$

and

$$
\left|\frac{\mathrm{zf}^{\prime}(\mathrm{z})}{\mathrm{f}^{\prime}(\mathrm{z})}-\frac{\alpha}{\alpha+1}\right|<\frac{\alpha}{\alpha+1} \quad(\mathrm{z} \in \mathbb{U})
$$

This implies that $\mathrm{f}(\mathrm{z}) \in \mathrm{S}^{*}$ and $\int_{0}^{\mathrm{z}} \frac{\mathrm{f}(\mathrm{t})}{\mathrm{t}} \mathrm{dt} \in \mathcal{K}$.

Proof

Let us define the function $\omega(z)$ by

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{\alpha(1-\omega(z))}{\alpha-\omega(z)} \quad(\omega(z) \neq \alpha)
$$

Clearly,$\omega(z)$ is analytic in \mathbb{U} and $\omega(0)=0$. We want to prove that $|\omega(z)|<1$ in \mathbb{U}. Since

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{\alpha(1-\omega(z))}{\alpha-\omega(z)}-\frac{z \omega^{\prime}(z)}{1-\omega(z)}+\frac{z \omega^{\prime}(z)}{\alpha-\omega(z)}
$$

we see that

$$
\begin{gathered}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\operatorname{Re}\left(\frac{\alpha(1-\omega(z))}{\alpha-\omega(z)}-\frac{z \omega^{\prime}(z)}{1-\omega(z)}+\frac{z \omega^{\prime}(z)}{\alpha-\omega(z)}\right) \\
<\frac{\alpha+1}{2(\alpha-1)} \quad(z \in \mathbb{U})
\end{gathered}
$$

for $2 \leqq \alpha<3$, and

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) & =\operatorname{Re}\left(\frac{\alpha(1-\omega(z))}{\alpha-\omega(z)}-\frac{z \omega^{\prime}(z)}{1-\omega(z)}+\frac{z \omega^{\prime}(z)}{\alpha-\omega(z)}\right) \\
& <\frac{5 \alpha-1}{2(\alpha-1)} \quad(z \in \mathbb{U})
\end{aligned}
$$

for $1<\alpha \leqq 2$.If there exists a point $z_{0} \in \mathbb{U}$ such that

$$
\max _{|z| \leqq\left|z_{0}\right|}|\omega(z)|=\left|\omega\left(z_{0}\right)\right|=1
$$

then Lemma 1 gives us that $\omega\left(z_{0}\right)=e^{i \theta}$ and $z_{0} \omega^{\prime}\left(z_{0}\right)=k \omega\left(z_{0}\right), k \geqq 1$.
Thus we have

$$
\begin{gathered}
1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}=\frac{\alpha\left(1-\omega\left(z_{0}\right)\right)}{\alpha-\omega\left(z_{0}\right)}-\frac{z_{0} \omega^{\prime}\left(z_{0}\right)}{1-\omega\left(z_{0}\right)}+\frac{z_{0} \omega^{\prime}\left(z_{0}\right)}{\alpha-\omega\left(z_{0}\right)} \\
=\alpha+\alpha(1-\alpha+k) \frac{1}{\alpha-e^{i \theta}}-\frac{k}{1-e^{i \theta}}
\end{gathered}
$$

If follows that

$$
\begin{aligned}
& \operatorname{Re}\left(\frac{1}{\alpha-\omega\left(z_{0}\right)}\right)=\operatorname{Re}\left(\frac{1}{\alpha-e^{i \theta}}\right) \\
& \quad=\frac{1}{2 \alpha}+\frac{\alpha^{2}-1}{2 \alpha\left(1+\alpha^{2}-2 \cos \theta\right)}
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Re}\left(\frac{1}{1-\omega\left(z_{0}\right)}\right)=\operatorname{Re}\left(\frac{1}{1-e^{i \theta}}\right) \\
&=\frac{1}{2}
\end{aligned}
$$

Therefor, we have

$$
\operatorname{Re}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right)=\frac{1+\alpha}{2}+\frac{\left(\alpha^{2}-1\right)(1-\alpha+k)}{2\left(1+\alpha^{2}-2 \alpha \cos \theta\right)}
$$

This implies that, for $2 \leqq \alpha<3$,

$$
\operatorname{Re}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right) \geqq \frac{1+\alpha}{2}+\frac{(\alpha-1)(1-\alpha+k)}{2(\alpha+1)}
$$

$$
\begin{aligned}
& \geqq \frac{1+\alpha}{2}+\frac{(\alpha+1)(2-\alpha)}{2(\alpha-1)} \\
& \quad=\frac{\alpha+1}{2(\alpha-1)}
\end{aligned}
$$

and , for $1<\alpha \leqq 2$,

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z_{0} f^{\prime \prime}\left(z_{0}\right)}{f^{\prime}\left(z_{0}\right)}\right) & \geqq \frac{1+\alpha}{2}+\frac{(\alpha-1)(1-\alpha+k)}{2(\alpha+1)} \\
& \geqq \frac{1+\alpha}{2}+\frac{(\alpha-1)(2-\alpha)}{2(\alpha+1)} \\
& =\frac{5 \alpha-1}{2(\alpha+1)}
\end{aligned}
$$

This contradicts the condition in the theorem 1 . Therefoer, there is no $z_{0} \in \mathbb{U}$ such that $\left|\omega\left(z_{0}\right)\right|=1$ for all $z \in \mathbb{U}$, that is, that

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \quad(z \in \mathbb{U})
$$

Furthermore, since

$$
\omega(z)=\frac{\alpha\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)}{\frac{z f^{\prime}(z)}{f(z)}-\alpha} \quad(z \in \mathbb{U})
$$

and $|\omega(z)|<1(z \in \mathbb{U})$, we conclude that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{\alpha}{\alpha+1}\right|<\frac{\alpha}{\alpha+1} \quad(z \in \mathbb{U})
$$

Which implies that $f(z) \in S^{*}$.Futhermore, we if and only if $\int_{0}^{z} \frac{f(t)}{t} d t \in \mathcal{K}$.
Thaking $\alpha=2$ in the theorem 1, we have following corollary due to R.Singh and S.Singh [7] .
Corollarly 2 If $f(z) \in \mathcal{A}$ satisfies

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\frac{3}{2} \quad(z \in \mathbb{U})
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{2(1-z)}{2-z} \quad(z \in \mathbb{U})
$$

and

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-\frac{3}{2}\right|<\frac{3}{2} \quad(z \in \mathbb{U})
$$

With theorem 1 , we give the following example.
Example 3 For $2 \leqq \alpha<3$, we consider the function $f(z)$ given by

$$
f(z)=\frac{\alpha-1}{2}\left(1-(1-z)^{\frac{2}{\alpha-1}}\right) \quad(z \in \mathbb{U})
$$

If follows that

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{2 z(1-z)^{\frac{3-\alpha}{\alpha-1}}}{(\alpha-1)\left(1-(1-z)^{\frac{2}{\alpha-1}}\right)} \quad(z \in \mathbb{U})
$$

and

$$
\begin{aligned}
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) & =\operatorname{Re}\left(\frac{\alpha-1-2 z}{(\alpha-1)(1-z)}\right) \\
& =\operatorname{Re}\left(\frac{2}{\alpha-1}-\frac{3-\alpha}{(\alpha-1)(1-z)}\right) \\
& <\frac{\alpha+1}{2(\alpha-1)} \quad \quad(z \in \mathbb{U}) .
\end{aligned}
$$

Therefore, the function $f(z)$ satisfies the condition in Theorem 1 .If we define the function $\omega(z)$ by

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{\alpha(1-\omega(z))}{\alpha-\omega(z)} \quad(\omega(z) \neq \alpha)
$$

then we see that $\omega(z)$ is analytic in $\mathbb{U}, \omega(0)=0$ and $|\omega(z)|<1(z \in \mathbb{U})$
with Mathematica 5 .2. This implies that

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \quad(z \in \mathbb{U})
$$

For $1<\alpha \leqq 2$, we consider

$$
f(z)=\frac{\alpha+1}{2(2 \alpha-1)}\left(1-(1-z)^{\frac{2(2 \alpha-1)}{\alpha+1}}\right) \quad(z \in \mathbb{U})
$$

Then we have that

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{2(2 \alpha-1) z(1-z)^{\frac{3(\alpha-1)}{\alpha+1}}}{(\alpha+1)\left(1-(1-z)^{\frac{2(2 \alpha-1)}{\alpha+1}}\right)}
$$

and
$\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)=\operatorname{Re}\left(\frac{\alpha+1-2(2 \alpha-1) z}{(\alpha+1)(1-z)}\right)<\frac{5 \alpha-1}{2(\alpha+1)} \quad(z \in \mathbb{U})$.
Thus, the function $f(z)$ satisfies the condition in Theorem 1. Define the function $\omega(z)$ by

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{\alpha(1-\omega(z))}{\alpha-\omega(z)} \quad(\omega(z) \neq \alpha)
$$

That $\omega(z)$ is analytic in the in $\mathbb{U}, \omega(0)=0$ and $|\omega(z)|<1(z \in \mathbb{U})$ with Mathematica 5.2. Therefour, we have that

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{\alpha(1-z)}{\alpha-z} \quad(z \in \mathbb{U})
$$

In particular, if we take $\alpha=2$ in this example, then $f(z)$ becomes

$$
f(z)=z-\frac{1}{2} z^{2} \in S^{*}
$$

where S^{*} denotes the classof starlike function in \mathbb{U}.

2-Some results for the class $C S^{*}(A, B, b, q)$

Lemma 4. [2]

Let $\omega(z)$ be a non-constant and analytic function in the unit disc \mathbb{U} with $(0)=0$. If $|\omega(z)|$ attains its maximum value on the circle $|z|=r$ at the point z_{1}, then $z_{1} \omega^{\prime}\left(z_{1}\right)=k \omega\left(z_{1}\right)$ and $k \geq 1$.

Lemma 5

Let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ be an analytic functions in yhe unit disc U . If $f(z)$ satisfies

$$
\begin{cases}\frac{1}{b}\left(z \frac{f^{(q+1)}(z)}{f^{(q)}(z)}+q-1\right)<\frac{(A-B) z}{1+B z}=F_{1}(z), & B \neq 0 \tag{2}\\ \frac{1}{b}\left(z \frac{f^{(q+1)}(z)}{f^{(q)}(z)}+q-1\right)<A z=F_{2}(z), & B=0\end{cases}
$$

then $f(z) \in C S^{*}(A, B, b, q)$ and the result is sharp as the function

$$
f_{*}^{(q)}(z)=\left\{\begin{array}{l}
z^{1-q}(1+B z)^{\frac{b(A-B)}{B}} \\
z^{1-q} e^{A b z}, \quad B=0 .
\end{array}, B \neq 0\right.
$$

Proof
Let $B \neq 0$. We define a function $\omega(z)$ by

$$
\begin{equation*}
\frac{f^{(q)}(z)}{z^{1-q}}=(1+B \omega(z))^{\frac{b(A-B)}{B}} \tag{3}
\end{equation*}
$$

where $(1+B \omega(z))^{\frac{b(A-B)}{B}}$ has value 1 at the origin. Then $\omega(z)$ is analytic in , $\omega(0)=0$ and

$$
\begin{equation*}
\frac{1}{b}\left(z \frac{f^{(q+1)}(z)}{f^{(q)}(z)}+q-1\right)=\frac{(A-B) z \omega^{\prime}(z)}{1+B \omega(z)} \tag{4}
\end{equation*}
$$

Now it is easy to realize that the subordination (2) is equivalent to $|\omega(z)|<1$, for all $z \in \mathbb{U}$. Indeed assume the contrary : Ther exist $z_{1} \in \mathbb{U}$ such that $|\omega(z)|=1$.Then by I.S. Jack's lemma $z_{1} \omega^{\prime}\left(z_{1}\right)=k \omega\left(z_{1}\right), k \geq 1$ and for such z_{1} we have

$$
\frac{1}{b}\left(z_{1} \frac{f^{(q+1)}\left(z_{1}\right)}{f^{(q)}\left(z_{1}\right)}+q-1\right)=k \frac{(A-B) \omega\left(z_{1}\right)}{1+B \omega\left(z_{1}\right)} \notin F_{1}(\mathbb{U})
$$

because $\left|\omega\left(z_{1}\right)\right|=1$ and $k \geq 1$. But this is a contradiction to the condition (2) of this lemma and so assumption is wrong i.e., $|\omega(z)|<1$ for all $z \in \mathbb{U}$.

On the other hand we have

$$
\begin{gather*}
\frac{1}{b}\left(z \frac{f^{(q+1)}(z)}{f^{(q)}(z)}+q-1\right)<\frac{(A-B) z}{1+B z} \Leftrightarrow \frac{1}{b}\left(z \frac{f^{(q+1)}(z)}{f^{q}(z)}+q-1\right)=\frac{(A-B) \omega(z)}{1+B \omega(z)} \\
\Leftrightarrow 1+\frac{1}{b}\left(\frac{f^{(q+1)}(z)}{f^{(q)}(z)}+q-1\right)=\frac{1+A \omega(z)}{1+B \omega(z)} \tag{5}
\end{gather*}
$$

The equivalencies (5) show that $f(z) \in C S^{*}(A, B, b, q)$.
Let $B=0$.Define a function by $\frac{f^{(q)}(z)}{z^{1-q}}=e^{A b \omega(z)}$.Then is analytic in \mathbb{U} and $\omega(0)=0$ and

$$
\begin{equation*}
\frac{1}{b}\left(z \frac{f^{(q+1)}(z)}{f^{q}(z)}+q-1\right)=A z \omega^{\prime}(z) \tag{6}
\end{equation*}
$$

Similarly by using I.S. Jack's lemma we obtain

$$
\begin{equation*}
1+\frac{1}{b}\left(z \frac{f^{(q+1)}(z)}{f^{(q)}(z)}+q-1\right)=1+A \omega(z) \tag{7}
\end{equation*}
$$

The equality (7`) shows that $f(z) \in C S^{*}(A, B, b, q)$.
The sharpness of the result follows from the fact that for

$$
f_{*}^{(q)}(z)= \begin{cases}z^{1-q}(1+B z)^{\frac{b(A-B)}{B}}, & B \neq 0 \\ z^{1-q} e^{A b z}, & B=0\end{cases}
$$

We receive

$$
\left(z \frac{f_{*}^{(q+1)}(z)}{f_{*}^{(q)}(z)}+q-1\right)=\left\{\begin{array}{cc}
\frac{(A-B) z}{1+B}=F_{1}(z), B \neq 0 \\
A z=F_{2}(z), & B=0
\end{array}\right.
$$

Lemma 6

If $(z) \in C S^{*}(A, B, b, q)$, then the set of the values of $\left(z \frac{f^{(q+1)}(z)}{f^{(q)}(z)}\right)$ is the disc with the center $\mathrm{C}(r)$ and the radius $\rho(r)$, where
$\mathrm{C}(r)=\frac{(1-q)+(q-1) B^{2}-b\left(A B-B^{2}\right) r^{2}}{1-B^{2} r^{2}}, \rho(r)=\frac{|b|(A-B)}{1-B^{2} r^{2}}, B \neq 0$
$\mathrm{C}(r)=1 \quad \rho(r)=|A b| r, B=0$
Proof
If $(z) \in P(A, B)$, then

$$
\begin{equation*}
\left|p(z)-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(A-B)}{\left(1-B^{2} r^{2}\right)} \tag{8}
\end{equation*}
$$

The inequality (8) was proved by Janowski [8].
By using the definition of the class $\operatorname{C} S^{*}(A, B, b, q)$ and the inequality (8) we get

$$
\begin{equation*}
\left|1+\frac{1}{b}\left(z \frac{f^{(q+1)}(z)}{f^{(q)}(z)}+q-1\right)-\frac{1-A B r^{2}}{1-B^{2} r^{2}}\right| \leq \frac{(A-B) r}{1-B^{2} r^{2}} \tag{9}
\end{equation*}
$$

After a berif calculation from (9) we obtain

$$
\begin{aligned}
& \left|z \frac{f^{(q+1)}(z)}{f^{(q)}(z)}-\frac{(1-q)+\left[(1-q) B^{2}-b\left(A B-B^{2}\right) r^{2}\right]}{1-B^{2} r^{2}}\right| \leq \frac{|b|(A-B) r}{1-B^{2} r^{2}}, \quad B \neq 0 \\
& \left|z \frac{f^{(q+1)}(z)}{f^{(q)}(z)}+q-1\right| \leq|A b| r,
\end{aligned}
$$

Theorem 7

If $(z) \in C S^{*}(A, B, b, r)$, then

$$
\begin{gather*}
M_{1}(A, B, r) \leq\left|f^{(q)}(z)\right| \leq M_{2}(A, B, b, q), B \neq 0 \\
N_{1}(A, r) \leq\left|f^{(q)}(z)\right| \leq N_{2}(A, r)<\quad B=0 \tag{10}
\end{gather*}
$$

where

$$
\begin{gathered}
M_{1}(A, B, r)=r^{1-q}(1-B r) \frac{(A-B)(|b|+R e b)}{2 B}(1+B r) \frac{(A-B)(R e b-|b|)}{2 B}, \\
M_{2}(A, B, b, q)=r^{1-q}(1-B r) \frac{(A-B)(|b|-R e b)}{2 B}(1+B r) \frac{(A-B)(|b|+R e b)}{2 B}, \\
N_{1}(A, r)=r^{1-q} e^{-|A b| r}, N_{2}(A, r)=r^{1-q} e^{|A b| r}
\end{gathered}
$$

These bonuds are sharp because the extremal function is

$$
f_{*}^{(q)}(z)=\left\{\begin{array}{cc}
z^{1-q}(1+B z) \frac{b(A-B)}{B}, & B \neq 0 \\
z^{(1-q)} e^{A b z}, & B=0
\end{array}\right.
$$

Proof

By using Lemma 6 and after a berif calculations we get

$$
\begin{gathered}
\frac{(1-q)-|b|(A-B) r+\left[(q-1) B^{2}-\operatorname{Re} b\left(A B-B^{2}\right)\right] r^{2}}{1-B^{2} r^{2}} \leq \operatorname{Re} z \frac{f^{(q+1)}(z)}{f^{(q)}(z)} \\
\leq \frac{(1-q)+|b|(A-B) r+\left[(q-1) B^{2}-\operatorname{Re} b\left(A B-B^{2}\right)\right] r^{2}}{1-B^{2} r^{2}}, B \neq 0 \\
(1-q)-|A b| r \leq \operatorname{Re} z \frac{f^{(q+1)}(z)}{f^{(q)}(z)} \leq(1-q)+|A b| r, B=0
\end{gathered}
$$

Since
$\operatorname{Re} z \frac{f^{(q+1)}(z)}{f^{(q)}(z)}=\frac{\partial}{\partial r} \log \left|f^{(q)}\left(r e^{i \theta}\right)\right|,|z|=r$
and using preceding inequalities we obtain

$$
\begin{aligned}
& \frac{(1-q)-|b|(A-B) r+\left[(q-1) B^{2}-\operatorname{Re} b\left(A B-B^{2}\right)\right] r^{2}}{r\left(1-B^{2} r^{2}\right)} \leq \frac{\partial}{\partial r} \log \left|f^{(q)}\left(r e^{i \theta}\right)\right| \\
& \leq \frac{(1-q)+|b|(A-B) r+\left[(q-1) B^{2}-\operatorname{Re} b\left(A B-B^{2}\right)\right] r^{2}}{r\left(1-B^{2} r^{2}\right)}, B \neq 0 \\
& \frac{(1-q)}{r}-|A b| \leq \frac{\partial}{\partial r} \log \left|f^{(q)}\left(r e^{i \theta}\right)\right| \leq \frac{(1-q)}{r}+|A b|, \quad B=0
\end{aligned}
$$

Integrating both sides of these inequalities from 0 to r we obtain (10).
Corollary 8 For $q=0, A=1, B=-1, b=1$ we obtain

$$
\frac{r}{(1+r)^{2}} \leq|f(z)| \leq \frac{r}{(1+r)^{2}}
$$

This is the distortion theorem of starlike functions. The result is well known [6],[1].

Corollary 9 For $\mathrm{q}=1, \mathrm{~A}=1, \mathrm{~B}=-1, \mathrm{~b}=1$ we get

$$
\frac{1}{(1+r)^{2}} \leq\left|f^{\prime}(z)\right| \leq \frac{1}{(1-r)^{2}}
$$

This is the distortion theorem of the derivative of convex function this result is well known [6],[1].
Corollary 11 For $\mathrm{q}=0, \mathrm{~A}=1, \mathrm{~B}=-1$ the following result is obtained

$$
\frac{r}{(1+r)^{(\operatorname{Reb}+|\mathrm{b}|)}(1-r)^{(\operatorname{Re} b-|b|)}} \leq|f(z)| \leq \frac{r}{(1-r)^{(\operatorname{Re} b+|b|)}(1+r)^{(|b|+\operatorname{Re} b)}}
$$

This is the distortion theorem for the starlike functions of complex order .
Corollary 12 For $\mathrm{q}=1, \mathrm{~A}=1, \mathrm{~B}=-1$ the following result is obtained

$$
\frac{1}{(1-r)^{(\operatorname{Re} b-|b|)}(1+r)^{(\operatorname{Re} b+|b|)}} \leq\left|f^{\prime}(z)\right| \leq \frac{1}{(1-r)^{(|b|-\operatorname{Re} b)}(1+r)^{(|b|+\operatorname{Re} b)}}
$$

This is the distortion theorem for the derivative of convex functions of complex order.

REFERENCES

[1]. A.W.Goodman, Univalent Functions. Volumes I and II, Mariner, Tampa, Florida, 1984.
[2]. Jack I.S., Functions starlike and convexof order α,J.London Math. Soc. 3(1971), 469-474.
[3]. M. K Aouf, starlike functions of complex order, J. Natur .Sci Math. 25(1),1-12.
[4]. M. K. Aouf and M. A. Nasr, On convex functions of complex order , Bull. Fac. Sci. Univ. Mansoura 9 (1982), 566-581.
[5]. Miller S.S. and Mocanu P. T.,Second-order differential inequalities in the complex plane ,J. Math. Anal. Appl. 65(1978), 289-305.
[6]. S. D. Bernardi, Bibliography of schlicht functions, Mariner, Tampa, Florida, 1984.
[7]. Singh R. and Singh S., Some sufficient conditions for univalence and starlikeness, Coll .Math. 47(1982), 309-314.
[8]. W. Janowski, Sme extramal problems for certain families of analytic functions, Ann. Polon.Math 28(1973), 297-326.

