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ABSTRACT 

 

In this paper, a PI controller design is proposed for multivariable linear time invariant (LTI) systems with 

multiple time-delays. The orthogonal collocation method is used to transform the infinite dimensional model of 

the delayed system described by a set of linear partial differential equations to a finite dimensional model 

described by a set of linear ordinary differential equations. An SOF transformation for such systems is 

developed, transforming the multi-loop PI control problem to static output feedback stabilization (SOFS) 

problem and then solved via an iterative linear matrix inequality (ILMI) approach. A numerical example is 

provided to illustrate the practicality and the effectiveness of the proposed approach. A comparative study is also 

established to prove the superiority of our approach compared to a related one.  

 

Keywords: PI controller, multivariable systems, multiple time-delay systems, static output feedback stabilization 

(SOFS), iterative linear matrix inequality (ILMI), orthogonal collocation method. 

 

  

 

1. INTRODUCTION 

 
PID controllers [1, 2] have been at the heart of control engineering practice for several decades. They are widely used in 

industrial applications as no other controllers match the simplicity, clear functionality, applicability and ease of use. To 

deal with the crucial problem of tuning multi-loop PID controllers, several new techniques have been recently emerged; 

see for example [3, 4, 5, 6] and the references therein.  

 

SOF controller design is a well-studied field in the Linear Matrix Inequality (LMI) framework. One advantage of using 

LMIs or Iterative LMIs (ILMIs) is its convenience to include different specifications for the controller design. Therefore, 

various design specifications may be remodeled into the LMIs and the resulting LMI constraints can be efficiently solved 

by using recently developed convex optimization algorithms. For solving the static output feedback Stabilization (SOFS) 

problem, LMI tools have been introduced in [7, 8] and later used to solve design problems of multi-loop PID controllers 

[9, 10, 11].  
 

In the same framework, the ILMI approaches was proposed in [12] to solve the SOFS problem and then extended to the 

PID control design [13, 14, 15]. For the last methods, the basic idea is to transform a PID controller into an equivalent 

SOFS one. This can be realized by augmenting, using some new state variables, the dimension of the PID controller 

system. The iterative algorithm in [13], for example, tried to find a sequence of additional variables such that the relevant 

sufficient conditions are close to the necessary and sufficient ones. In [6], a comparative analysis of three ILMI 

approaches for PID design using specific criteria is presented. 

 

On the other hand, nowadays, there has been raised interest in accentuating the limitations that the process imposes on 

control designs. One of the well-known limitations is the presence of time delays in the system which appears frequently 

within many control systems, either in the states of the plant or in the control inputs [16, 17]. Many useful techniques for 

SISO PID control design for single time-delay systems are raised recently [18, 19, 20, 21, 22]. However, control design 
of MIMO linear time invariant (LTI) systems with multiple-time delays is of theoretical and practical significance and 

the control problem is much more complex. In this framework, there are currently only few available results in the 

literature [23, 24]. However, most research papers are not concerned by PID controllers [25]. It seems that PID 

controllers for MIMO processes with multiple time-delays are yet an open new direction for practical implementation.   

 

In this paper, we propose a novel approach to address multi-loop PI controller design for LTI systems with multiple time-

delays. The basic idea in our approach is to transform the problem of PI controllers for LTI systems with multiple delays 

to an SOFS problem design. To this purpose, equations involving delays in the state and the control variables are 

approximated using the orthogonal collocation method. An SOF transformation for LTI systems with multiple delays is 

established to transform the problem of PI controllers for such system to an SOFS problem design. Then, an algorithm 

based on ILMI approach is provided. Finally, the industrial scale polymerization (ISP) reactor is used to illustrate the 
design, application and merit of the proposed approach. The proposed approach  is also compared to a related one. 
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The paper is organized as follows: The problem considered is formally stated in Section 2. The main results are detailed 

in Section 3.  Section 4 is devoted to multivariable control system performance and robustness study. Simulation results 

are shown in Section 5 where a comparative study with a related approach is also provided.  

 

2. PROBLEM POSITION 

 
Consider the infinite dimensional multivariable LTI system with multiple time-delays described by: 

 

)t(uB)t(uB)t(xA)t(xA)t(x 3120110 
  

)t(Cx)t(y                                                                                                                                                                           (1) 

where x(t) n , u(t)  m , y(t)
 


p  are the state vector, the control vector and the output vector, respectively.       

0A 
nn , 1A 

nn , 0B 
mn , 1B 

mn  and C
np  are known constant matrices. 1 , 2  and 3  are 

time-delays. 

 
The objective is to design the finite dimensional PI controller described by:  

 


t

0
PI,2PI,1 dt)t(yF)t(yF)t(u                                                                                                                                             (2) 

where PI,1F , PI,2F  are proportional and time integral gain matrices, respectively, that stabilize the system (1) under the 

following assumptions: 

 

Assumption 1. 1 , 2  and 3  are assumed to be known and constant delays.  

Assumption 2. The PI controller (2) is well-posed. 

 

The last control problem is very complex. To be relaxed, the infinite dimensional system (1) will be reduced to finite 

dimensional LTI system whereas the PI controller (2) will be transformed into an SOF controller. 

Consider then a reduced finite dimensional LTI system obtained from system (1) using one of the approximation 
methods [26]. This system can be described by: 

 

uB
~

x~A
~

x~ 
 

x~K
~

y~                                                                                                                                                                                   (3) 

and stabilized via the SOF controller: 

y~F
~

u PI                                                                                                                                                                                (4) 

 

where x~ 
pn4  , u(t)

 


m , y~ 
p2  are the state vector, the control vector and the output vector of the 

approximated system, respectively. A
~

, B
~

, K
~

 are matrices of appropriate dimensions. PIF
~

 is the SOF feedback gain 

matrix to be designed such that the closed loop dynamics x~)K
~

F
~

B
~

A
~

(x~ PI  are stabilized via the state feedback 

controller PIF
~

.   

 

3. MAIN RESULTS 

 

Each delayed variable in system (1) can be modeled as a distributed parameter system described by the following 

partial differential equation [26]: 

 

z

)t,z(1

t

)t,z(











                                                                                                                                                  (5) 

 

with the boundary condition:   

 

)t(v = )t,0(                                                                                                                                                                      (6) 

and the output equations :  
 

)t(v  = )t,1(                                                                                                                                                                  (7) 

where t and z are time and pseudo-space variables, respectively. As shown by Fig. 1, )t(v , )t,z(   and )t(v   are the 

input, the state variable and the output of the delay block, respectively.   is a constant time delay.  
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Figure 1.  Delay block representation 

 

Using the orthogonal collocation method, the following 3(N+1) finite dimensional equations can be obtained for the 

delayed vectors of the system (1) [27]:  

 

)t(xB
1

A
1

)t( 1
1

11
1

1





                                                                                                                                               (8) 

)t(uB
1

A
1

)t( 2
2

22
2

2





                                                                                                                                           (9)                                                                                                  

)t(uB
1

A
1

)t( 3
3

33
3

3





                                                                                                                                          (10)                                                                                                  

 

augmented by the following outputs : 

 

)t(C)t,1()t(x 1111                                                                                                                                               (11) 

)t(C)t,1()t(u 2222                                                                                                                                              (12) 

)t(C)t,1()t(u 3333                                                                                                                                               (13) 

 

where N is the number of the collocation points 1N10 z,...,z,z   [0,1] considered, in this paper, as the zeros of the  

(N+2) th order Jacobi polynomials [28]. For k=1,2,3  

 

  1N1,...,ji,,
dz

(z)dL
aA nn

izz

j
k,ijk  



, k=1,2,3.  

1N1,...,i,
dz

(z)dL
...

dz

(z)dL
B mn

izz

0

izz

0
1 














 



 

1N1,...,i,
dz

(z)dL
...

dz

(z)dL
BB mn

izz

0

izz

0
32 














 



 

 







 

1Njif1

N1,...,iif0
c,cC ji,

nnT
1,ij1  

   







 

1Njif1

N1,...,iif0
cc,ccCC 3,ij2,ij

nmT
3,ij

T
2,ij32  

 

and where jL (z)  are the Nth order Lagrange interpolation polynomials [27, 28]. 

Using the equations (11), (12) and (13), the system (1) can be written as: 

)t(CB)t(CB)t(CA)t(xA)t(x 3312201110                                                                                                       (14) 

Let now:  

 

 

where: 

  n4
3211 )t()t()t()t(xx~    


t

0
2 dt)t(y)t(x~  

and let: 

  pn4TT
2

T
1 x~x~x~ 
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  x~K
~

y~y~y~
T

21   

where: 

 x~0000CCxyy~1                                                                                              

 x~I0000dt)t(yy~
t

0
2                                                                                                                                               

 

 

The state space of a new augmented system controlled via an SOF controller is then deduced as: 

 

uB
~

x~A
~

x~   

x~K
~

y~                                                                                                                                                                                  (15) 

y~F
~

u PI                                                                                                                                                                                           
 

where  

)pn4()pn4(

3
3

2
2

1
1

1
1

3120110

0000C

0A
1

000

00A
1

00

000A
1

B
1

0CBCBCAA

A
~ 










































 , m)pn4(

3
3

2
2

0

B
1

B
1

0

0

B
~ 





























  

  )pn4(p2T

21 K
~

K
~

K
~   

  )pn4(p
1 0000CK

~   

  )pn4(p
pp2 I0000K

~ 
   

 

From (2), the control law can be then expressed as:  

 

2PI,21PI,1 y~F
~

y~F
~

u                                                                                                                                                    (16) 

 

On the other hand, we have from (15):  

y~F
~

u PI                                                                                                                                                                               (17) 

 

we can deduce that once the matrix   p2m
PI,2PI,1PI F

~
F
~

F
~   is designed such that the closed loop system (3)-(4) is 

asymptotically stable and considering the analogy between (16) and (17), the original PI gains can be recovered as: 

 

   PI,2PI,1PI,2PI,1 FFF
~

F
~

                                                                                                                                               (18) 

 

Theorem 
 
The multivariable LTI system with multiple delays (1) is stabilizable via the PI controller (2) if there exist a constant 

matrix   p2m
PI,2PI,1PI F

~
F
~

F
~   and a symmetric positive definite matrix )pn4()pn4(T P,0PP   satisfying the 

following matrix inequality:  

 

0)K
~

F
~

PB
~

()K
~

F
~

PB
~

(PB
~

B
~

PA
~

PPA
~

PI
T

PI
TT                                                                                                        (19) 

 

such that: 

PI,1PI,1 F
~

F   

PI,2PI,2 F
~

F                                                                                                                                                                           (20) 

 

Proof.  

The proof that the closed loop dynamics PIx (A BF K)x   are asymptotically stable if the condition (20) is satisfied is 

parallel to this found in [12]. Condition (20) is already proved in (18). 
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Remark 1.  
 

Note that the well-posedness of the MIMO PI controller is guaranteed if all closed-loop transfer matrix is well-defined 

and proper. In our case, this is guaranteed if 0F PI,1  , 0F PI,2  . 

 

Algorithm  
 

Step 1: Define the orthogonal collocation optimal parameters as chosen in [29]. 

Step 2 : Transform the infinite dimensional system (1) to a finite dimensional system (8)-(13) by computing matrices  

1A , 2A , 3A , 1B , 2B , 3B , 1C , 2C , 3C . 

Step 3: Apply the SOF transformation to derive a system’s state space realization ( A
~

, B
~

, K
~

) . If  it does proceed to Step 

4.  

Step 4: Set i=1 and choose 1X  such as 1X  0  

Step 5: Solve the optimization problem OP1 for iP , PIF
~

 and i :  

OP1: Minimize i subject to the following LMI constraints: 

 

0P,0
IK

~
F
~

PB
~

)K
~

F
~

PB
~

(
i

PII
T

T
PII

T
i1 
















                                                                                                                     (21) 

where i1 = iii
TT

ii
TT

ii
TT

i
T

ii
T PXB

~
B
~

XXB
~

B
~

PPB
~

B
~

XA
~

PPA
~

 . Denote by 
*

i  the minimized value of i .  

Step 6: If 
*

i   0, the feedback matrix gains are  PI,1PI,1 F
~

F  , PI,2PI,2 F
~

F  . Stop. Otherwise, go to step7. 

Step 7: Solve the optimization problem OP2 for iP  and  PIF
~

.  

OP2: Minimize tr ( iP ) subject to LMI constraints (21) with i  = 
*

i , where tr stands for the trace of a square matrix. 

Denote by 
*

iP  the optimal iP . The feedback matrix gains are PIPI F
~

F  .  

Step 8 : If  B
~

PB
~

X *
ii , where  is a prescribed tolerance , go to step 9 ; otherwise, set i:= i+1 , iX = 

*
iP

 
and go to 

step 5. 

Step 9: It cannot be decided by this algorithm whether the SOF problem is not solvable. Stop.  

 

Remark 2.  The transfer matrix of the MIMO PI controller is described by: 

s

F
F)s(K

PI,2
PI,1PI                                                                                                                                                      (22) 

 

4. PERFORMANCE AND ROBUSTNESS CRITERIA  

 

To evaluate the closed loop performances of the proposed method, many performance criteria can be used [30]. In this 

paper, we select the following criteria [31]: 

 

A. Integral absolute error index (IAE) 

 

The integral absolute error (IAE) criterion is defined as: 

 


T

0
dt)t(eIAE                                                                                                                                                              (23) 

 

where T is a finite chosen for the integral approach steady-state value. 

 

B. Total Variation (TV) 

 

To evaluate the magnitude of the manipulated input usage, the total up and down movement of the control signal is 

considered as  

 






T

1k

)k(u)1k(uTV                                                                                                                                                (24) 

 

TV is a good measure of the smoothness of controller output and should be small. 
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C. Robustness study  

 

The robustness of the controller is evaluated by inserting a perturbation uncertainty of  10% into the parameters of the 
actual process, simultaneously. 

 

5. APPLICATION: THE ISP REACTOR 

 

To illustrate the effectiveness of the proposed approach, the typical example of the Industrial Scale Polymerization 

(ISP) reactor [32] is used. Three case studies are considered and results are evaluated using IAE and TV indices. The 

three case studies are as follows 1) Set-point tracking, 2) disturbance rejection and 3) parametric uncertainties. Note 

that Sedumi and Yalmip Toolboxes [33] are used to solve ILMIs.  

 
For the orthogonal collocation method, optimal parameters are chosen for N=3. The following matrices are then 

obtained: 

 































199043.193333.14291.1

1962.113923.101547.11547.1

36188.40000.06188.4

8038.01547.11547.13923.10

A1 ,



























1111

8038.08038.08038.08038.0

3333

1962.111962.111962.111962.11

B1 , 























1000

1000

1000

1000

C1 , 































199043.193333.14291.1

1962.113923.101547.11547.1

36188.40000.06188.4

8038.01547.11547.13923.10

A2 ,



























11

8038.08038.0

33

1962.111962.11

B2 , 









1000

1000
C2 , 































199043.193333.14291.1

1962.113923.101547.11547.1

36188.40000.06188.4

8038.01547.11547.13923.10

A3 , 



























11

8038.08038.0

33

1962.111962.11

B3 and 









1000

1000
C3  

 

The transfer matrix of the ISP reactor system is described by [32]:  
 






























11.801s

.8e5

12.174s

4.689e

11.807s

11.64e

14.572s

22.89e

G(s)
0.4s0.2s

s4.0s2.0

                                                                                                                              (25) 

 

Applying Gilbert method [34], the state space representation can be deduced as: 

 































5552.0000

046.000

005534.00

0002187.0

A0 , 























00

01569.2

00

05.066

B0 , 
























2204.30

00

4416.60

00

B1 , 









1100

0011
C                                                                                               

with 2h.0τ2   and 4h.0τ3  . 

 

The time scales are in hours, so the process dynamic’s responses are quite slow.  

 

To solve the ILMIs (21), we choose 002.0IX 181  ,  = 0.1 and    = 0.7549  which gives the following PI gains: 











3060.02062.0

3061.02059.0
F PI,1  

 and 









0335.00292.0

0302.00302.0
F PI,2  

 

In order to prove the performances of the proposed method, a comparison study is established with the PID controller 

designed via the approach given in [13]. The filter 1/( 1sd  ) with d  
> 0  is also applied to the derivative action to 

attenuate the noise in high frequencies. The PID controller is described by: 

1s

s
F

s

F
F(s)K

d
PID,3

PID,2
PID,1PID




 
                                                                                                                (26) 



International Journal of Enhanced Research in Science, Technology & Engineering 

ISSN: 2319-7463, Vol. 5 Issue 4, April-2016 

Page | 113  

Solving the ILMIs given in [13] for the system reduced using the orthogonal collocation method, the MIMO PID gains 

are given by: 

 











2989.00192.0

2988.00187.0
F PID,1 , 














0812.00135.0

0812.00132.0
F PID,2 , 










0660.00151.0

0661.00151.0
F PID,3  

and  we choose d  
= 0.1. 

 

The transfer matrices of the PI and the PID controllers are given in Table 1.  
 

Case study 1: Set-point tracking  

 

For a sequential unit step change in the set-points at t=0 and t=600h, Figure 2 compares the closed-loop responses 

afforded by the two controllers. One can see that the proposed PI controller has a faster rising time and settling 

response over the PID controller. Table 2 shows the performances indices for each approach. It is clear that the PI 

controller has better performances. 

 

Case study 2: Disturbance rejection  

As in [31], a disturbance model dG  is taken as dG =

T
s4.0s4.0

1s982.1

e601.0

1s445.3

e243.4





















 

. As shown by Figure 3, a unit 

step changes in the disturbance were also made to the 1st and 2nd loops at t=0 and t=600h, respectively. It is clear from 

Table 2, Figures 2 and 3 that the proposed PI controller provides superior performances than the PID controller in such 

case study.  

 

Case study 3: Parametric uncertainties  

 

The robustness of the controller is also evaluated by inserting a perturbation uncertainty of  10% in the process gain, 

time constant and time delay, simultaneously, whereas the controller settings are those provided for the nominal 
process. As shown by Table 3, the controller settings of the proposed PI method provide superior performances for both 

case studies: Set-point and disturbances changes.  

 

Table 1: Controllers parameters for the ISP Reactor 

 

Tuning method Controller parameters 

 

 PI PIK (s) =




















s

0335.0s306.0

s

0292.0s2062.0
s

0332.0s3061.0

s

0302.0s2059.0

 

PID  

(with filter)  
PIDK (s) =





































ss1.0

0812.0s307.0s09598.0

ss1.0

0135.0s01785.0s01702.0

ss1.0

0812.0s3069.0s09598.0

ss1.0

0132.0s01738.0s01697.0

2

2

2

2

2

2

2

2

 

 

Table 2: Performance indices for the ISP Reactor  

 

 Tuning method Set-point Disturbance 

IAE TV IAE TV 

 PI 174.42 1.97 224.96 1.33 

PID (with filter) 440.57 4.93 417.66 1.39 
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Figure 2.  Closed loop responses to unit step changes in 

the set-point 

 

Figure 3.  Closed loop responses to unit step changes 

in the disturbance 

 

Table 3: Robustness analysis under  10% parametric uncertainties in all parameters for the ISP Reactor 

 

Tuning method 

 

 

 

ISP (+10%) ISP (-10%) 

Set-point Disturbance Set-point Disturbance 

IAE TV IAE TV IAE TV IAE TV 

 PI 158.68 1.95 224.06 1.33 193.50 1.94 225.85 1.33 

PID (with filter) 404.24 4.82 415.56 1.28 482.68 4.94 418.84 1.52 

 
CONCLUSION 

 

This paper addresses a PI controller design method for multivariable processes with multiple-time delays. A 

comparative study is established between the proposed approach and a related one for the ISP reactor considering 
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different case studies (set point tracking, disturbance rejection and parametric uncertainties) and using different 

performance indices. Simulation results prove the superiority of the proposed PI controller over a related approach.  
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