# Homogeneous Quadratic Equation With Three Unknowns $z^{2}=6 x^{2}-2 y^{2}$ 

S. Vidhyalakshmi ${ }^{1}$, M.A. Gopalan ${ }^{2}$<br>${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.<br>${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy620 002, Tamil Nadu, India.


#### Abstract

In this paper, different sets of non-zero distinct integer solutions to the homogeneous quadratic equation with three unknowns given by $z^{2}=6 x^{2}-2 y^{2}$ are obtained. A few interesting relations among the solutions are presented. The formulae for generating sequence of integer solutions to the equation in title based on its given solution are exhibited.


Keywords: Homogeneous quadratic, Quadratic with three unknowns, Integer solutions, generation formula

## INTRODUCTION

Ternary quadratic equations are rich in variety [1-4, 17-20].For an extensive review of sizable literature and various problems, one may refer [5-16]. In this communication, we consider yet another interesting homogeneous ternary quadratic equation $z^{2}=6 x^{2}-2 y^{2}$ and obtain infinitely many non-trivial integral solutions. A few interesting relations among the solutions are presented. The formulae for generating sequence of integer solutions to the equation in title based on its given solution are exhibited.

## METHOD OF ANALYSIS

The homogeneous quadratic equation with three unknowns to be solved is

$$
\begin{equation*}
z^{2}=6 x^{2}-2 y^{2} \tag{1}
\end{equation*}
$$

Different sets of solutions in integers to (1) through various ways are illustrated below:

## Way 1:

Introduction of the linear transformations

$$
\begin{equation*}
x=2(u+v), y=2 u+6 v, z=4 w \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
u^{2}-3 v^{2}=w^{2} \tag{3}
\end{equation*}
$$

which is satisfied by

$$
\left.\begin{array}{l}
\mathrm{v}=2 \mathrm{rs} \\
\mathrm{w}=3 \mathrm{r}^{2}-\mathrm{s}^{2}  \tag{4}\\
\mathrm{u}=3 \mathrm{r}^{2}+\mathrm{s}^{2}
\end{array}\right)
$$

Substituting the above values of $u, v, W$ in (2), the non-zero distinct integral values of $x, y$ and $z$ are given by

$$
\left.\begin{array}{l}
x=x(r, s)=6 r^{2}+4 r s+2 s^{2}  \tag{5}\\
y=y(r, s)=6 r^{2}+12 r s+2 s^{2} \\
z=z(r, s)=12 r^{2}-4 s^{2}
\end{array}\right\}
$$

Thus (5) represents the non-zero integer solutions to (1).

## Way 2:

Write (3) as the system of double equations as shown in Table 1 below:

## Table 1: System of double equations

| System | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{u}+\mathrm{w}$ | $3 \mathrm{v}^{2}$ | $\mathrm{v}^{2}$ | 3 v | 1 | 3 | v |
| $\mathrm{u}-\mathrm{w}$ | 1 | 3 | v | $3 \mathrm{v}^{2}$ | $\mathrm{v}^{2}$ | 3 v |

Solving each of the system of equations in Table 1, the corresponding values of $u, v, w$ are obtained. Substituting the values of $u, v, W$ in (2), the respective values of $x, y$ and $z$ are determined. The integer solutions to (1) obtained through solving each of the above system of equations are exhibited below:
Solutions through System 1:

$$
\begin{aligned}
& \mathrm{x}=12 \mathrm{k}^{2}+16 \mathrm{k}+6 \\
& \mathrm{y}=12 \mathrm{k}^{2}+24 \mathrm{k}+10 \\
& \mathrm{z}=24 \mathrm{k}^{2}+24 \mathrm{k}+4
\end{aligned}
$$

Solutions through System 2:

$$
\begin{aligned}
& \mathrm{x}=4 \mathrm{k}^{2}+8 \mathrm{k}+6 \\
& \mathrm{y}=4 \mathrm{k}^{2}+16 \mathrm{k}+10 \\
& \mathrm{z}=8 \mathrm{k}^{2}+8 \mathrm{k}-4
\end{aligned}
$$

Solutions through System 3:

$$
x=6 v, y=10 v, z=4 v
$$

Solutions through System 4:

$$
\begin{aligned}
& \mathrm{x}=12 \mathrm{k}^{2}+16 \mathrm{k}+6 \\
& \mathrm{y}=12 \mathrm{k}^{2}+24 \mathrm{k}+10 \\
& \mathrm{z}=-24 \mathrm{k}^{2}-24 \mathrm{k}-4
\end{aligned}
$$

Solutions through System 5:

$$
\begin{aligned}
& \mathrm{x}=4 \mathrm{k}^{2}+8 \mathrm{k}+6 \\
& \mathrm{y}=4 \mathrm{k}^{2}+16 \mathrm{k}+10 \\
& \mathrm{z}=-8 \mathrm{k}^{2}+8 \mathrm{k}+4
\end{aligned}
$$

Solutions through System6:

$$
x=6 v, y=10 v, z=-4 v
$$

WAY 3:
Rewrite (3) as

$$
\begin{equation*}
\mathrm{w}^{2}+3 \mathrm{v}^{2}=\mathrm{u}^{2} * 1 \tag{6}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mathrm{u}=\mathrm{a}^{2}+3 \mathrm{~b}^{2} \tag{7}
\end{equation*}
$$

where a and b are non-zero integers.
Consider 1 as

$$
\begin{equation*}
1=\left(\frac{(1+i \sqrt{3})(1-i \sqrt{3})}{4}\right) \tag{8}
\end{equation*}
$$

Using (7), (8) in (6) and applying the method of factorization, define

$$
(w+i \sqrt{3} v)=(a+i \sqrt{3} b)^{2} \frac{(1+i \sqrt{3})}{2}
$$

from which we have

$$
\left.\begin{array}{l}
\mathrm{w}=\frac{1}{2}\left(\mathrm{a}^{2}-6 \mathrm{ab}-3 \mathrm{~b}^{2}\right) \\
\mathrm{v}=\frac{1}{9}\left(\mathrm{a}^{2}+2 \mathrm{ab}-3 \mathrm{~b}^{2}\right) \tag{9}
\end{array}\right\}
$$

Using (7) and (9) in (2), the values of $x, y$ and $z$ are given by

$$
\left.\begin{array}{l}
x=x(a, b)=3 a^{2}+2 a b+3 b^{2} \\
y=y(a, b)=5 a^{2}+6 a b-3 b^{2}  \tag{10}\\
z=z(a, b)=2 a^{2}-12 a b-6 b^{2}
\end{array}\right\}
$$

Thus (10) represents the non-zero integer solutions to (1).
Note 1:
The integer 1 on the R.H.S. of (6) may also be written as

$$
\begin{gathered}
1=\frac{(1+i 4 \sqrt{3})(1-i 4 \sqrt{3})}{49} \\
1=\frac{\left(3 r^{2}-s^{2}+i 2 r s \sqrt{3}\right)\left(3 r^{2}-s^{2}-i 2 r s \sqrt{3}\right)}{\left(3 r^{2}+s^{2}\right)^{2}}
\end{gathered}
$$

Following the procedure as above ,one obtains two more sets of integer solutions to (1).

## WAY 4:

Rewrite (3) as

$$
\begin{equation*}
u^{2}-3 v^{2}=w^{2} * 1 \tag{11}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mathrm{w}=\mathrm{a}^{2}-3 \mathrm{~b}^{2} \tag{12}
\end{equation*}
$$

where a and b are non-zero integers.
Take 1 on the R.H.S. of (11) as

$$
\begin{equation*}
1=(2+\sqrt{3})(2-\sqrt{3}) \tag{13}
\end{equation*}
$$

Using (12), (13) in (11) and applying the method of factorization, define

$$
(u+\sqrt{3} v)=(a+\sqrt{3} b)^{2}(2+\sqrt{3})
$$

from which we have

$$
\left.\begin{array}{l}
u=\left(2 a^{2}+6 a b+6 b^{2}\right) \\
v=\left(a^{2}+4 a b+3 b^{2}\right) \tag{14}
\end{array}\right\}
$$

Using (12) and (14) in (2), the values of $x, y$ and $z$ are given by
$\left.\begin{array}{l}x(a, b)=6 a^{2}+20 a b+18 b^{2} \\ y(a, b)=10 a^{2}+36 a b+30 b^{2} \\ z(a, b)=4 a^{2}-12 b^{2}\end{array}\right\}$
Thus (15) represents the non-zero integer solutions to (1).
Note 2:
The integer 1 on the R.H.S. of (11) may also be written as

$$
\begin{gathered}
1=(7+4 \sqrt{3})(7-4 \sqrt{3}) \\
1=\frac{\left(3 r^{2}+s^{2}+2 r s \sqrt{3}\right)\left(3 r^{2}+s^{2}-2 r s \sqrt{3}\right)}{\left(3 r^{2}-s^{2}\right)^{2}}
\end{gathered}
$$

Following the procedure as above ,one obtains two more sets of integer solutions to (1).
WAY 5:
Introduction of the linear transformations

$$
\begin{equation*}
\mathrm{z}=4(\mathrm{u}+\mathrm{v}), \mathrm{y}=4 \mathrm{u}-2 \mathrm{v}, \mathrm{x}=2 \mathrm{w} \tag{16}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
w^{2}=v^{2}+2 u^{2} \tag{17}
\end{equation*}
$$

which is satisfied by

$$
\left.\begin{array}{l}
\mathrm{u}=2 \mathrm{rs}  \tag{18}\\
\mathrm{v}=2 \mathrm{r}^{2}-\mathrm{s}^{2} \\
\mathrm{w}=2 \mathrm{r}^{2}+\mathrm{s}^{2}
\end{array}\right)
$$

Substituting the above values of $u, v, w$ in (16), the non-zero distinct integral values of $x, y$ and $z$ are given by

$$
\left.\begin{array}{l}
\mathrm{z}=\mathrm{z}(\mathrm{r}, \mathrm{~s})=8 \mathrm{r}^{2}+8 \mathrm{rs}-4 \mathrm{~s}^{2}  \tag{19}\\
\mathrm{y}=\mathrm{y}(\mathrm{r}, \mathrm{~s})=-4 \mathrm{r}^{2}+8 \mathrm{r} s+2 \mathrm{~s}^{2} \\
\mathrm{x}=\mathrm{x}(\mathrm{r}, \mathrm{~s})=4 \mathrm{r}^{2}+2 \mathrm{~s}^{2}
\end{array}\right\}
$$

Thus (19) represents the non-zero integer solutions to (1).

## Generation of Solutions

Different formulas for generating sequence of integer solutions based on the given solution are presented below:
$\operatorname{Let}\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ be any given solution to (1)

## Formula: 1

$\operatorname{Let}\left(x_{1}, y_{1}, z_{1}\right)$ given by

$$
\begin{equation*}
\mathrm{x}_{1}=3 \mathrm{x}_{0}, \mathrm{y}_{1}=\mathrm{h}-3 \mathrm{y}_{0}, \mathrm{z}_{1}=\mathrm{h}-3 \mathrm{z}_{0} \tag{20}
\end{equation*}
$$

be the $2^{\text {nd }}$ solution to (1). Using (20) in (1) and simplifying, one obtains

$$
\mathrm{h}=4 \mathrm{y}_{0}+2 \mathrm{z}_{0}
$$

In view of (20), the values of $y_{1}$ and $z_{1}$ are written in the matrix form as

$$
\left(y_{1}, z_{1}\right)^{t}=M\left(y_{0}, z_{0}\right)^{t}
$$

where

$$
\mathrm{M}=\left(\begin{array}{cc}
1 & 2 \\
4 & -1
\end{array}\right) \text { and } t \text { is the transpose }
$$

The repetition of the above process leads to the $n^{\text {th }}$ solutions $y_{n}, z_{n}$ given by

$$
\left(y_{n}, z_{n}\right)^{t}=M^{n}\left(y_{0}, z_{0}\right)^{t}
$$

If $\alpha, \beta$ are the distinct eigenvalues of M , then

$$
\alpha=3, \beta=-3
$$

We know that

$$
M^{n}=\frac{a^{n}}{(\alpha-\beta)}(M-\beta I)+\frac{\beta^{n}}{(\beta-\alpha)}(M-\alpha I), I=2 \times 2 \text { Identity matrix }
$$

Thus, the general formulas for integer solutions to (1) are given by

$$
\begin{aligned}
& x_{n}=3^{n} x_{0} \\
& y_{n}=\left(\frac{2 \alpha^{n}+\beta^{n}}{3}\right) y_{0}+\left(\frac{\alpha^{n}-\beta^{n}}{3}\right) z_{0} \\
& z_{n}=2\left(\frac{\alpha^{n}-\beta^{n}}{3}\right) y_{0}+\left(\frac{\alpha^{n}+2 \beta^{n}}{3}\right) z_{0}
\end{aligned}
$$

Formula: 2
Let $\left(x_{1}, y_{1}, z_{1}\right)$ given by

$$
\begin{equation*}
\mathrm{x}_{1}=\mathrm{h}-\mathrm{x}_{0}, \mathrm{y}_{1}=\mathrm{h}+\mathrm{y}_{0}, \mathrm{z}_{1}=\mathrm{z}_{0} \tag{21}
\end{equation*}
$$

be the $2^{\text {nd }}$ solution to (1). Using (21) in (1) and simplifying, one obtains

$$
\mathrm{h}=3 \mathrm{x}_{0}+\mathrm{y}_{0}
$$

In view of (13), the values of $X_{1}$ and $y_{1}$ are written in the matrix form as

$$
\left(x_{1}, y_{1}\right)^{t}=M\left(x_{0}, y_{0}\right)^{t}
$$

where

$$
M=\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right) \text { and } t \text { is the transpose }
$$

The repetition of the above process leads to the $n^{\text {th }}$ solutions $x_{n}, y_{n}$ given by

$$
\left(x_{n}, y_{n}\right)^{t}=M^{n}\left(x_{o}, y_{0}\right)^{t}
$$

If $\alpha, \beta$ are the distinct eigenvalues of M , then

$$
\alpha=2+\sqrt{3}, \beta=2-\sqrt{3}
$$

Thus, the general formulas for integer solutions to (1) are given by

$$
\begin{aligned}
& x_{n}=\frac{\alpha^{n}+\beta^{n}}{2} x_{0}+\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{3}} y_{0} \\
& y_{n}=\frac{\left(\alpha^{n}-\beta^{n}\right) \sqrt{3}}{2} x_{0}+\frac{\alpha^{n}+\beta^{n}}{2} y_{0}
\end{aligned}
$$

$$
\mathrm{Z}_{\mathrm{n}}=\mathrm{Z}_{\mathrm{o}}
$$

Formula: 3
Let $\left(x_{1}, y_{1} z_{1}\right)$ given by

$$
\begin{equation*}
\mathrm{x}_{1}=-\mathrm{x}_{0}+\mathrm{h}, \mathrm{y}_{1}=\mathrm{y}_{0}, \quad \mathrm{z}_{1}=2 \mathrm{~h}+\mathrm{z}_{0} \tag{22}
\end{equation*}
$$

be the $2^{\text {nd }}$ solution to (1). Using (22) in (1) and simplifying, one obtains

$$
\mathrm{h}=6 \mathrm{x}_{0}+2 \mathrm{z}_{0}
$$

In view of (14), the values of $x_{1}$ and $z_{1}$ are written in the matrix form as

$$
\left(x_{1}, z_{1}\right)^{t}=M\left(x_{0}, z_{0}\right)^{t}
$$

where

$$
\mathrm{M}=\left(\begin{array}{cc}
5 & 2 \\
12 & 5
\end{array}\right) \text { and } t \text { is the transpose }
$$

The repetition of the above process leads to the $n^{\text {th }}$ solutions $\mathrm{X}_{\mathrm{n}}, \mathrm{Z}_{\mathrm{n}}$ given by

$$
\left(\mathrm{x}_{\mathrm{n}}, \mathrm{z}_{\mathrm{n}}\right)^{\mathrm{t}}=\mathrm{M}^{\mathrm{n}}\left(\mathrm{x}_{0}, \mathrm{z}_{0}\right)^{\mathrm{t}}
$$

If $\alpha, \beta$ are the distinct eigen values of $M$, then

$$
\alpha=5+2 \sqrt{6}, \beta=5-2 \sqrt{6}
$$

Thus, the general formulas for integer solutions to (1) are given by

$$
\begin{aligned}
& x_{n}=\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) x_{0}+\left[\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{6}}\right] z_{0} \\
& y_{n}=y_{0} \\
& z_{n}=\frac{3}{\sqrt{6}}\left(\alpha^{n}-\beta^{n}\right) x_{0}+\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) z_{0}
\end{aligned}
$$

Formula: 4
Let

$$
\begin{equation*}
\mathrm{x}_{1}=\mathrm{h}-3 \mathrm{x}_{0}, \mathrm{y}_{1}=3 \mathrm{y}_{0}+\mathrm{h}, \mathrm{z}_{1}=\mathrm{h}+3 \mathrm{z}_{0} \tag{23}
\end{equation*}
$$

be the second solution of (1). Substituting (23) in (1) and performing a few calculations, it is seen that

$$
\begin{equation*}
\mathrm{h}=12 \mathrm{x}_{0}+4 \mathrm{y}_{0}+2 \mathrm{z}_{0} \tag{24}
\end{equation*}
$$

Using (24) in (23), the second solution $\left(\mathrm{X}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ to (1) is expressed in the matrix form as

$$
\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)^{\mathrm{t}}=\mathrm{M}\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)^{\mathrm{t}}
$$

where $t$ is the transpose and

$$
\mathbf{M}=\left[\begin{array}{ccc}
9 & 4 & 2 \\
12 & 7 & 2 \\
12 & 4 & 5
\end{array}\right]
$$

The repetition of the above process leads to the general solution $\left(\mathrm{X}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{Z}_{\mathrm{n}}\right)$ to (1) written in the matrix form as

$$
\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}, \mathrm{z}_{\mathrm{n}}\right)^{\mathrm{t}}=\mathrm{M}^{\mathrm{n}}\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)^{\mathrm{t}}
$$

where

$$
M^{n}=\left[\begin{array}{ccc}
y_{n-1} & 2 x_{n-1} & x_{n-1} \\
6 x_{n-1} & \frac{2 y_{n-1}+3^{n}}{3} & \frac{y_{n-1}-3^{n}}{3} \\
6 x_{n-1} & \frac{2\left(y_{n-1}-3^{n}\right)}{3} & \frac{y_{n-1}+23^{n}}{3}
\end{array}\right]
$$

in which

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{n}-1}=\frac{(9+2 \sqrt{18})^{\mathrm{n}}+(9-2 \sqrt{18})^{\mathrm{n}}}{2} \\
& \mathrm{x}_{\mathrm{n}-1}=\frac{(9+2 \sqrt{18})^{\mathrm{n}}-(9-2 \sqrt{18})^{\mathrm{n}}}{2 \sqrt{18}}, \mathrm{n}=1,2,3, \ldots
\end{aligned}
$$

## CONCLUSION

In this paper, an attempt has been made to obtain non-zero distinct integer solutions to the ternary quadratic diophantine equation $z^{2}=6 x^{2}-2 y^{2}$ representing homogeneous cone. As there are varieties of cones, the readers may search for other forms of cones to obtain integer solutions for the corresponding cones.

## REFERENCES

[1]. Bert Miller, "Nasty Numbers", The Mathematics Teacher, Vol-73, No.9,p.649, 1980.
[2]. Bhatia .B.L and Supriya Mohanty, "Nasty Numbers and their Characterisation" Mathematical Education, Vol-II, No.1, p.34-37,July-September, 1985.
[3]. Carmichael. R.D., The theory of numbers and Diophantine Analysis, New York, Dover,1959.
[4]. Dickson. L.E., History of Theory of numbers, vol.2:Diophantine Analysis, New York, Dover, 2005.
[5]. Gopalan M.A., Manju somnath, and Vanitha.M., Integral Solutions of $k x y+m(x+y)=z^{2}$, Acta Ciencia Indica, Vol 33, No. 4,1287-1290, (2007).
[6]. Gopalan M.A., Manju Somanath and V. Sangeetha, On the Ternary Quadratic Equation $5\left(x^{2}+y^{2}\right)-9 x y=19 z^{2}$,IJIRSET, Vol 2, Issue 6,2008-2010,June 2013.
[7]. Gopalan M.A., and A. Vijayashankar, Integral points on the homogeneous cone $z^{2}=2 x^{2}+8 y^{2}$, IJIRSET, Vol 2(1), 682-685,Jan 2013.
[8]. Gopalan M.A., S. Vidhyalakshmi, and V. Geetha, Lattice points on the homogeneous cone $z^{2}=10 x^{2}-6 y^{2}$, IJESRT, Vol 2(2), 775-779,Feb 2013.
[9]. Gopalan M.A., S. Vidhyalakshmi and E. Premalatha , On the Ternary quadratic Diophantine equation $x^{2}+3 y^{2}=7 z^{2}$, Diophantus.J.Math1(1),51-57,2012.
[10]. Gopalan M.A., S. Vidhyalakshmi and A.Kavitha, Integral points on the homogeneous cone $z^{2}=2 x^{2}-7 y^{2}$, Diophantus.J.Math1(2),127-136,2012.
[11]. M.A. Gopalan and G. Sangeetha, Observations on $y^{2}=3 x^{2}-2 z^{2}$, Antarctica J. Math., 9(4),359-362,(2012).
[12]. Gopalan M.A., Manju Somanath and V. Sangeetha, Observations on the Ternary Quadratic Diophantine Equation $y^{2}=3 x^{2}+z^{2}$,Bessel J.Math., 2(2),101-105,(2012).
[13]. Gopalan M.A., S. Vidhyalakshmi and E. Premalatha, On the Ternary quadratic equation $x^{2}+x y+y^{2}=12 z^{2}$ ,Diophantus.J.Math1(2),69-76,2012.
[14]. Gopalan M.A., S. Vidhyalakshmi and E. Premalatha, On the homogeneous quadratic equation with three unknowns $x^{2}-x y+y^{2}=\left(k^{2}+3\right) z^{2}$, Bulletin of Mathematics and Statistics Research, Vol 1(1), 38-41,2013.
[15]. Meena. K, Gopalan M.A., S. Vidhyalakshmi and N. Thiruniraiselvi, Observations on the quadratic equation $x^{2}+9 y^{2}=50 z^{2}$, International Journal of Applied Research, Vol 1(2),51-53,2015.
[16]. R. Anbuselvi and S.A. Shanmugavadivu, On homogeneous Ternary quadratic Diophantine equation $z^{2}=45 x^{2}+y^{2}$, IJERA, 7(11), 22-25, Nov 2017.
[17]. Mordell L.J., Diophantine Equations, Academic press, London (1969).
[18]. Nigel, P. Smart, The Algorithmic Resolutions of Diophantine Equations, Cambridge University Press, London 1999.
[19]. Telang, S.G., Number Theory, Tata Mc Graw-hill publishing company, New Delhi, 1996.
[20]. S. Vidhyalakshmi, T. Mahalakshmi, "A Study On The Homogeneous Cone $x^{2}+7 y^{2}=23 z^{2}$ ", International Research Journal of Engineering and Technology (IRJET), Volume 6, Issue 3, Pages 5000-5007, March 2019.

