
International Journal of Enhanced Research in Management & Computer Applications 

ISSN: 2319-7471, Vol. 5 Issue 6, June-2016, Impact Factor: 1.544 

Page | 45 

A Tentative Set of Connections to Investigate 5-

State Busy Beaver Using Run-Time Complexity 
 

Komal Singla
1
, Sunil Maggu

2 

 

1,2 Department of Computer Science and Engineering, Vaish College of Engineering, Rohtak, India    

 

 

 

ABSTRACT 

 

The significant point of this paper is to embrace an exploratory examination for break down the change between 

the computational complexity and discretional complexity nature. To endure out exploration, Turing Machine 

simulator for Busy Beaver function will be weathered for dissimilar N-values on dissimilar machines with 

different game plan and various propositions to work out the run-time complexity nature. This learning 

encourage whether the Busy Beaver function is machine dependent. It besides accounted with the aim of the 

average run-time of Busy Beaver work unquestionably increments as the number of states. 

 

Keywords: Busy Beaver function, Computational complexity, Descriptional complexity, Turing Machine 

 

 
 

I. INTRODUCTION 

 

At this time there are excess of techniques toward surveying the computational complexity in spite of the fact that 

various them concentrating on top of evaluating the benefits much the same as moment, crevice and force worn by 

method for count. The key inspiration driving the examination is to make out the bond flanked by the complexity 

exercises, particularly the way of computational complexity and discretional complexity. It has been deliberately 

clarified in the underneath area. 

 

A. Computational Complexity 

 

Computational complexity is a range office of the theory of calculations. Computational complexity of the situation is 
the way various strides it takes to unwind the bind by means of the biggest piece of triumphant calculation. 

 

B. Descriptional Complexity 

 

Descriptional Complexity of a twofold arrangement is termed the same as the ostensible plan to generate the 

arrangement. Close by there is no obvious method which creates the undeviating calculation with the point of 

delivering a prearranged arrangement. 

 

C. Turing Machine 

 

Turing machine can work out everything, which is assessable [3]. Turing machine has two way interminable tapes 
which is isolated into number of cells. Cell can be a non clear image or can be a clear. All cell contains only one image. 

Turing machine has one head, known as R\W head (Read and Write head) that move over the cells of tape. R/W head 

can analyze the one cell at once. At every progression, the machine peruses the image under the head, and relying on 

the present state, it compose new image in the cell under the head and goes to new state. The R/W head can either move 

left or right [3] [4]. 

 

     1) Definition: A Turing machine M has 7 tuple specifically (Q, ∑, ┌, ∂, q0, b, F,) where  

 

 Q is a limited non void arrangement of states. 

 ∑ is a non unfilled arrangement of information images and is a subset of ┌. 

 ┌ is a limited non void arrangement of tape images. 

 ∂ is move capacity mapping (q, x) onto (q, y, D) where D is bearing of development of R/W head. 

 q0∈ Q is the underlying state and 

 b ∈┌  is clear. 

 F⊆ Q is arrangement of definite states [3] [4]. 



International Journal of Enhanced Research in Management & Computer Applications 

ISSN: 2319-7471, Vol. 5 Issue 6, June-2016, Impact Factor: 1.544 

Page | 46 

 
Fig. 1 Turing Machine 

 

It has been all around recognized by PC researchers that the Turing machine gives an extreme hypothetical model of a 

PC. In Turing machines, the ampleness of an arrangement is resolved through reach ability from the underlying state to 

some last state. So the last states are likewise called the tolerant states [13]. 

 

D. Busy Beaver 

 
Assume a Turing Machine (TM) with a two way endless tape and a tape letters in order = {blank, 1} (the image 0 is 

utilized as clear image) [2].Additionally accept that Turing machine at first totally clear and the machine must move 

either left or comfortable stride, i.e., it can't stay stationary. There is single stopping state from which no moves 

develop, and this end state is not tallied in complete number of states [14]. Busy Beaver are elusive, notwithstanding 

for moderately little n as there are (4(N+1))2N distinctive Turing machines with N-states. S(N) tallies the greatest 

number of moves that can be made by N-state stopping Turing machine of this structure . A machine that produces ∑N 

non-clear cells is known as a Busy Beaver (BB) [14]. 

 

Key standard of this examination is to tackle a speculative investigation intended for taking a gander at the 

inconsistency flanked by the descriptional and computational time complexity for 5-state Busy Beaver function. A 

portion of the inquiries we attempt to answer incorporate what sort of, and what number of capacities are registered in 
every space? What sort of runtimes and space-use do we ordinarily see and how are they orchestrated over the TM 

space? 

     

II. PROBLEM FORMULATION 

 

In [3], there are some outcomes recognized to speculatively interface different intricacy documentations, especially 

descriptional and computational complexity. This paper arranged with the point of normal run-time complexity. It 

diminishes by expanding the descriptional complexity .The method for the computational time complexity nature by 

raising the level of states as a mean for creating descriptional complexity nature is figured. It is handy that by rising the 

descriptional complexity nature (number of states), the quantity of calculations registering less effectively. In this 

paper, number of colours to k=2 are fixed. Number of states are puffed-up as a mean for rising the descriptional 

complexity of the Turing machines in course to take in any conceivable exchange offs with a few of the past intricacy 
measures, i.e., computational complexity. To be more concrete, in this paper, TMs with 2 states and 2 colours are 

contrasted with TMs with 3 states and 2 colours. The fundamental center is on the functions they figure and the runtime 

for these functions. 

 

Along these lines, key standard of this examination is to tackle a speculative investigation intended for taking a gander 

at the inconsistency flanked by the descriptional and computational time complexity for 5-state Busy Beaver function. 

It is at this point perceived that busy beaver is non-calculable function. As like Turing machines, number of conditions 

of Busy Beaver is additionally broadened as a sign of heightening the descriptional complexity in course of 

contemplating the result of computational complexity. This testing is intended for divergent N-values on dissimilar 

machines with different game plan and disparate proposition. This testing would see the refinement flanked by the 

descriptional and computational time complexity nature on dissimilar machine advancement through a variety of 
stages. It will furthermore help us to perceive whether the Busy Beaver capacity is machine dependent or not. The 

machine importance of Busy Beaver function is broke down by gathering the outcome dissimilar machines with unique 

game plan and different proposition. A systematic and extensive learning for examination of runtime complexity nature 

for 5-state Busy Beaver function will be attempted by tentative set of connections. 

 

III. METHODOLOGY 

 

1) Step 1: Plan TM simulator for 5 state Busy Beaver in python language. 



International Journal of Enhanced Research in Management & Computer Applications 

ISSN: 2319-7471, Vol. 5 Issue 6, June-2016, Impact Factor: 1.544 

Page | 47 

2) Step 2: Examine simulator on 5 dissimilar machines with different game plan and disparate proposition. 

3) Step 3: Gathering and assessment of consequences on two notations of complexity. 

4) Step 4: Representing graphs of obtained grades. 

 

IV. TESTING OF TM SIMULATOR 

 
The expected test system will be weathered for dissimilar N-values on dissimilar machines with different game plan 

and various proposition. This test system is weathered on 5 divergent machines to ensure whether the Busy Beaver 

capacity is gadget subordinate or not. The 5 dissimilar machines of unique course of action and various proposition are 

talked about beneath. 

 

Table I: Different Machines To Test Tm Simulator 

 

Machines Processor RAM Operating 

System 

M1 I3-2Ghz 4 GB Linux-

Ubuntu 

M2 Dual Core 3 GB Linux-

Ubuntu 

M3 I5-3210M 6GB Linux-

Ubuntu 

M4 Pentium 4 2 GB Linux- 
Ubuntu 

M5 I7 – 3220M 4 GB Linux- 

Ubuntu 

 

The TM test system is weathered on first machine (M1). Test system is weathered for 10 times at each circumstance. 

Along these lines, we can say that TM test system is experienced for 10 times at state 1, taking after that the state is 

augmented and test system is again weathered for 10 times at state 2. 

 

 
 

Fig. 1 Testing the busy beaver simulator on state 1 

 

 
 

Fig. 2 Testing busy beaver simulator in state 2 



International Journal of Enhanced Research in Management & Computer Applications 

ISSN: 2319-7471, Vol. 5 Issue 6, June-2016, Impact Factor: 1.544 

Page | 48 

 
 

Fig. 3 Testing busy beaver simulator in state 3 
 

 
 

Fig. 4 Testing busy beaver simulator in state 4 
 

 
 

Fig. 5 Testing busy beaver simulator in state 5 

 

V. RESULTS AND DISCUSSIONS 

 

The result is assembled and surveyed on some central documentations of complexity, i.e., computational complexity 

and descriptional complexity. . In basic words it ponder the time they take to work out in every space. The normal 
runtime is assembled on differing machines for all state. By every keep running at each state, the TM test system 

proposed for three times in particular; Real time, User time and System time. 

 

One of this stuff is not much the same as the other. Continuous alludes to unmistakable over and done time; User and 

system time allude to CPU time worn essentially by the procedure. 

 

1) Real Time: It is divider clock time means time starting from begins to end of the call. This is all over and done 

time and additionally time cuts utilized by previous procedures and time the procedures spend stuck. 

2) User Time: User Time is the measure of CPU time exhausted in client mode code encompassed by the 

procedures. This is just clear CPU time worn in executing the procedure. 

3) System Time: It is the measure of CPU time exhausted in the bit encompassed by the procedure. 



International Journal of Enhanced Research in Management & Computer Applications 

ISSN: 2319-7471, Vol. 5 Issue 6, June-2016, Impact Factor: 1.544 

Page | 49 

Now the designed simulator is weathered on 5 dissimilar machines with dissimilar arrangement and diverse proposals. 

The simulator is weathered for 10 times at every state. It will give the following results. 

 

 
 

Fig.6 Real time on state 1 

 

 
 

Fig. 7 Real time chart on state 1 

 

 
 

Fig. 8 User Time on state 1 
 

 
 

Fig. 9 User time chart on state 1 



International Journal of Enhanced Research in Management & Computer Applications 

ISSN: 2319-7471, Vol. 5 Issue 6, June-2016, Impact Factor: 1.544 

Page | 50 

 
 

Fig. 10 System time on state 1 

 

 
 

Fig. 11 System time chart on state 1 

 

 
 

Fig. 12 User time on state 2 

 

 
 

Fig. 13 User time chart on state 2 



International Journal of Enhanced Research in Management & Computer Applications 

ISSN: 2319-7471, Vol. 5 Issue 6, June-2016, Impact Factor: 1.544 

Page | 51 

 
 

Fig. 14 Real time on state 2 

 

 
 

Fig. 15 Real time chart on state 2 

 

 
 

Fig. 16 System time on state 2 
 

 
 

Fig. 17 System time chart on state 2 



International Journal of Enhanced Research in Management & Computer Applications 

ISSN: 2319-7471, Vol. 5 Issue 6, June-2016, Impact Factor: 1.544 

Page | 52 

 
 

Fig. 18 Real time on state 5 
 

 
 

Fig. 19 Real time chart on state 5 

 

 
 

Fig. 20 User time on state 5 
 

 
 

Fig. 21 User time chart on state 5 



International Journal of Enhanced Research in Management & Computer Applications 

ISSN: 2319-7471, Vol. 5 Issue 6, June-2016, Impact Factor: 1.544 

Page | 53 

 
 

Fig. 22 System time on state 5 

 

 
 

Fig. 23 System time chart on state 5 

 

Now, from the above results the average time for the 5 different machines will be:  

 

Table II: Average Run Time Complexity on Machine 1 

 

State  Average Real 
Time 

Average 
User Time 

Average 
System 

Time 

1 0m0.0691s 0m0.0164s 0m0.0344s 

2 0m0.0879s 0m0.0136s 0m0.0516s 

3 0m0.0757s 0m0.0188s Om0.0310s 

4 0m0.01074s 0m0.0176s 0m0.0416s 

5 0m0.14985001s 0m0.242595s 0m0.4580s 

 

Table III: Average run time complexity on machine 2 

 

State  Average Real 

Time 

Average 

User Time 

Average 

System Time 

1 0m0.0339s 0m0.0189s 0m0.0063s 

2 0m0.0390s 0m0.0169s 0m0.0073s 

3 0m0.0385s 0m0.0141s 0m0.0072s 

4 0m0.0453s 0m0.0174s 0m0.0092s 

5 0m0.1370791s 0m0.469161s 0m0.6767s 

 

Table IV: Average run time complexity on machine 3 

 

State  Average Real 

Time 

Average 

User Time 

Average 

System Time 

1 0m0.0312s 0m0.0124s 0m0.004s 

2 0m0.0206s 0m0.0152s 0m0.0028s 

3 0m0.0019s 0m0.0116s 0m0.0056s 



International Journal of Enhanced Research in Management & Computer Applications 

ISSN: 2319-7471, Vol. 5 Issue 6, June-2016, Impact Factor: 1.544 

Page | 54 

4 0m0.0207s 0m0.014s 0m0.004s 

5 0m0.1334148s 0m0.379516s 0m0.5604s 

 

Table V: Average run time complexity on machine 4 

 

State  Average Real 

Time 

Average User 

Time 

Average 

System 

Time 

1 0m0.0023s 0m0.0138s 0m0.0048s 

2 0m0.0224s 0m0.0158s 0m0.0044s 

3 0m0.0222s 0m0.0158s 0m0.0040s 

4 0m0.0223s 0m0.0138s 0m0.0044s 

5 0m0.0653409s 0m0.430856s 0m0.4954s 

 

Table VI: Average run time complexity on machine 5 

 

State  Average Real 

Time 

Average User 

Time 

Average 

System 

Time 

1 0m0.0765s 0m0.0139s 0m0.0036s 

2 0m0.0226s 0m0.040s 0m0.0044s 

3 0m0.0755s 0m0.0136s 0m0.0038s 

4 0m0.0224s 0m0.0144s 0m0.0044s 

5 0m0.7097984s 0m0.557955s 0m0.5695s 

 

Here key principle of this investigation is at first, the analysis is proceeded to examine the consequence on run time 

complexity with escalating the discretional complexity and the other one is the research is performed to look at whether 
the busy beaver function is device dependent or not. So, the run time of busy beaver is planned at all states. The 

dissimilarity in the run time is analyzed with every enlarge in the state of busy beaver. It is apparent from the average 

run time complexity tables that the average run time slows down by escalating the state of the busy beaver function. It 

is discovered that escalating the discretional complexity (number of states), the number of algorithms computing less 

professionally. In simple terms, it is obvious that the average run time of computing a function almost rises with 

increases in the number of states.  

 

Research is performed on dissimilar machines with dissimilar arrangement and diverse proposals as well. Afterward, 

the consequences are represented graphically on the foundation of two parameters. So, it is apparent from the charts 

which are shown on top that user time, real time, system time all are machine dependent. It exposed that the system 

time is totally depended upon the arrangement of the machine. If the research is carried out on an additional machine 
with dissimilar arrangement and diverse proposal, the user time, real time, and system time will definitely alter. So the 

amount of CPU time worn-out in the kernel and outside the kernel varies with modifying the arrangement of machine.  

 

CONCLUSIONS AND FUTURE WORK 

 

A methodical and extensive learning is undertaken for 5-state busy beaver function. For a large number of states, 

consequences are so far to be interpreted. Busy Beaver is on the whole a quandary of Turing machine. There are 

various functions, which are not Turing computable. A lot of hard work is done to work out the standards of non-

computable Busy Beaver function. It is in fact interesting to consider the hard work which has been done to work out a 

number of early values of ∑N. The average run time of figuring out a function decelerate by extending the descriptional 

complexity since selecting an algorithm casually from a number of algorithms working out a function in huge quantity 
of states show the way to better likelihood to select deliberate algorithm in contrasting to number of best ever algorithm 

in equivalent space.  

 

The average run time of computing a function almost rises with increases in the number of states. The geometrical 

charts discovered that busy beaver function device-dependent when it is weathered on dissimilar machines with 

different game plan and disparate proposition. It alters with the variation in the arrangement of machine.  In future 

work, the hard work can be done to work out the ∑N for large value of N. Secondly, the investigation is extremely 

large. There are (4(N+1))2N  unlike Turing machines with N-state. As a result, busy beaver functions are rigid to 

discover. It is tricky to come across whether a fastidious TM will halt or not. Accordingly, the hard work can be done 

to conclude whether a particular TM will halt or not. 



International Journal of Enhanced Research in Management & Computer Applications 

ISSN: 2319-7471, Vol. 5 Issue 6, June-2016, Impact Factor: 1.544 

Page | 55 

REFERENCES 

 

[1] Claus Diem, “On the complexity of some computational problems in the Turing model,” Preprint, November 

18, 2013. 

[2] Qiang Gao “The analysis and research on computational complexity,” Control and Decision Conference, The 

26th Chinese, IEEE 2014.  
[3] J. Joosten, “Program-size versus Time complexity Slowdown and speed-up phenomena in the micro-cosmos 

of small Turing machines,” 16 April 2011. 

[4] Francisco B Pereira  "Graph based crossover–a case study with the busy beaver problem," Proceedings of the 

1999 Genetic and Evolutionary Computation Conference, 1999. 

[5] Turlough Neary, “Small fast universal Turing machines,” Theoretical Computer Science 362, 1 June 2006. 

[6] Penousal Machado, Amílcar Cardoso, “Busy Beaver – An Evolutionary Approach”  

[7] Ed Blakey, "Computational Complexity in Non-Turing Models of Computation: The What, the Why and the 

How," Electronic Notes in Theoretical Computer Science 270.1, 2011.  

[8] Cristian S. Calude, Michael A. Stay, “Most programs stop quickly or never halt,”  Advances in Applied 

Mathematics 40, (2008). 

[9] Gregory J. Chaitin, “Computing the Busy beaver function,” In T. M. Cover and B. Gopinath, Open Problems 

in Communication and Computation, Springer, pp. 108–112,1987. 
[10] Jones and Gregory JE Rawlins, "Reverse Hill climbing Genetic Algorithms and the Busy Beaver 

Problem," ICGA, 1993. 

[11] Rado T., “On non-computable functions,” The Bell System Technical Journal, vol. 41, no. 3, pp.877-884, 

1962. 

[12] K. Dewdney,  “A computer trap for the busy beaver, the hardest-working Turing machine," Computer 

Recreations Dept., Scientific American 251, No. 2, Aug, 1984. 

[13] K.L.P Mishra “Theory of computer science,” Third edition. 

[14] University of Waterloo, “Introduction to the theory of computing – Handout on the Busy Beaver problem,” 

Winter, 1998. 

[15] Pascal Michel, “Small Turing machines and generalized busy beaver competition,” Theoretical Computer 326, 

18 May 2004. 
[16] Penousal Machado, Francisco B. Pereira, Amílcar Cardoso , Ernesto Costa, “ Busy Beaver – The Influence of 

Representation”. 

[17] Woods Damien, and Turlough Neary, “The complexity of small universal Turing machines: A 

survey,” Theoretical Computer Science 410.4, 2009.  

[18] Marxen, Heiner, Specs “Attacking the busy beaver 5,” Bull EATCS. 1990. 

 


