
International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 6 Issue 12, December-2017, Impact Factor: 4.059

Page | 100

Heartbleed: Lessons to be learnt

Salman Muther Hussain

Department of Information, Deakin University

ABSTRACT

Heartbleed, a bug that had taken whole of the internet community by surprise because of various reasons. This

paper focuses upon discussing what heartbleed is, moving further we would learn about the current researches

that have been done on heartbleed. This paper tries to explain the way in which this vulnerability was exploited

by giving practical examples of attacks along with a detailed anatomy of the defective code. In this paper I try to

emphasise the importance of proper testing methodologies and propose a solution which involves an algorithm

for detection and prevention of such bugs.

INTRODUCTION

Heartbleed a one of its kind vulnerability in the Open SSL library, this bug was present from the very implementation

of the open SSL and TLS and was being exploited since then. It was found only until recent years when an employee of

google Mr Neel Mehta found the vulnerability and patched it (Marco et al; heartbleed et al). The irony about this bug is

that it was present from the very start of the implementation and was very simple to find, but the damage it caused or

has been expected to cause is very severe, as by exploiting this vulnerability the attacker would have been able to
retrieve public and private keys, along with the passwords of the users and also their private data (heartbleed et al).

The Name and its meaning:

Heartbleed bug is a bug that arises due to buffer over read and the wrong implementation of the heartbeat extension of

the TLS/SSL, wherein the validation at server side grants access to more data than should actually be allowed. The

Heartbleed was an implementation error and was patched as soon as the open ssl core team was informed about it

(Zakir et al). The new version 1.0.1g was patched and is claimed not be vulnerable to the Heartbleed problem. The bug

is named Heartbleed because when the implementation of open SSL’s TLS/DTLS which are transport layer security

protocols a message named Heartbeat was introduced to keep a check on the connection of the client to the server in

transfers using UDP protocol. This extension of heartbeat sends a message to the server containing a message type,
length, payload and some random padding, the server replies back with a message type, length, payload and random

padding, this bug acts like this to exploit this bug the attacker sends the server with a message whose length is greater

than the length of the payload, thereby leading the server to leak some information in the response this information

could be of the at maximum of 64kb but is capable enough of revealing important data to the attacker such as the

private keys, passwords etc.

The figures 1,2 below show how the heartbeat request and response work

Fig 1: HeartBeat Request (Siddharth Gujrathi 2014)

Fig 2: Heartbeat Response (Siddharth Gujrathi 2014)

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 6 Issue 12, December-2017, Impact Factor: 4.059

Page | 101

Fig 3: Heartbleed (Siddharth Gujrathi 2014)

Extent of damage Caused:

The question of what is being leaked has a very terrifying answer, in order to co-ordinate recovery from this bug Open

SSL has classified the compromised secrets into four categories as described by authors of heartbleed.com:

 Primary key material

 Secondary key material

 Protected content

 Collateral damage

The data leaked under the first category is nothing but the most important one the encryption keys, these keys allow the

attacker to be able to decrypt any past or future information and to impersonate the service at will.

The secondary key material leaked involves the leak of user credentials for example usernames and passwords that are

used in the vulnerable service by the clients. The protected content leaked includes the data of person or financial

importance also data such as emails, communications, documents etc.

Collateral damages are any other data that has been leaked from the server side such as addresses, memory content etc.
The widespread effect of this bug can be calculated by taking into account that open web servers such as apache and

nginx who share almost more than half of the markets active sites. The more extent of use of open Ssl is that it is used

by almost all mal servers, chat servers, vpns etc. Many large organisations are very selective about the implementation

of and use SSL/TLS termination equipment and software. But on the other side many small organisations and

upcoming organisation use the implementation as it is thereby making them vulnerable. The extent of this bug being

exploited is not known till date as it doesn’t leave any trace behind (Maduhu et al 2014; Han Vu 2014).

LITERATURE REVIEW

As soon as the news of this bug went public there have been many researchers conducted by universities, private

organisations and even members of the cyber space community. As we can see how Marco et al 2014 discusses the

problem Heartbleed in brief and try to asses why different testing criteria’s which are generally used failed and what
could had been done. The authors discuss the technique of static analysis and argue convincingly over why this

technique failed and the reasons behind it. The authors also discuss the technique of fuzzing and conclude with giving

reasons about how the technique failed. The authors conclude by telling that how advances in the current techniques

used and a case by case use of testing methodologies would be effective in properly testing codes. Some critics have

gone to the extent of telling that even software should also be put under liability like any other product sold in the

market.

This has been proposed by the authors of the paper inviting more Heartbleed where they argue about how to possibly

reduce the possibility and extent of damage caused by such vulnerabilities by taking into account all of the stakeholders

and distinguishing responsibility of misuse of a software and attribute the responsibility either on the customer or the

developer. They also post a point of giving the user the option of disabling certain functions of the software and also
holding the company responsible in case of any inbuilt error in the software that would lead to discomfort of the user in

any form.

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 6 Issue 12, December-2017, Impact Factor: 4.059

Page | 102

There have been extensive research on how companies responded towards the disclosure of the bug, a study conducted

by Zakir et al. 2014 defines in detail the responses of companies. The authors ran tests which would result in whether

the sites were still vulnerable or not. They checked whether the source code was patched and whether the certificates

were changed. They also did an ipv4 address test to check which IP’s were more vulnerable to Heartbleed, apart from

this they also conducted network operator checks and also checked major mail servers, android, bitcoin etc. for this

vulnerability and documented the results. They found that maximum of the companies had patched their systems in just
matter of a day, 44% of them didn’t do so but maximum of them did in 48 hours following the disclosure. Certificates

of almost all high end website, servers were also revoked and they were not responding to the Heartbleed vulnerability

now. However the paper also found out that there was a large number of web services out there who had only patched

their source code and didn’t really care of changing the certificates, even if they changed the certificates they failed in

changing the private still leaving them vulnerable to deciphering of the data.

Heartbleed wasn’t caused by general causes that would have possibly been detected by analysers using fuzzy logic or

dynamic analysers as the vulnerability didn’t actually did an over write or had a wrong code. But it actually had a

missing code which caused buffer over read, thereby making it undetectable. In practice most testing software’s try to

test seeing what the output would be for a correct input, but however the Heartbleed is caused because of wrong input

itself. There have been a large amount of solutions proposed like negative input checker, fuzzing with output

examination, context configured source code weakness analysers, using a safer language etc. there have `also been
discussion in regards with reducing the amount of code written to decrease the number of bugs and

exceptions(Daniel,poul et al 2014;David 2014).

Many have even argued that would only certificate revocation and patching the code solve the effect of the bug, the

answer would be a plain no, because of the fact that even if certificates are changed there are many clients who do not

default check for certificates revocation, and are ok with revoked certificates even, examples of prone clients are

chrome, internet explorer etc. these browsers do not have the default settings as to check for revoked certificates and

this has to be set manually. Many users however are not that computer savvy and do not know the implications of

conditions like these. Apart from this there are even many clients who do not change their private keys thereby making

certificate revocation a waste as these keys could be used to decipher more data (James, Barton 2014;troyhunt 2014).

Most of the research has been focused upon how Heartbleed effects the server side and many of these have not
concentrated how a client can be vulnerable to this attack, however a website stackexchange.com has conducted a test

on the clients and found out that if a heartbeat request is sent to a client then the client also leak valuable information

and become prone to the bug (ACCUVANT-LABS, 2014; ARBOR-NETWORKS, 2014).

Has there been any solution out yet which would have prevented the Heartbleed and identified it in early stage itself,

the answer however is no, the reason behind this being even if it were to be found the techniques that could be used in

likes of reverse testing, regression testing and negative testing would generally cost more and consume more time,

which is the drawback of this method and because of which many companies do not like to use it.

TECHNICAL ANALYSIS OF HEARTBLEED

Here under this topic we would go in depth about what technically caused this vulnerability and how exactly this was
exploited by the attackers. To understand what actually went wrong in the code we have to first take a glance at why

was such a small mistake overlooked and was there for quite a long period. The very first reason for why this happened

is the length of the written code. The code of open SSL is no less than 60 pages, this makes it impossible for human

analysis to detect these small mistakes. Second reason is because of the programming language used. The code of open

SSL was written in C this language doesn’t explicitly correct memory allocations and also supports pointers which can

be easily used to exploit vulnerabilities by attackers.

Let us now look into the code which caused this bug, for the amusement of many of us this code is just a single and

simple line, which is as follows:

Buffer = OPENSSL_malloc(1+2+payload+padding);

In simple words on the anatomy of the above code memory is allocated from payload + padding by the use of a user

controlled value. There was no length check condition that was applied for the allocation which resulted in the case

where an attacker could compel the server to read and give back arbitrary memory locations, which would thereby

enable the hacker to read data from the server by simply performing a heartbeat request every time with a different

length. It is just as simple as that.

In other words, an attacker can actually exercise control over the heartbeat size and structure it in a way that it is larger

than what it should be, then he can dispose it off to the target server machine using TCP on port 443 and can effectively

receive a data of up to 64 kb from outside of what actual bounds of the heartbeat should be. Do it again with a different

heartbeat size and get another 64kb response from other memory space in the server.

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 6 Issue 12, December-2017, Impact Factor: 4.059

Page | 103

Struct

{

HeartbeatMessageType type;

Uint16 payload_lemgth;

Opaque payload[HeartbeatMessage.payload_length];

Opaque padding[padding_length];
}HeartbeatMessage;

This is the way the heart beat message looks like according to the official standard. The message arrives via

SSL3_RECORD structure, which is a basic building block of the SSl/Tls Communication. The fields in the

SSL3_record structure are as follows:

Length: which defines the number of bytes in the message

Data: which is pointer to the heart beat message.

struct ssl3_record_st

{

 unsigned int length; /* How many bytes available */

 [...]
 unsigned char *data; /* pointer to the record data */

 [...]

} SSL3_RECORD;

To clear the air off, the SSL3 records data points to the start of the received heartbeat message and the length field

points out the number of bytes in the heartbeat message received. Going in depth of the received heartbeat message one

finds out that there is a field of payload_length which is the number of bytes in the arbitrary payload which has to be

sent back.

The diagram below shows how the attack actually works at technical level:

Figure 4: Actual anatomy of the attack

From the diagram it is easy to understand that if an attacker sends a 4 byte HeartBeat Message including a single byte

payload, which is due to bb acknowledge correctly by the SSL3’s length record. But the attacker lies in the payload

length and claims it to be 65535 bytes in size when it is actually not. Victim however doesn’t take this into account and

reads 65535 bytes of data from its own memory, starting from the received Heartbeat Message payload and copies it

into a suitable sized buffer to transfer it back to the attacker thereby leaking information as indicated in red.

PRACTICAL ATTACKS

Attack 1: The Flickr server

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 6 Issue 12, December-2017, Impact Factor: 4.059

Page | 104

 Figure 5: Flickr server attack (blog.erratasec.com)

As it can be seen in the figure the exploit has resulted in getting access to a user’s session cookie, which has been

cropped so that it is not used for any negative purpose, if this session cookie is copied and pasted into the address bar or

what is called as side jacking is done then this would allow temporary access to the persons account.

Attack 2: Yahoo server

Figure 6: Attack on Yahoo (troyhunt.com)

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 6 Issue 12, December-2017, Impact Factor: 4.059

Page | 105

As it can be seen in the image the exploit of yahoo, the attacker was able to retrieve plain text login ids and passwords

of users thereby making the website and server vulnerable. The id and password here are also covered so as to avoid

misuse.

Attack 3: Using Cupid to exploit servers

Figure 7: Exploiting using Cupid (sysvalue.com)

As it can be seen at first a username is provided (EAP Identity), then a TLS connection is established over EAP to

authenticate. The software Cupid sends a heartbeat request before a handshake is made i.e. right after Client Hello and

is successful in extracting up to 64kb of data from the server.

Attack 4: Cupid is used to exploit client

Figure 8: Exploitation of client using Cupid

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 6 Issue 12, December-2017, Impact Factor: 4.059

Page | 106

As it can be seen in the image the vulnerable client sends a request for a TLS connection, by sending a client hello and

then the cupid proceeds and sends a heartbeat request. The client happily responds back thereby leaking 64 kb of data.

There are many more attacks that can be shown and there are many tools that are used to test whether a website is prone

or vulnerable to Heartbleed. Some of them are Cupid, Filippo.io, ssl labs etc. There are even Metaspoilt and Nmap

based tools to check for vulnerability in a server for Heartbleed. More number of these tools are listed at the website

with URL blog.bugcrowd.com/heartbleed-exploit-yet/.

A POSSIBLE DETECTION SYSTEM FOR HEARTBLEED

Yes there was a vulnerability named heartbleed which impacted the internet very badly, so badly that the damage it

caused can never be assessed. There has been a solution to this problem even with the new version of open SSL 1.0.1g

with patches the current vulnerability and discards any heartbeat request whose payload length is greater than what is

specified in the length bit of the message. But, as people of information technology we have to analyse and come up

with a technique that could have possibly detected the vulnerability beforehand. There are many reasons given as for

why this vulnerability went undetected and there have been many tools in market with which we can assess if servers

are still vulnerable.

In my proposal of the solution for detection of this vulnerability and any other vulnerability I would like to propose an
algorithm that would test the source code for possible missing blocks of codes, unchecked memory allocations,

pointers, buffer over reads and unchecked conditional statements. This solution would be unique as it incorporates all

the simple possible ways that could lead to such kind of exploitation. The problem here is not about the language used,

the amount of code written, the quality of code, but the problem is that proper testing mechanism has to deployed while

using low level languages as the code written in low level languages tends to be generally lengthy which thereby leads

to ignoring such small pieces of code.

The algorithm would be as follows:

Step 1: Check all variable for the datatype used and type conversions.

Here in this step the tester is to check for the datatypes used for every variable to confirm whether the purpose of the

variable and the type are a perfect match. Also the tester needs to check if there are any implicit or explicit type

conversions in the code written, if any are found then it would be better to minimise these as much as possible and test

them by giving negative inputs.

Step 2: Check for vague or unchecked memory allocations

In this step the tester needs to check how is memory being allocated and de allocated. This has to be done because the

probability of data leaks increases with an increase in number of unchecked memory allocations. Here the tester should

see to it that the memory being allocated is minimal and also there has been a condition check applied for the

allocation. Secondly, the tester should also see to it that data transfer should not be allowed until a secure connection

has been established and both of the client and server are sure of one another. By doing so the probability of giving the
attacker a chance to extract data from the server or client reduces drastically and this is what has been applied to fix the

heartbleed bug in the patch released.

Step 3: Deal properly with pointers

In this step the testers should see that all pointers being used in the initial stage of data transfers such as handshakes etc.

should be checked so as to see whether they can be used to point in memory locations which should not generally be

accessed at this stage. This can again be done by giving negative inputs. Pointers can be used better off if they are

allocated to point to a guarded memory space than any memory space in the memory. If it is found that a pointer could
be used as an exploit then it is the tester’s duty to fix it by giving it some boundary memory.

Step 4: Check for loops and conditional statements,

Loop conditions are another weak points of programming languages this is because if a looping condition is not

correctly specified then it could very well cause a catastrophe, if a looping condition or a conditional statement is

accompanied by buffer allocation then if iti si not properly checked it can be used to exploit the code which would

result in leak of data from the buffer beforehand.

Step 5: Check for Buffer allocations

Generally a weak point of programming languages is the use of buffer allocations, if the buffer allocation is not

appropriate then it could lead the program into being vulnerable. The testers should check for these buffer allocations

and make sure they are properly coded.

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 6 Issue 12, December-2017, Impact Factor: 4.059

Page | 107

Step 6: Check for negative inputs

The best possible way to test any program would be give it inputs which you know would be wrong for the program

and see how it reacts to it, this would lead to a disclosure of what the attacker would possibly be able to see if he tries

to exploit the system using negative inputs. This is also the technique used to prevent SQL injection attacks.

If all the steps of the algorithm are followed alongside with static and fuzzy techniques then this would result in the

proper and complete testing of programs. The algorithm applies techniques of reverse testing and negative testing along

with basic testing principles which are generally overlooked while large scale software’s are tested.

Had this algorithm been applied to test the open ssl code then the heartbleed bug would have been discovered in the

very 2nd step and could possibly been avoided.

Conditions for the algorithm to be successful:

The algorithm solely relies on human eyes, there is no better way to test a software that have maximum numbers of

humans analyse it. The time spent on the analyses is to be adequately balanced. Yes the drawback of this algorithm

would be the fact that this testing would take a lot of time and would probably cost more money than automated testing
techniques. But this technique would reveal bugs that are left behind by using popular testing techniques.

REFERENCES

[1]. Carvalho, M.; DeMott, J.; Ford, R.; Wheeler, D.A., \Heartbleed 101," Security & Privacy, IEEE ,vol.12, no.4, pp.63{67, July-

Aug. 2014.
[2]. Wheeler, D.A., \Preventing Heartbleed," Computer, vol.47, no.8, pp.80{83, Aug. 2014.
[3]. Geer, D.E.; Kamp, P.H., \Inviting More Heartbleed," Security & Privacy, IEEE , vol.12, no.4,pp.46{50, July-Aug. 2014.

[4]. Sigholm, J.; Larsson, E., \Determining the Utility of Cyber Vulnerability Implantation: The Heart-bleed Bug as a Cyber
Operation," Military Communications Conference (MILCOM), 2014 IEEE ,pp.110{116, 6-8 Oct. 2014.

[5]. Hao, Yongle; Jia, Yizhen; Cui, Baojiang; Xin, Wei; Meng, Dehu, \OpenSSL HeartBleed: Security Management of Implements
of Basic Protocols," P2P, Parallel, Grid, Cloud and Internet Computing(3PGCIC), 2014 Ninth International Conference on,
pp.520{524, 8-10 Nov. 2014.

[6]. Tsoutsos, N.G.; Maniatakos, M., \Trust No One: Thwarting `heartbleed' Attacks Using Privacy-Preserving Computation,"
VLSI (ISVLSI), 2014 IEEE Computer Society Annual Symposium on,pp.59{64, 9-11 July 2014.

[7]. Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael Bailey, Frank Li,Nicolas Weaver, Johanna

Amann, Jethro Beekman, Mathias Payer, and Vern Paxson. 2014. \TheMatter of Heartbleed". In Proceedings of the 2014
Conference on Internet Measurement Conference(IMC '14). ACM, New York, NY, USA, pp.475{488.

[8]. Benjamin Edwards, Michael Locasto, and Jeremy Epstein. 2014. \Panel Summary: The Future of Software Regulation". In
Proceedings of the 2014 workshop on New Security Paradigms Workshop (NSPW '14). ACM, New York, NY, USA, pp.
117{126.

[9]. ACCUVANT-LABS, 2014. Heartbleed Bug Advisory (CVE-2014-0160). [Online] Accuvant-Labs Available at:
http://accuvantstorage.blob.core.windows.net/web/file/2016b4dc040c49ee991b5721e0dd62b3/HeartBleed-Bug-CVE-2014-
0160-release.pdf [Accessed June 2014].

[10]. ARBOR-NETWORKS, 2014. The Heartburn Over Heartbleed: OpenSSL Memory Leak Burns Slowly. [Online] Available at:
http://www.arbornetworks.com/asert/2014/04/heartbleed/ [Accessed 22 July 2014].

[11]. FILIPPO.IO, 2014. Heartbleed test. [Online] Available at: https://filippo.io/Heartbleed/#udsm.ac.tz [Accessed 02 July 2014].
[12]. GONÇALVESA, A., SOUSA, P. AND ZACARIAS, M., 2013. Using DEMO and activity theory to manage organization

change. Procedia Technology, Vol.1, pp.563 – 572.
[13]. KRAWCZYK, K., 2014. Which CISCO Routers, Modems And Networking Gear Are Affected By And Safe From The

Heartbleed Bug? [Online] Available at: http://www.digitaltrends.com/computing/which-cisco-routers-modems-networking-
gear-safe-from-heartbleed-open-bug/#!bjRjZF [Accessed 22 July 2014].

[14]. Errastec, 2014. What Heartbleed bug looks like on wire [Online] available at: http://blog.erratasec.com/2014/04/what-

heartbleed-bug-looks-like-on-wire.html#.VTR-9CGeDGc .[Accessed on April 2015]
[15]. Troyhunt, 2014. Everything yo need to know about heartbleed.[online]. Available at: http://www.troyhunt.com/2014/04/

everything-you-need-to-know-about.html [Accessed April 2015]
[16]. Sysvalue, 2014. Cupid.[Online]. http://www.sysvalue.com/en/heartbleed-cupid-wireless/ [Accessed april 2015]
[17]. The register,2014. Heartbleed explained. [Online]. Available at: http://www.theregister.co.uk/2014/04/09

/heartbleed_explained/ [Accessed april 2015]

http://blog.erratasec.com/2014/04/what-heartbleed-bug-looks-like-on-wire.html#.VTR-9CGeDGc
http://blog.erratasec.com/2014/04/what-heartbleed-bug-looks-like-on-wire.html#.VTR-9CGeDGc
http://www.troyhunt.com/2014/04/%20everything-you-need-to-know-about.html
http://www.troyhunt.com/2014/04/%20everything-you-need-to-know-about.html
http://www.troyhunt.com/2014/04/%20everything-you-need-to-know-about.html
http://www.sysvalue.com/en/heartbleed-cupid-wireless/
http://www.theregister.co.uk/2014/04/09%20/heartbleed_explained/
http://www.theregister.co.uk/2014/04/09%20/heartbleed_explained/
http://www.theregister.co.uk/2014/04/09%20/heartbleed_explained/

