The Geometric Approach to Existence Linear $[\mathrm{n}, \mathrm{k}, \mathrm{d}]_{13}$ Codes

Dr. Nada Yassen Kasm Yahya ${ }^{1}$, Mustafa Nadhim Salim ${ }^{2}$
${ }^{1}$ Assis. Prof. Department of Mathematics, College of Education for pure Sciences, University of Mosul, Mosul, Iraq
${ }^{2}$ Department of Mathematics, College of Computer Sciences and Mathmatics, University of Mosul, Mosul, Iraq

Abstract

Let [$n, k, d] q$ codes be Linear codes of Length n,dimension k and minimum Hamming distance d over $\mathbf{G F}(\mathbf{q})$. In this paper we give geometric proofs for several results on existence Linear [$\mathbf{n}, \mathrm{k}, \mathrm{d}]_{13}$ Codes that arise from the geometric approach, as described in the paragraph the geometrical contraction method in PG(2,13),and as shown in the method of obtaining new examples (1, 2, \ldots and 11).

Keywords: linear Codes, Arc, Double Blocking set, geometric approach.

HOW TO CITE THIS ARTICLE

I. A. Hassan, N. S. Nasir, Prof. A. J. AL-Shaheen, "Synthesis, Characterization and Antimicrobial Studies of Some Metal Complexes of N -aminoquinolino-2-one and Anthranilic Acid Hydrazid", International Journal of Enhanced Research in Science, Technology \& Engineering, ISSN: 2319-7463, Vol. 7 Issue 1, January-2018.

INTRODUCTION

A projective plane $\mathrm{PG}(2, \mathrm{q})$ over Galois field $\mathrm{GF}(\mathrm{q})$ of q elements, are a two-dimensional projective space, which consists of points and lines with incidence relation between them. In $\operatorname{PG}(2, q)$ there are $q^{2}+q+1$ points, and $q^{2}+q+1$ lines, every line contains $1+\mathrm{q}$ points and every point is on $1+\mathrm{q}$ lines, all these points in $\mathrm{PG}(2, \mathrm{q})$ have the form of a triple $\left(a_{1}, a_{2}, a_{3}\right)$ where $a 1$, $a 2$, $a 3 \in G F(q)$; such that $\left(a_{1}, a_{2}, a_{3}\right) \neq(0,0,0)$. Two points $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$ represent the same point if there exists $\gamma \in G F(q) \backslash\{0\}$, such that $\left(b_{1}, b_{2}, b_{3}\right)=\gamma\left(a_{1}, a_{2}, a_{3}\right)$
There exists one point of the form $(1,0,0)$. There exists q points of the form $(x, 1,0)$ There exists $q 2$ points of the form ($\mathrm{x}, \mathrm{y}, 1$), similarly for the lines.
A point $\mathrm{p}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)$ is incident with the line $\mathrm{L}\left[\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right]$ if f
$a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}=0 .{ }^{[1],[2]}$
Definition (1) " Double Blocking set "
A double blocking set in a projective plane $\mathrm{PG}(2, \mathrm{q})$ is a set S of points with
the property that every line contains at least two points of S. ${ }^{[5]}$
Definition (2) " A (k,r) -arc "
A $(k, r)-\operatorname{arc} \mathrm{K}$ in $\mathrm{PG}(2, \mathrm{q})$ is a set of k points with condition no line of the plane contains more than k points and there exist at least one line of the plane which contains k points.
A (k, r) -arc is called complete arc if is not contained in a ($k+1, r$)- arc. . ${ }^{[1]}$
Definition (3) " The Linear [n,k,d]q Codes "
The Linear $[\mathrm{n}, \mathrm{k}, \mathrm{d}] \mathrm{q}$ Codes in $\mathrm{PG}(2, \mathrm{q})$ where n is the length of codes and k is the dimension of codes, and minimum Hamming distance between the codes is called dover the Galois field GF(q). ${ }^{[3],[6]}$

Definition (4) " i-secant "
A line L in $P G(2, q)$ is an i-secant of $a(k, r)-\operatorname{arc}$ if $|L \cap K|=i$. [1]
Theorem 1 : there exists linear [$\mathrm{n}, 3, \mathrm{~d}] \mathrm{q}$ codes if and only if there exists an $(\mathrm{n}, \mathrm{n}-\mathrm{d})-\operatorname{arc}$ in $\mathrm{PG}(2, \mathrm{q}) .{ }^{[4]}$, ${ }^{[5]}$.

Thegeometricalcontraction methodinPG(2,13)

Let $\mathrm{A}=(1,2,15,29)$ be the set of reference unit and reference points in $\operatorname{PG}(2,13)$ where: $1=(1,0,0), 2=(0,1,0), 15=(0,0,1)$,29=(1,1,1)
A is $(4,2)$-arc, since no three points of A are collinear,
$[1,2]=[1,2,3,4,5,6,7,8,9,10,11,12,13,14]$
$[1,15]=[1,15,16,17,18,19,20,21,22,23,24,25,26,27]$
$[1,29]=[1,28,29,30,31,32,33,34,35,36,37,38,39,40]$
$[2,15]=[2,15,28,41,54,67,80,93,106,119,132,145,158,171]$
$[2,29]=[2,16,29,42,55,68,81,94,107,120,133,146,159,172]$
$[15.29]=[3,15,29,43,57,71,85,99,113,127,141,155,169,183]$
The diagonal points of A are the points $\{3,16,28\}$ where,
$\mathrm{L}_{1} \cap \mathrm{~L}_{6}=3 ; \mathrm{L}_{2} \cap \mathrm{~L}_{5}=16 ; \mathrm{L}_{3} \cap \mathrm{~L}_{4}=28$.
There are One hundred points of index zero for A , which are:
$44,45,46,47,48,49,50,51,52,53,56,58,59,60,61,62,63,64,65,66,69,70,72,73,74,75,76,77,78,79,82,83,84,86,87,88,89,90,9$ $1,92,95,96,97,98,100,101,102,103,104,105,108,109,110,111,112,114,115,116,117,118,121,122,123,124,125,126,128,1$ $29,130,131,134,135,136,137,138,139,140,142,143,144,147,148,149,150,151,152,153,154,156,157,160,161,162,163,16$ 4,165,166,167,168,170172,174,175,176,177,178,179,180,181,182.
Hence , A is incomplete (4,2)_arc .

The Conics in PG(2,13) Through the Reference and Unit Points (1)

The general equation of the conic is:

$$
\begin{equation*}
a_{1} x^{2}{ }_{1}+a_{2} x^{2}{ }_{2}+a_{3} x^{2}{ }_{3}+a_{4} x_{1} x_{2}+a_{5} x_{1} x_{3}+a_{6} x_{2} x_{3}=0 \tag{1}
\end{equation*}
$$

By substituting the points of the arc A in [1], then:
$1=(1,0,0)$ implies that $a_{1}=0,2=(0,1,0)$, then $\mathrm{a}_{2}=0,15=(0,0,1)$, then
$a_{3}=0,29=(1,1,1)$, then

$$
a_{1}=a_{2}=a_{3}=0
$$

$a_{4}+a_{5}+a_{6}=0$.
Hence, from equation (1)
$a_{4} x_{1} x_{2}+a_{5} x_{1} x_{3}+a_{6} x_{2} x_{3}=0$
If $a_{4}=0$, then the conic is degenerated, therefore for $a_{4} \neq 0$, similarly $a_{5} \neq 0$
and $\mathrm{a}_{6} \neq 0$,
Dividing equation [2] by a4, one can get:
$\mathrm{x}_{1} \mathrm{x}_{2}+\alpha \mathrm{x}_{1} \mathrm{x}_{3}+\beta \mathrm{x}_{2} \mathrm{x}_{3}=0$
where $\alpha=a_{5} / a_{4}, \beta=a_{6} / a_{4}$
then $\beta=-(1+\alpha)$, since $1+\alpha+\beta=0(\bmod 13)$.
where $\alpha \neq 0$ and $\alpha \neq 12$, for if $\alpha=0$ or $\alpha=12$, then degenerated conics, thus $\alpha=1,2,3,4,5,6,7,8,9,10,11$ and can be written (2) as :

$$
\begin{equation*}
x_{1} x_{2}+\alpha x_{1} x_{3}-(1+\alpha) x_{2} x_{3}=0 \tag{3}
\end{equation*}
$$

The Equation and the Points of the Conics of PG(2,13) Through the Reference and Unit Points (1)

1. If $\alpha=1$, then the equation of the conic
$\mathrm{C}_{1}=x_{1} x_{2}+x_{1} x_{3}+11 x_{2} x_{3}=0$,
the points of $\mathrm{C}_{1}:\{1,2,15,29,51,62,79,86,104,111,128,139,148,162\}$ which is a complete $(14,2)$-arc, since there are no points of index zero for C_{1}.
2. If $\alpha=2$, then the equation of the conic
$\mathrm{C}_{2}=x_{1} x_{2}+2 x_{1} x_{3}+10 x_{2} x_{3}=0$,
the points of $\mathrm{C}_{2}:\{1,2,15,29,49,61,69,84,105,117,124,138,154,181\}$, which is a complete $(14,2)$-arc, since there are no points of index zero for C_{2}.
3. If $\alpha=3$, then the equation of the conic
$\mathrm{C}_{3}=x_{1} x_{2}+3 x_{1} x_{3}+9 x_{2} x_{3}=0$,
the points of $\mathrm{C}_{3}:\{1,2,15,29,53,56,73,89,100,114,129,135,163,182\}$, which is a complete $(14,2)$-arc, since there are no points of index zero for C_{3}.
4. If $\alpha=4$, then the equation of the conic
$\mathrm{C}_{4}=x_{1} x_{2}+4 x_{1} x_{3}+8 x_{2} x_{3}=0$,
the points of C_{4} : $\{1,2,15,29,47,58,76,90,96,108,131,156,166,178\}$, which is a complete $(14,2)$-arc, since there are no points of index zero for C_{4}.
5. If $\alpha=5$, then the equation of the conic
$\mathrm{C}_{5}=x_{1} x_{2}+5 x_{1} x_{3}+7 x_{2} x_{3}=0$,
the points of C_{5} : $\{1,2,15,29,52,66,74,83,101,116,134,149,167,176\}$, which is a complete $(14,2)$-arc, since there are no points of index zero for C_{5}.
6. If $\alpha=6$, then the equation of the conic
$\mathrm{C}_{6}=x_{1} x_{2}+6 x_{1} x_{3}+6 x_{2} x_{3}=0$,
the points of $\mathrm{C}_{6}:\{1,2,15,29,46,65,75,82,103,123,144,151,161,180\}$, which is a complete $(14,2)$-arc, since there are no points of index zero for C_{6}.
7. If $\alpha=7$, then the equation of the conic
$\mathrm{C}_{7}=x_{1} x_{2}+7 x_{1} x_{3}+5 x_{2} x_{3}=0$,
the points of C_{7} : $\{1,2,15,29,50,59,77,92,110,125,143,152,160,174\}$, which is a complete $(14,2)$-arc, since there are no points of index zero for C_{7}.
8. If $\alpha=8$, then the equation of the conic
$\mathrm{C}_{8}=x_{1} x_{2}+8 x_{1} x_{3}+4 x_{2} x_{3}=0$,
the points of $\mathrm{C}_{8}:\{1,2,15,29,48,60,70,95,118,136,150,130,168,179\}$, which is a complete $(14,2)$-arc, since there are no points of index zero for C_{8}.
9. If $\alpha=9$, then the equation of the conic
$\mathrm{C}_{9}=x_{1} x_{2}+9 x_{1} x_{3}+3 x_{2} x_{3}=0$,
the points of C_{9} : $\{1,2,15,29,44,63,91,97,112,126,137,153,170,173\}$, which is a complete $(14,2)$-arc, since there are no points of index zero for C_{9}.
10. If $\alpha=10$, then the equation of the conic
$\mathrm{C}_{10}=x_{1} x_{2}+10 x_{1} x_{3}+2 x_{2} x_{3}=0$,
the points of $\mathrm{C}_{10}:\{1,2,15,29,45,72,88,102,109,121,142,165,157,177\}$, which is a complete $(14,2)$-arc, since there are no points of index zero for C_{10}.
11. If $\alpha=11$, then the equation of the conic
$\mathrm{C}_{11}=x_{1} x_{2}+11 x_{1} x_{3}+x_{2} x_{3}=0$,
the points of $\mathrm{C}_{11}:\{1,2,15,29,64,78,87,98,115,122,140,147,164,175\}$, which is a complete $(14,2)$-arc, since there are no points of index zero for C_{11}.

Example(1):Existence of $[155,3,142]_{13}$ codes

We take one conic, and take $\pi=\operatorname{PG}(2, q)$ over Galois filed $\mathrm{GF}(\mathrm{q})$ is contains 183 points and line, every line is contains 14 points and every point there are 14 line, say C_{1}, and let
$\mathrm{K}=\pi-\mathrm{C}_{1}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45$,46,47,48,49,50,52,53,54,55,56,57,58,59,60,61,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,80,81,82,83,84,85,87, $88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,105,106,107,108,109,110,112,113,114,115,116,117,118,119,120$, 121,122,123,124,125,126,127,129,130,,131,132,133,134,135,136,137,138,140,141,142,143,144,145,147,149,150,151, $152,153,154,155,156,157,158,159,160,161,161,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,1$ 79,180,181,
$182,183\}$.
The geometrical Construction method must satisfies the following:
i. $\quad \mathrm{K}$ intersects any line of π in at most 13 points .
ii. Every point not in K is on at least one 13-secant of K .

The point : 41,42,54,67,75,80,63,91,101,119,88,93,171,158,132,106,145
Are eliminated from K to satisfy (1) . The points of index zero for $1,51,62$ are added to K to satisfy (2) , then
$\mathrm{K}_{13}=\mathrm{K} \cup[1,51,62] /[41,42,54,67,75,80,63,91,101,119,88,93,171,158,132,106,145]$
$\mathrm{K}_{13}=[1,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,39,40,43,44,45$,46,47,48,49,50,51,52,53,55,56,
57,58,59,60,61,62,64,65,66,68,69,70,71,72,73,74,76,77,78,81,82,83,84,85,
$87,89,90,92,94,95,96,97,98,99,100,102,103,105,107,108,109,110,112,113,114,115,116,117,118,120,121,122,123,124,1$ $25,126,127,129,130,133,134,135,136,137,138,140,141,142,143,144,145,147,149,150,151,152,153,154,155,156,157,15$ $9,160,161,161,163,164,165,166,167,168,169,170,172,173,174,175,176,177,178,180,181,182,183]$.

Is a complete $(155,13)-$ arc as shown in table (1) .
Let $\beta_{1}=\pi-k_{13}=\{2,15,29,41,42,54,63,67,75,79,80,86,91,93,101,104,106,111,119,128,132,139,145,158,162,141\}$ is $(28,1)$-blocking set as shown in (Table1). $\beta 1$ is of Redei -type contains the line L1 $=\{2,15,28,41,54,67,80,93,106,119,132,145,158,171\} /\{28\}$ and one point on each line through the point 28 which are non-collinear points $1,27,48,50,61,78,85,103,110,95,162,122,137$ by theorem (1) ,there exists a projective $[155,3,142]_{13}$ code which is equivalent to the complete $(155,13)-$ arck $_{13}$.

Table(1)

I	$\mathrm{K}_{13} \cap \mathrm{Li}$	$\mathrm{B} 1 \cap \mathrm{Li}$
1	28	$2,15,41,54,67,80,93,106$, $119,132,145,158,171$
2	$1,16,17,18,19,20,21,22,23,24,25,26,27$	15
\cdot		
\cdot		
\cdot		91
182	$8,22,28,47,66,72,97,116,122,141,147,166$,	
172	$14,16,28,53,65,77,89,113,125,137,149,161,173$	101

Example(2):Existence of $[130,3,118]_{13}$ codes

We take two conic, say C_{1} and C_{2}, and let
$\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45$, 46, 47,48,50,52,53,54,55,56,57,58,59,60,63,64,65,66,67,68,70,71,72,73,74,75,76,77,78,80,81,82,83,85,87,88,89,90,91, $92,93,94,95,96,97,98,99,100,101,102,103,106,107,108,109,110,112,113,114,115,116,118,119,120,121,122,123,125,12$ $6,127,129,130,131,132,133,134,135,136,137,140,141,142,143,144,145,147,149,150,151,152,153,155,156,157,158,159$, $160,161,161,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,182,183\}$.
The geometrical Construction method must satisfies the following:
i. $\quad \mathrm{K}$ intersects any line of π in at most 12 points .
ii. Every point not in K is on at least one 12 -secant of K .

The point:
$28,65,54,67,80,93,77,96,81,158,119,145,132,106,171,167,60,45,73,125,121,100,109,134,131,176,155,107,110,30,166]$ Are eliminated from K to satisfy (1) . The points of index zero for 29,79 are added to K to satisfy (2) , then $\mathrm{K}_{12}=\mathrm{KU}$ [29,79]
$28,65,54,67,80,93,77,96,81,158,119,145,132,106,171,167,60,45,73,125,121,100,109,134,131,176,155,107,110,30,166]$ $\mathrm{K}_{12}=\{3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,29,31,32,33,34,35,36,37,38,39,40,41,42,43,44$, $46,47,48,50,52,53,55,56,57,58,59,63,64,66,68,70,71,72,74,75,76,78,79,82,83,85,87,88,89,90,91,92,94,95,97,98,99,101$, $102,103,108,112,113,114,115,116,118,120,122,123,126,127,129,130,133,135,136,137,140,141,142,143,144,147,149,1$ $50,151,152,153,156,157,159,160,161,161,163,164,165,168,169,170,172,173,174,175,177,178,179,180,182,183\}$.
Is a complete $(130,12)-$ arc as shown in (Table2).
Let $\beta_{2}=\pi-k_{12}$
$=\{1,2,15,28,30,45,49,51,54,60,61,62,65,67,69,73,77,80,81,84,86,93,96,100,104,105,106,107,109,110,111,117,119,121$, $124,125,128,131,132,134,138,139,145,148,154,155,158,162,166,167,171,176,181\}$
$(53,2)$-blocking set as shown in table, by theorem (1) ,there exists projective $[130,3,118]_{13}$ code which is equivalent to the complete $(130,12)$-arc k_{12}.

Table(2)

I	$\mathrm{K}_{12} \cap \mathrm{Li}$	$\mathrm{B} 2 \cap \mathrm{Li}$
1	41	$2,15,28,54,67,80,93,106,119,132,145,158,171$
2	$16,17,18,19,20,21,22,23,24,25,26,27$	1,15
\cdot		
\cdot		
\cdot		28
182	$8,22,47,66,72,91,97,116,122,141,147,1$ 66,172	
183	$14,16,53,89,101,113,137,149,161,173$	$65,28,77,125$

Example(3):Existence of $[110,3,99]_{13}$ codes

We take two conic , say C_{1} and $\mathrm{C}_{2}, \mathrm{C}_{3}$ and let $\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45$,46,47,48,50,52,54,55,57,58,59,60, 63,64,65,66,67,68, 70,71,72,74,75,76,77,78,80,81,82,83,85,87,88,90,91
$92,93,94,95,96,97,98,99,101,102,103,106,107,108,109,110,112,113,115,116,118,119,120,121,122,123$,
$125,126,127,130,131,132,133,134,136,137140,141,142,143,144,146,147149,150,151,152,153,155,156,157,158,159,16$ $0,161,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,183\}$.

The geometrical Construction method must satisfies the following:
i. $\quad \mathrm{K}$ intersects any line of π in at most 11 points .
ii. Every point not in K is on at least one 11-secant of K .

The point:
$171,93,67,76,80,41,107,158,119,145,132,106,28,25,85,10,55,65,90,160,159,109,165,115,121,112,183,110,125,133,166$,113,168,108,107,170,32,161,118,78,131,22,172]

Are eliminated from K to satisfy (1). The points of index zero for 104,111 are added to K to satisfy (2) , then $\mathrm{K}_{11}=\mathrm{K} \cup$ [104,111]
$171,93,67,76,80,41,107,158,119,145,132,106,28,25,85,10,55,65,90,160,159,109,165,115,121,112,183,110,125,133,166$,113,168,108,107,170,32,161,118,78,131,22,172]
$\mathrm{K}_{11}=[3,4,5,6,7,8,9,11,12,13,14,16,17,18,19,20,21,23,24,26,27,30,31,33,34$,
35,36,37,38,39,40, 42,43,44,45,46,47,48,50,52,54,57,58,59,60, 63,64,66,68,
$70,71,72,74,75,77,81,82,83,87,88,91,92,94,95,96,97,98,99,101,102,103,104,111,116,120,122,123,126,127,130,134,136$, 137,140, 141,142,143,144,147,149,150,151,152,153,155,156,157,164,167,169,173,174,175,176,177,178,179,180\}.
Is a complete $(110,11)-$ arc as shown in table (3) .Let $\beta_{3}=\pi-k_{11}$
$=\{1,2,10,15,22,28,29,32,41,49,51,53,55,56,61,62,65,67,69,73,76,79,80,84,85,86,89,90,93,100,105,106,107,108,109,11$
$0,112,113,114,115,117,118,119,121,124,125,128,129,131,132,133,135,138,139,145,148,170,171,172,181,182183,168$,
$166,165,163,162,161,160,154,158,159,25\} .(73,3)$-blocking set as shown in (Table3), by theorem (1) ,there exists a projective $[110,3,99]_{13}$ code which is equivalent to the complete $(110,11)$ -
$\operatorname{arc} \mathrm{k}_{11}$.
Table(3)

I	$\mathrm{K}_{11} \cap \mathrm{Li}$	$\mathrm{B} 3 \cap \mathrm{Li}$
1	54	$2,15,28,41,67,80,93,106,119,132,145,158,171$
2	$16,17,18,19,20,21,23,24,26,27$	$1,15,22,25$
\cdot		
\cdot		
\cdot		$22,28,166,172$
182	$8,47,66,72,91,97,116,122,141$, 147	$28,53,65,89,113,125,161$
183	$14,16,77,101,137,149,173$	

Example(4):Existence of $[99,3,89]_{13}$ codes

We take two conic , say C_{1} and $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$ and let $\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4}$ $\{3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45$,46,48,50,52,54,55,57, 59,60, 63, $64,65,66,67,68,70,71,72,74,75,77,78,80,81,82,83,85,87,88,91,92,93,94,95$ $97,98,99,101,102,103,106,107,109,110,112,113,115,116,118,119,120,121$ $122,123,125,126,127,130,132,133,134,136,137,140,141,142,143,144,145$ 147,149,150,151,152,153,155,157,158,159,160,161,164,165,167,168,169, $170,171,172,173,174,175,176,177,179,180,183\}$.

The geometrical Construction method must satisfies the following :
i. $\quad \mathrm{K}$ intersects any line of π in at most 10 points .
ii. Every point not in K is on at least one 10-secant of K .

The point:
$67,54,80,41,119,145,132,106,22,88,24,161,8,18,25,19,85,113,14,10,159,171115,160,116,50,112,161,179,165,109,183$, $77,110,155,95,118,122,180,35,38,65,17]$

Are eliminated from K to satisfy (1). The points of index zero for 79,128 are added to K to satisfy (2) , then $\mathrm{K}_{10}=\mathrm{KU}$ [79,128] $67,54,80,41,119,145,132,106,22,88,24,161,8,18,25,19,85,113,14,10,159,171115,160,116,50,112,179,165,109,183,77,1$ $10,155,95,118,122,180,35,38,65,17]$
$\mathrm{K}_{10}=\{3,4,5,6,7,9,11,12,13,16,20,21,23,26,27,28,30,31,32,33,34,36,37,39,40,42,43,44,45,46,48,52,55,57,59,60$,
$63,64,66,68,70,71,72,74,75,78,79,8182,83,85,87,91,92,93,94,97,98,99,101,102,103,107,120,121,123,125,126$
$127,128,130,133,134,136,137,140,141,142,143,144,147,149,150,151,152153$, $157,158,164,167,168,169,170,172,173,174,175,176,177\}$.

Is a complete $(99,10)-\operatorname{arc}$ as shown in (Table4).Let $\beta_{4}=\pi-k_{10}$
$=\{1,2,8,10,14,15,17,18,19,22,24,25,29,35,38,41,47,49,50,51,53,54,56,58,61,62,65,67,69,73,76,77,80,84,85,86,88,89,90$,95,96,100,104,105,106,108,109,110,111,112,113,114,115,116,117,118,119,122,124,129,131,132,135,138,139,145,148 , $154,155,156,159,160,161,162,163,165,166,171,178,179,180,181,182,183\}$
(84,4)-blocking set as shown in (Table4)., by theorem (1) ,there exists a projective [99,3,89] ${ }_{13}$ code which is equivalent to the complete $(99,10)-\operatorname{arc} \mathrm{k}_{10}$.

Table (4)

I	$\mathrm{K}_{10} \cap \mathrm{Li}$	$\mathrm{B} 4 \cap \mathrm{Li}$
1	28,158	$2,15,41,54,67,80,93,106,119,132,145,171$
2	$16,20,21,23,26,27$	$1,15,17,18,19,24,25,22$
\cdot		
\cdot		
.		$166,116,122,47,22,8$
182	$28,66,72,91,97,141,147,172$	$161,113,89,77,65,53,14$
183	$16,28,101,125,137,149,173$	

Example(5):Existence of $[76,3,67]_{13}$ codes

We take two conic, say C_{1} and $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$ let $\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45$,46,48 ,50,54,55,57,
$59,60,63,6465,67,68,70,71,72,75,77,78,80,81,82,85,87,88,91,92,93,94,95,97,98,99,102,103,106,107,109,110,112,113,1$ $15,118,119,120,121,122,123,125,126,127,130,132,133,136,137,140,141,142,143,144,145,147,150,151,152,153,155,15$ $7158,159,160,161,164,165,168,169,170,171,172,173,174,175,177,179,180,183\}$.

The geometrical Construction method must satisfies the following :
i. $\quad \mathrm{K}$ intersects any line of π in at most 9 points .
ii. Every point not in K is on at least one 9 -secant of K .

The point:
$106,160,119,45,65,28,41,54,16,20,25,93,113,141,155,10,12,14,158,132,107,133,171,165,115,145,35,122,85,159,112,5$ $0,125,60,95,3,169,130,150,44,17,78,110,18,183,80,180,63,103,22,43,126,161,88,30]$

Are eliminated from K to satisfy (1). The points of index zero for 105,181 are added to K to satisfy (2), then $\mathrm{K}_{9}=\mathrm{KU}$ [105,181]
$106,160,119,45,65,28,41,54,16,20,25,93,113,141,155,10,12,14,158,132,107,133,171,165,115,145,35,122,85,159,112,5$ $0,125,60,95,3,169,130,150,44,17,78,110,18,183,80,180,63,103,22,43,126,161,88,30]$
$\mathrm{K}_{9}=\{4,5,6,7,8,9,11,13,19,21,23,24,26,27,31,32,33,34,36,37,38,39,40,42,46,48,55,57,59,64,67,68,70,71,72,75,77$,
$81,82, \quad 87,91,92,94,97,98,99, \quad 102, \quad 105 \quad 109,118,120,121,123,127,136,137,140,142,143,144,146,147,151$ $152,153,157,164,168,170,172,173,174,175,177,179,181\}$.
Is a complete $(76,9)-$ arc as shown in In (Table5).
Let $\beta_{5}=\pi-k_{9}$
$=\{1,2,3,10,12,14,15,16,17,18,20,22,25,28,29,30,35,41,43,44,45,47,49,50,51,52,53,54,56,58,60,61,62,63,65,66,69,73,74$
$, 76,78,79,80,83,84,85,86,88,89,90,93,95,96,100,101,103,104,106,107,108,110,111,112,113,114,115,116,117,119,122,1$
$24,125,126,128,129,130,131,132,133,134,135,138,139,141,145,148,149,150,154,155,156,158,159,160,161,162,163,16$ $5,166,167,169,171,176,178,180,182,183\}$
(107,5)-blocking set as shown in table, by theorem (1),there existsa projective $[76,3,67]_{13}$ code which is equivalent to the complete $(76,9)$-arc k_{9}.

Table (5)

I	$\mathrm{K}_{9} \cap \mathrm{Li}$	$\mathrm{B} 5 \cap \mathrm{Li}$
1	67	$2,15,28,41,54,80,93,106,119,132,145,158,171$
2	$19,21,23,24,26,27$	$1,15,16,17,18,22,25,20$
\cdot		
.		
		$22,28,47,66,116,122,166,141$
182	$8,72,91,91,147,172$	$14,16,28,65,53,89,101,113,125,149,161$
183	$77,137,173$	

Example(6):Existence of $[64,3,56]_{13}$ codes

We take two conic, say C_{1} and $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}$ let
$\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45$, 48 ,50,54,55,57, 59,60, 63,64,
$67,68,70,71,72,77,78,80,81,85,87,88,91,92,93,94,95,97,98,99,102,106,107,109,110,112,113,115,118,119,120,121,122$, $125,126,127,130,132,133,136,137,140,141,142,143,145,147,150,152,153,155,157,158,159,160,164,165,168,169,170,1$ $71,172,173,174,175,177,179,183\}$.

The geometrical Construction method must satisfies the following :
i. $\quad \mathrm{K}$ intersects any line of π in at most 8 points .
ii. Every point not in K is on at least one 8 -secant of K .

The point:
$54,80,119,28,41,16,22,25,113,141,163,10,14,6,107,159,115,85,152,160,81,60,93,121,78,67,173,50,35,85,13,118,77,18$
$3,150,88,63,95,110,18,170,158,143,40,145,5,132,91,71,125,102,112,106,99,146,168,177,39]$
Are eliminated from K to satisfy (1). The points of index zero for 65,82 are added to K to satisfy (2), then $\mathrm{K}_{8}=\mathrm{K} U$ $[65,82]$
$54,80,119,28,41,16,22,25,113,141,163,10,14,6,107,159,115,85,152,160,81,60,93,121,78,67,173,50,35,13,118,77,183,1$ $50,88,63,95,110,18,170,158,143,40,145,5,132,91,71,125,102,112,106,99,146,168,177,39]$
$\mathrm{K}_{8}=\{3,4,7,8,9,11,12,17,19,20,21,23,24,26,27,30,31,32,33,34,36,37,38,42,43,44,45,48,55,57,59,64,65,68,70,72,77,82,92$,94,97,98,109,120,122,126,127,130,133,136,137,140,142,147,153,155,157,164,165,171,172,174,175,179\}
Is a complete $(64,8)-$ arc as shown in (Table 6).Let $\beta_{6}=\pi-k_{8}$
$=\{1,2,5,6,10,13,14,15,16,18,22,25,28,29,35,39,40,41,46,47,49,50,51,52,53,54,56,58,60,61,62,63,66,67,69,71,73,74,75$,
$76,78,79,80,81,83,84,85,86,87,88,89,90,91,93,95,96,99,100,101,102,103,104,105,106,107,108,110,111,112,113,114,11$ $5,116,117,118,119,121,123,124,125,128,129,131,132,134,135,138,139,141,143,144,145,146,148,149,150,151,152,154$, $156,158,159,160,161,162,163,166,167,168,169,170,173,176,177,178,180,181,182,183\}$
(119,6)-blocking set as shown in(Table6), by theorem (1) ,there exists a projective $[64,3,56]_{13}$ code which is equivalent to the complete $(64,8)-\operatorname{arc} \mathrm{k}_{8}$.

Table (6)

I	$\mathrm{K}_{8} \cap \mathrm{Li}$	$\mathrm{B} 6 \cap \mathrm{Li}$
1	171	$2,15,28,41,54,67,80,93,106,119,132,145,158$
2	$17,19,20,21,23,24,26,27$	$1,15,16,18,22,25$
\cdot		
\cdot		
\cdot		$22,28,47,66,116,141,166$
182	$8,72,91,97,122,147,172$	$14,28,53,89,101,113,125,149,161,173$
183	$16,77,137,65$	

Example(7):Existence of $[54,3,47]_{13}$ codes

We take two conic, say C_{1} and $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}$ let $\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6} \cup \mathrm{C}_{7}$ $\{3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45$, 48,54,55,57, 60, 63,64, 67,68, 70,71,72, 78,80,81, 85,87,88,91,93,94,95,97,98,99,102, 106,107,109, $112,113,115,118,119,120,121,122,126,127,130,132,133,136,137,140,141,142,145,147,150,153,155$, $157,158,159,164,165,168,169,170,171,172,173,175,177,179,183\}$.

The geometrical Construction methodmust satisfies the following :
i. $\quad \mathrm{K}$ intersects any line of π in at most 7 points .
ii. Every point not in K is on at least one 7 -secant of K.

The point:
$28,41,54,67,80,16,18,19,22,25,121,85,141,169,113,5,6,10,12,14,81,107,159,133,171,115,40,60,93,63,170,95,78,118,18$ $3,150,88,109,30,165,173,158,155,4,72,145,39,8,132,179,106,91,17,11,35,70,98]$
Are eliminated from K to satisfy (1) . The points of index zero for 117,131 are added to K to satisfy (2) , then $\mathrm{K}_{7}=\mathrm{K} \cup[117,131]$
/
$28,41,54,67,80,16,18,19,22,25,121,85,141,169,113,5,6,10,12,14,81,107,159,133,171,115,40,60,93,63,170,95,78,118,18$ $3,150,88,109,30,165,173,158,155,4,72,145,39,8,132,179,106,91,17,11,35,70,98]$
$\mathrm{K}_{7}=\{3,4,9,13,20,21,23,24,26,27,31,32,33,34,36,37,38,42,43,44,45,48,55,57,64,68,71,87,94,97,99,102,112,117,119,120$, $122,126,127,130,131,136,137,140,142,146,147,153,157,164,168,172,175,177\}$ Is a complete $(54,7)$-arc as shown in(Table 7) .Let $\beta_{7}=\pi-k_{7}$
$=\{1,2,4,5,6,8,10,11,12,14,15,16,17,18,19,22,25,28,29,30,35,39,40,41,46,47,49,50,51,52,53,54,56,58,59,60,61,62,63,65$, $66,67,69,70,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,88,89,90,91,92,93,95,96,98,100,101,103,104,105,106,107,1$ $08,109,110,111,113,114,115,116,118,121,123,124,125,128,129,132,133,134,135,138,139,141,143,144,145,148,149,15$ $0,151,152,154,155,156,158,159,160,161,162,163,165,166,167,169,170,171,173,174,176,178,179,180,181,182,183\}$
(129,7)-blocking set as shown in table , by theorem (1) ,there exists a projective [54,3,47] $]_{13}$ code which is equivalent to the complete $(54,7)$-arc k_{7}.

Table (7)

I	$\mathrm{K}_{7} \cap \mathrm{Li}$	$\mathrm{B} 7 \cap \mathrm{Li}$
1	119	$2,15,28,41,54,67,80,93,106,132,145,158,171$
2	$20,21,23,24,26,27$	$1,15,16,17,18,19,22,25$
\cdot		
\cdot		
\cdot		$8,22,28,47,66,72,91,116,141,166$
182	$97,112,147,172$	$14,16,28,53,65,77,89,101,113,125,149,161,137$
183	173	

Example(8):Existence of $[45,3,39]_{13}$ codes

We take two conic, say C_{1} and $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}$ let
$\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6} \cup \mathrm{C}_{7} \cup \mathrm{C}_{8}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45$, $54,55,57,63,64,67,68,71,72,78,80,81,85,87,88,91,93,94,97,98,99,102,106,107,109,112,113,115$, $119,120,121,122,126,127,132,133,137,140,141,142,145,146,147,153,155$, $157,158,159,164,165,169,170,171,172,173,175,177,183\}$.

The geometrical Construction method must satisfies the following:
i. $\quad \mathrm{K}$ intersects any line of π in at most 6 points .
ii. Every point not in K is on at least one 6 -secant of K .

The point:
$28,41,54,67,93,106,16,18,19,22,25,17,121,141,169,183,113,85,155,3,5,12,8,10,14,133,81,107,159,94,115,171,146,122$, $112,4,102,13,165,109,88,175,78,170,44,6,40,145,173,153,177,11,30,32,34,36]$
Are eliminated from K to satisfy (1) . The points of index zero for 61,62 are added to K to satisfy (2) , then $\mathrm{K}_{6}=\mathrm{KU}$ [61,62]
$28,41,54,67,93,106,16,18,19,22,25,17,121,141,169,183,113,85,155,3,5,12,8,10,14,133,81,107,159,94,115,171,146,122$, $112,4,102,13,165,109,88,175,78,170,44,6,40,145,173,153,177,11,30,32,34,36]$
$\mathrm{K}_{6}=\{7,9,20,21,23,24,26,27,31,33,35,37,38,39,42,43,45,119,55,57,63,64,68,71,72,80,87,91,97,98,99,120,127,132,137,1$ $40,142,126,147,157,158,164,61,62,172\}$
Is a complete $(45,6)-$ arc as shown in (Table8).
Let $\beta_{8}=\pi-k_{6}$
$=\{1,2,3,4,5,6,8,10,11,12,13,14,15,17,18,19,22,25,28,29,30,32,34,36,40,41,44,46,47,48,49,50,51,52,53,54,56,58,59,60,6$ $5,66,67,69,70,73,74,75,76,77,78,79,81,82,83,84,85,86,88,89,90,92,93,94,95,96,100,101,102,103,104,105,106,107,108$, $109,110,111,112,113,114,115,116,117,118,121,122,123,124,125,128,129,130,131,133,134,135,136,138,139,141,143,1$ $44,145,146,148,149,150,151,152,153,154,155,156,159,160,161,162,163,165,166,167,168,169,170,171,173,174,175,17$ $6,177,178,179,180,181,182,183\}$
$(138,8)$-blocking set as shown in table, by theorem (1) ,there exists a projective [45,3,39] ${ }_{13}$ code which is equivalent to the complete $(45,6)$-arc k_{6}.

Table (8)

I	$\mathrm{K}_{6} \cap \mathrm{Li}$	$\mathrm{B} 8 \cap \mathrm{Li}$
1	$80,119,158$	$2,15,28,41,54,67,93,106,132,145,171$
2	$16,20,23,24,26,27$	$1,15,17,18,19,21,22,25$
\cdot		
.		
		$8,22,28,47,66,116,122,141,166$
182	$72,91,97,147,172$	$14,28,53,65,77,89,101,113,125,149,161,173$
183	16,137	

Example(9):Existence of $[34,3,29]_{13}$ codes

We take two conic, say C_{1} and $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}$ let
$\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6} \cup \mathrm{C}_{7} \cup \mathrm{C}_{8} \cup \mathrm{C}_{9}$
$=\{3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,39,40,41,42,43,45,5$ $4,55,57,64,67,68,71,72,78,80,81,85,87,88,93,94,98,99,102,106,107,109,113,115,119,120,121,122,127,132,133140,141$, $142,145,146,147,155,157,158,159,164,165,169,171,172,175,177,183\}$.
The geometrical Construction method must satisfies the following :
i. $\quad \mathrm{K}$ intersects any line of π in at most 5 points .
ii. Every point not in K is on at least one 5 -secant of K .

The point:
$41,54,67,80,93,106,119,16,17,18,19,22,24,25,121,183,169,155,141,113,85,3,4,5,8,12,10,14,107,81,55,133,159,171,40$, $115,140,88,78,94,102,165,9,13,109,146,35,122,158,145,45,30,132,31,32,33,34]$
Are eliminated from K to satisfy (1). The points of index zero for 92,179 are added to K to satisfy (2) , then

K_{6}	$=\mathrm{K}$	U	$[92,179]$

$41,54,67,80,93,106,119,16,17,18,19,22,24,25,121,183,169,155,141,113,85,3,4,5,8,12,10,14,107,81,55,133,159,171,40$, $115,140,88,78,94,102,165,9,13,109,146,35,122,158,145,45,30,132,31,32,33,34]$
$\mathrm{K}_{5}=\{6,7,20,21,23,26,27,28,36,37,38,39,42,43,57,64,68,71,72,87,98,99,120,127,142,147,157,164,172,175,179,177,92,1$ 1
Is a complete $(34,5)-$ arc as shown in(Table 9) .
Let $\beta_{9}=\pi-k_{5}$
$=\{1,2,3,4,5,8,9,10,12,14,15,16,17,18,19,22,24,25,29,30,31,32,34,33,35,40,41,44,45,46,47,48,49,50,51,52,53,54,55,56,5$ $8,59,60,61,62,63,65,66,67,69,70,73,74,75,76,77,78,79,80,81,82,83,84,85,86,88,89,90,91,93,95,94,96,97,100,101,102,1$ $03,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,128,129,130,131,13$ $2,133,134,135,136,137,138,139,140,141,143,144,145,146,148,149,150,151,152,153,154$, $155,156,158,159,160,161,162,163,165,166,167,168,169,170,171,173,174,176,178,180,181182,183\}$
(149,9)-blocking set as shown in(Table9), by theorem (1) ,there exists a projective $[34,3,29]_{13}$ code which is equivalent to the complete $(34,5)-\operatorname{arc} \mathrm{k}_{5}$.
Table (9)

I	$\mathrm{K}_{5} \cap \mathrm{Li}$	$\mathrm{B} 9 \cap \mathrm{Li}$
1	28	$2,15,41,54,67,80,93,106,119,132,145,158,171$
2	$21,20,23,26,27$	$1,15,16,18,18,19,22,24,25$
\cdot		
\cdot		
\cdot		$8,22,47,66,91,97,116,122,141,166$
182	$28,72,147,172$	$14,16,53,65,77,89,101,113,125,137,149,161,173$
183	28	

Example(10):Existence of $[20,3,16]_{13}$ codes

We take two conic, say C_{1} and $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}$ let
$\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6} \cup \mathrm{C}_{7} \cup \mathrm{C}_{8} \cup \mathrm{C}_{9} \cup \mathrm{C}_{10}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,39,40,41,42,43,54,55$
,57,64,67,68,71,78,80,81,85,87,93,94,98,99,106,107,113,115,119,120,122,127,132,133,140,141,145,146,147,155,158,1 $59,164,169,171,172,175,183\}$.
The geometrical Construction method must satisfies the following :
i. $\quad \mathrm{K}$ intersects any line of π in at most 4 points .
ii. Every point not in K is on at least one 4-secant of K .

The point:
$28,54,67,80,93,106,119,41,3,85,113,141,155,169,183,71,5,6,16,17,18,19,20,25,22,24,39,8,10,12,13,14,55,81,94,107,13$ $3,159,68,171,115,122,140,9,43,64,7,158,175,40,4,30,87,78,11,132,31,32,33,34,36]$
Are eliminated from K to satisfy (1). The points of index zero for 52,62 are added to K to satisfy (2) , then
$\mathrm{K}_{4}=\mathrm{KU}[52,62] /$
$28,54,67,80,93,106,119,41,3,85,113,141,155,169,183,71,5,6,16,17,18,19,20,25,22,24,39,8,10,12,13,14,55,81,94,107,13$
$3,159,68,171,115,122,140,9,43,64,7,158,175,40,4,30,87,78,11,132,31,32,33,34,36]$
$\mathrm{K}_{4}=\{21,23,26,27,35,37,38,42,57,98,99,120,127,145,164,147,172,146,62,52\}$
Is a complete $(20,4)-\operatorname{arc}$ as shown in table (10) .
Let $\beta_{10}=\pi-k_{4}$
$=\{1,2,3,4,5,8,9,10,11,12,13,14,15,16,17,18,19,20,22,24,25,28,29,30,31,32,33,34,36,39,40,41,43,44,45,46,47,48,49,50,5$ $1,53,54,55,56,58,59,60,61,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92$, $93,95,94,96,97,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,121,122,123,12$ $4,125,126,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,148,149,150,151,152,153,154,155$, 156,157,158,159,160,161,162,163,165,166,167,168,169,170,171,173,174,176,177,178,179,180,181,182,183\}
$(163,10)$-blocking set as shown in(Table10) , by theorem (1) ,there exists a projective $[20,3,16]_{13}$ code which is equivalent to the complete $(20,4)-\operatorname{arc} \mathrm{k}_{4}$.

Table (10)

I	$\mathrm{K}_{4} \cap \mathrm{Li}$	$\mathrm{B} 10 \cap \mathrm{Li}$
1	145	$2,15,28,41,54,80,93,106,119,132,67,171,158$
2	$21,23,27$	$1,15,16,17,18,19,20,22,24,25,26$
\cdot		
\cdot		
\cdot		$14,28,16,53,65,77,89,101,113,125,137,149,161,173$
182	\emptyset	$12,33,159,43,66,76,86,98,106,129,139,149,182$
183	23	

Example(11):Existence of $[\mathbf{1 3 , 3 , 1 0}]_{13}$ codes

We take two conic, say $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}$ and C_{11} let $\mathrm{K}=\pi-\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \mathrm{C}_{3} \cup \mathrm{C}_{4} \cup \mathrm{C}_{5} \cup \mathrm{C}_{6} \cup \mathrm{C}_{7} \cup \mathrm{C}_{8} \cup \mathrm{C}_{9} \cup$ $\mathrm{C}_{10} \cup \mathrm{C}_{11}$
$\{3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,21,22,23,24,25,26,27,28,30,31,32,33,34,35,36,37,38,39,40,41,42,43,54,55$,57, $67,68, \quad 71,80,81, \quad 85,93,94, \quad 99, \quad 106,107,113,119,120,127, \quad 132,133,141, \quad 145,146, \quad 155,158,159,164$, $169,171,172,183\}$.
The geometrical Construction method must satisfies the following :
i. $\quad \mathrm{K}$ intersects any line of π in at most 3 points .
ii. Every point not in K is on at least one 3-secant of K .

The point:
$28,54,67,80,93,106,119,132,145,16,17,18,19,20,24,22,25,21,39,144,3,71,85,113,141,155,169,183,4,5,8,9,10,12,13,14,5$ $5,81,94,107,133,159,171,120,27,30,43,146,11,33,172,32,34,35,36,23,6,31]$
Are eliminated from K to satisfy (1) . The points of index zero for 87,173 are added to K to satisfy (2) , then $\mathrm{K}_{3}=\mathrm{K} \cup$ [87,173]
$28,54,67,80,93,106,119,132,145,16,17,18,19,20,24,22,25,21,39,144,3,71,85,113,141,155,169,183,4,5,8,9,10,12,13,14,5$
5,81,94,107,133,159,171,120,27,30,43,146,11,33,172,32,34,35,36,23,6,31]
$\mathrm{K}_{3}=\{7,26,37,38,40,41,42,47,99,127,158,173,87\}$
Is a complete $(13,3)-\operatorname{arc}$ as shown in (Table 11) .

Let $\beta_{11}=\pi-k_{3}$
$=\{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,24,25,27,28,29,30,31,32,33,34$,
$35,36,39,43,44,45,46,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,7$ $9,80,81,82,83,84,85,86,88,89,90,91,92,93,95,94,96,97,98,100,101,102,103,104,105,106,107,108,109,110,111,112,113$, $114,115,116,117,118,119,120,121,122,123,124,125,126,128,129,130,131,132,133,134,135,136,137,138,139,140,, 141,1$ $42,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169,17$ $0,171,174,175,176,177,178,179,180,181,182,183\}$
(170,11)-blocking set as shown in(Table11), by theorem (1) ,there exists a projective $[13,3,10]_{13}$ code which is equivalent to the complete $(13,3)-\operatorname{arc} \mathrm{k}_{3}$.
Table (11)

I	$\mathrm{K}_{3} \cap \mathrm{Li}$	$\mathrm{B} 11 \cap \mathrm{Li}$
1	41,158	$2,15,28,54,67,80,93,106,119,132,145,171$
2	19,26	$1,15,16,17,18,20,21,22,23,24,25,27$
\cdot		
\cdot		
.		$8,22,141,28,47,66,72,91,97,116,122,147,166,172$
182	\emptyset	$16,14,28,53,65,77,89,101,113,125,137,149,161$
183	173	

REFERENCES

[1]. J .W.P.Hirsehfeld , projective Geometries over finite fields, oxford university, press oxfored(1979) .
[2]. J .W.P.Hirsehfeld, L.Stome ,The Paching Problem in statistics, coding theory and finite projective spaes: update 2001 ,School of Mathematical Sciences University of Sussex Brighton BN1 9QH United Kingdom,(2001) .
[3]. J.H.Vanlint ,An Introduction to Coding Theory , second Edition, Springer ,Belin, (1992) .
[4]. R .Hill , optimal linear codes , Cryptography and codind II, oxford university , 1992, 41-70
[5]. S. BALL,On the Size of a Double Blocking Set in PG(2, q)University of Sussex, Falmer, East Sussex, United Kingdom, 1994 ,125-133
[6]. T. Kløve,On the existence of proper codes for error detection,University of Bergen, Norway.Singapore, (2009)

