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Abstract: Low-Density Parity-Check codes (LDPC) are found to be efficient at high code rates and have a low error probability and 

also provide a higher coding gain when compared to other coding techniques working in this domain. This paper proposes a LDPC 

encoder and also construction of parity check matrices for different code rates, as specified in the CCSDS 131.1-0-2 document [8]. To 

evaluate the encoder a VHDL description was developed and synthesized on an Altera Cyclone platform for the CCSDS standard. 
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 Introduction 

 

LDPC codes were originally introduced by Gallager [1] in the 1960s. However, due to the lack of an efficient decoding algorithm and 

hardware capabilities, the codes were not widely used at the time and slowly faded away. In the 1990s, LDPC codes were 

rediscovered and were shown to have performance close to the Shannon limit. LDPC codes have received a great deal of attention 

since the rediscovery of their outstanding potential. Along with the increase in computer processing power, the once considered 

impractical codes have long since proved to be quite usable in modern transmission systems. In 1997, Luby et al. considered LDPC 

codes to be extremely useful for applications such as real-time audio and video transmission over the Internet. 

 

Low-density parity-check codes are a class of linear block code defined by a sparse M×N parity-check matrix, H [1], where N > M 

and M = N - K. Although LDPC codes can be generalized to non-binary symbols, we consider only binary codes. The parity-check 

matrix has a small number of '1' entries compared to '0' entries, making it sparse. The number of '1's in a parity-check matrix row is 

called the row-weight, k, and the number of '1's in a column is the column-weight, j. A regular LDPC code is one in which both row 

and column weights are constant; otherwise the parity check matrix is irregular. Row and column weights are much smaller than the 

matrix dimensions, with row weights greater than column weights. The rate of the parity check or code matrix is the fraction of 

information bits in the codeword. It is given by K/N = (N-M)/N = 1-(M/N). The number of '1' entries in the parity-check matrix is 

given by Mk or Nj. From Mk = Nj, we get M/N = j/k. Hence, the rate of matrix could also be expressed as 1-(j/k) [9]. 

 
One class of structured LDPC codes that allows low-complexity encoding is the class of quasi-cyclic (QC)-LDPC codes. It is known in 
coding theory [11], [12] that QC codes can be encoded with simple shift registers, with linear complexity based on their generators (or 
generator matrices). Well-designed QC-LDPC codes have been shown to perform as well as computer-generated random LDPC codes, 
regular or irregular [6], in terms of bit-error performance, block-error performance and error floor, collectively. Therefore, in practical 
applications, they are strong competitors to the random codes, due to their simple encoding and low error floors. These codes also have 
advantages in integrated circuit (IC) decoder implementations due to their cyclic symmetry, which results in simple regular wiring and 
modular structure. 

 

Introduction to QC-LDPC codes 

 

Quasi-Cyclic (QC) LDPC codes are codes in which rows or columns in a sub-matrix have similar and cyclic connections. Due to the 

quasi-cyclic structure, QC-LDPC codes can be encoded efficiently with shift register [4], [10]. A QC-LDPC code can be simply 

represented by shift values of all of its sub-matrices. This provides a compact representation of the matrix and easy construction. A 

circulant is a square matrix in which each row is the cyclic shift (one place to the right) of the row above it, and the first row is the 

cyclic shift of the last row. For such a circulant, each column is the downward cyclic shift of the column on its left, and the first 

column is the cyclic shift of the last column. The row and column weights of a circulant are the same, say w. For simplicity, we say 

that the circulant has weight w. If w = 1, then the circulant is a permutation matrix, called a circulant permutation matrix. For a 

circulant, the set of columns (reading top-down) is the same as the set of rows (reading from right to left). A circulant is completely 

characterized by its first row (or first column), which is called the generator of the circulant. A QC-LDPC code is given by the null 

space of an array of sparse circulants of the same size [6]. For two positive integers and with c and t with c ≤ t, consider the following 

c × t array of b × b circulants over GF (2): 
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The structure of a QC-LDPC code can be viewed from its parity-check matrix in circulant form, given by (1). Based on this form, 

every codeword v in Cqc (QC-LDPC code) can be divided into t sections, v = (v1, v2,…, vt), and each section vj consists of b 

consecutive components of the v. For 1 ≤ j ≤ t, the b components of the jth section vj correspond to the b columns of the jth column of 

circulants of Hqc. For 0 < l < n, let vj
(l) denote the vector obtained by cyclically shifting each of the b components of the jth section vj to 

the right l places. It is clear that vj
(0)= vj

(n)= vj. We call vj
(l) the lth (right) cyclic shift of vj. Then it follows from the circulant structure 

of Hqc that the vector v*= (v1
(l),v2

(l),…,vt
(l)) is also a codeword in Cqc. This says that Cqc has sectionized cyclic structure. If the parity-

check matrix Hqc consists of a single circulant or a single column of circulants, then Cqc is a cyclic code [7]. Therefore, cyclic LDPC 

codes [5] form a subclass of QC-LDPC codes. 

 
  Construction of Parity-Check matrix for CCSDS 

 

The H matrices are constructed from M×M submatrices, where the submatrix size is listed in the table below. 

 
Table 1: Values of submatrix size M for supported codes 

 
Information 

block 

length k 

Submatrix size M 

rate 

½ 

rate 

2/3 

rate 

4/5 

1024 512 256 128 

4096 2048 1024 512 

16384 8192 4096 2048 

 
Algorithm for the calculation of generator matrix: 

 

Step 1: Start the process by assigning the M value for the required code rate. 

Step 2: Open 3 text files namely theta.txt, phi.txt, wmat.txt, theta.txt contains the θk values, phi.txt containing ϕk (m, 0-3) values and 

wmat.txt to write w matrix. 

Step 3: Read θk and ϕk values from the files and store them in separate arrays. 

Step 4: Calculate πk values using the θk and ϕk values and store them in separate arrays. 

 

                                                             πk =M/4((θk+(4i/M))mod4)+( ϕk [(4i/M),M]+i)mod(M/4)                                                          (2) 

 

Step 5: Construct M×M zero matrix, identity matrix and different π matrix based on k value and appending 1s at the position specified 

by the πk formula (2). 

Step 6: Generate the H matrix as stated in the CCSDS 131.1-O-2 doc., [8] for different code rates. 

Step 7: After constructing the H matrix for desired rate, construct the W matrix which is a part of Generator matrix. W matrix is 

defined by the formula: 

 

                                                                           W = (P-1Q)T                                                                                                               (3)                            
 

Now from earlier generated H matrix we have to segregate P and Q matrix. These matrices are separated from H matrix as first MK 
columns form the Q matrix and last 3M columns form the P matrix. 

Step 8: P matrix is to be inverted and this is done with the help of Gauss Jorden method. When this is achieved the inverse of P matrix 

is stored in an array PINV. 

Step 9: The obtained PINV matrix is multiplied with Q matrix. Multiplication is normal matrix multiplication. Then the whole result is 

transposed by interchanging the rows and the columns. 

Step10: The resultant matrix is the W matrix (3) which can be combined with identity matrix to form the G matrix. 

 

                                                                          G = [IMK | W]                                                                         (4)  

Step11: W matrix is written into the file Wmat.txt for further use. 

Step12: Stop the process. 

 

       Note: The value of θk and ϕk are given in the CCSDS 131.1-O-2 doc [8]. 

 
 

A1,1  A1,2  . . . . . . . . . . A1,t 

A2,1  A2,2  . . . . . . . . . . A2,t 

.       .      . . . . . . . . . .  . 

.       .      . . . . . . . . . .  . 

Ac,1  Ac,2  . . . . . . . . . . Ac,t 

 

Hqc = 
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Architecture of LDPC Encoder 

 

 

Fig.1. A schematic of the proposed encoder architecture 

 

The overall encoder architecture is shown in Figure 1. The SRAA block consists of a shift-register-adder-accumulator circuit [4]. The 

memory block is mainly used to store the Wmat values that is obtain from the matlab using the algorithm described in section three. 

The Transfer frame block is used to combine the codeword and the Attach Sync Marker (ASM) to form a transfer frame according to 

the CCSDS standard [8]. This frame is then transmitted serially in the channel. 

 

 
Fig.2. A Quasi-cyclic Encoder using feedback shift registers 

 

Encoding of message m requires computing mG. Because G is block-circulant, this can be performed in an efficient bit-serial manner 

using linear feedback shift registers, as shown in fig. 2. Initially, the binary pattern from the first row of Wmat is placed in the shift 

registers. Correct endianess occurs if higher order monomials (leftmost hexadecimal digits) are placed closer to the output than the 

input of each shift register. Also, in terms of mG, the first bit to be encoded by the circuit represents the bit in the leftmost element of 

row vector m. After m bit arrivals (and cyclic shifts) then next row of Wmat is loaded. Encoding is complete after all rows of Wmat 

have been loaded. Each requires m clock cycles to process for a total of k clock cycles to compute the parity for one codeword. Many 

architectural alternatives are possible. The main benefits of the architecture in fig. 2 are conceptual simplicity and relatively high 

throughput (n codeword bits are computed in k clock cycles). 

 

Codeblock synchronization is achieved by synchronization of an Attached Sync Marker associated with each LDPC Codeblock. The 

Attached Sync Marker (ASM) is a bit pattern, an aid to synchronization, and it precedes the LDPC Codeblock. Frame synchronizers 

should be set to expect a marker at a recurrence interval equal to the length of the ASM plus that of the LDPC Codeblock. All codes in 

the LDPC family use the 64-bit ASM. 
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Flowchart for the generation of parity bits of code rate 4/5; 

Input length (k) = 1024 bits, Codeword length (n) = 1280bits. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Flowchart for the generation of parity bits of code 4/5 
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Conclusion/Results 

 

In order to evaluate the proposed architecture, a VHDL description was synthesized and tested on Altera Cyclone-2 EP2C8Q208C8 

device. The code specified in the CCSDS standard 131.1-O-2 doc., [8] was used. It has maximum block length of 1024 bits. Upon 

testing, the highest clock frequency that would support encoding of data at code rate 4/5 was 79.59MHz. The critical path delay was 

dominated by the 1024-input XOR required for parity calculation. The total encoder, including all control logic occupies 4,873 logic 

elements and 18,432 memory bits. The synthesized report for the LDPC encoder is shown in fig.4 and also the timing analysis report 

is shown in fig. 5. 

 

Architecture for Low-Density Parity-Check encoder for CCSDS standard has been presented. The algorithm described in section 3 can 

be used to construct the generator matrix for code rates ½, 2/3, 3/4 and 4/5, block length of 1024, 4096 and 16384. A VHDL 

description for code rate 4/5 with block length 1024 and codeword 1280 was synthesized and the required parity of 256 bits, for the 

encoder was generated. A VHDL description for other code rates and block length can also be implemented. 
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Fig.4. Synthesized report of LDPC Encoder for Cyclone-2 device 

 

 

 
Fig.5. Timing analysis report of LDPC Encoder for Cyclone-2 device 
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