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INTRODUCTION 
 

Food fraud causes $30 to $40 billion in economic losses each year, particularly when bogus geographic origin 

claims are involved. The most effective forensic procedures for locating these crimes use stable isotope techniques, 

including those that use oxygen isotopes (δ18O). Stable oxygen isotope models for plants simulate how climatic 

factors and precipitation δ18O values affect the δ18O values of water and organic molecules in plants. These 

models have the ability to streamline, expedite, and enhance traditional stable isotope applications as well as 

generate temporally resolved, accurate, and precise region-of-origin assignments for agricultural foods. However, 

the implementation of the models for the origin identification of food has been constrained by the validation of 

these models and, consequently, the optimal selection of model parameters and input variables.  

 

In our work, we compare model predictions to a unique 11-year European strawberry δ18O reference dataset to 

assess how the parameterization of the model and the choice of variable input sources affect the model's predictive 

capability. Our findings demonstrate that plant physiological isotope models provide a novel and dynamic approach 

that can precisely predict the geographic origin of a plant product and can advance the field of stable isotope 

analysis to combat food fraud by modifying leaf-based model parameters specifically for fruit and with product-

independent but growth time-specific environmental input data. 

 

Food fraud, which is the deliberate and deceptive adulteration of food for financial advantage, is thought to cost up 

to $40 billion annually4-6. 10% to 30% of all commercially sold food is thought to be fake, even though most 

incidents go unreported4,5. Food fraud is most frequently committed by inaccurately reporting the nation of origin, 

which is done to save costs and increase profits. This damages customer confidence and raises the possibility of 

decreased quality and health risk. Therefore, there is a strong demand for analytical instruments for the independent 

verification of food's geographic origin. 

 

Stable isotope analyses are one of the primary techniques for forensically determining the geographic origin of 

food. Since the climate and topography, the underlying geology, and agricultural practices produce location-specific 

isotopic fin- fingerprints in a product, stable isotopes are particularly well suited for determining the origin of 

agricultural products. The majority of techniques for determining the origin of a sample using stable isotopes rely 

on a direct comparison of the sample's isotopic fingerprint to genuine reference material with a known origin. For 

these comparisons, statistical analysis is simple, and data interpretation is simple for both customers and law 

enforcement agencies.  

 

However, gathering genuine reference samples takes time and money, particularly on a worldwide scale. Therefore, 

it is difficult to account for the inter- and intra-annual variability observed in plant oxygen and hydrogen isotope 

composition, the two stable isotope ratios that are usually utilized for origin analyses. Large reference datasets are 

frequently geographically dispersed and temporally not sufficiently resolved. The forecast of agricultural goods' 

provenance may become significantly more uncertain as a result of this restriction. 

 

In this paper, we show that mechanistic stable oxygen isotope models of plant physiology can be parametrized to 

provide a quick, logistically straightforward, and inexpensive substitute for determining the provenance of 

agricultural plant products. The local precipitation's δ18O values and the plant's evaporative environment, both of 

which exhibit distinct regional patterns, determine the oxygen isotope composition (δ18O) of organic molecules in 

plants.  

 

Plant physiological stable isotope models may simulate how climatic factors and precipitation water δ18O values 

work together to shape the δ18O values of water inside the plant and how these plant water δ18O values are 

imprinted into the organic elements of the plant. Therefore, mechanistic plant physiological stable oxygen isotope 

models may be able to mimic the regional variation. 
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Image. The locations of the 154 real reference samples used for model validation are depicted on a map of Europe. 

The samples were taken from 2007 to 2017.  

 

The measured δ18O values of the strawberry bulk-dried tissue from the reference samples are displayed in the 

colored fill of the dots. The majority of the samples were taken between May and July 1976, which was the peak 

strawberry season in Europe. R, version 3.5.3, which may be downloaded at https://www.r-project.org, was used to 

make the map. plant δ18O values, to which δ18O readings of allegedly contaminated food samples can be 

compared and their alleged geographic provenance confirmed. 

 

We use a special Europe-wide strawberry δ18O reference dataset that contains 154 genuine reference samples that 

have been collected throughout Europe from 2007 to 2017 (Fig. 1) to conceptually illustrate how a mechanistic 

plant physiological stable isotope model can be used to simulate the geographic variability in δ18O values of food 

products. We use this dataset to verify our model assumptions about model parameters and model input variables as 

well as to evaluate our model predictions across space and time. With this method, we examine whether or not plant 

physiological stable oxygen isotope models, which were originally created for cellulose or leaf water in the leaves 

or stems of plants, are generally applicable for determining the country of origin of agricultural products, or 

whether they require parameterization for particular plant species and their products. Furthermore, we thoroughly 

assess the kind, essential spatial resolution, and temporal integration of isotopic (precipitation δ18O values) and 

meteorological (temperature, relative humidity) input variables necessary for the most precise forecast of 

strawberry δ18O values across Europe. 

 

RESULTS 

 

The two-pool adapted Craig-Gordon model is the foundation for the model we employed in our simulations. To 

choose the ideal set of model input variables and parameters, we used a two-step process. First, we combined the 

two main physiological model parameters in various ways. These are pxpex/pxpexc, which calculates the amount of 

oxygen exchange between sugars and the surrounding plant water during the biosynthesis of cellulose (pxpex) and 

other compounds (pxpexc), and fxylem, which accounts for the dilution of δ18O enriched water at the site of 

evaporation in leaves with the plant's source water. We used \ 

 

(i) mean values from the literature that were originally established for leaf water (xylem) and leaf 

cellulose δ18O values (pxpex) across different plant species. Additionally, we utilized values that were 

particularly established for  

(ii) leaf water (fxylem) and bulk dried tissue of berries (pxpexc) in berry-producing plants, as well as  

(iii) leaf water (fxylem) and bulk dried tissue of berries (pxpexc) of strawberry plants in particular (see 

Table 1 and methods for a detailed description of the parameter selection). Since the expert for 

strawberries and other berry-producing plant species is the same, we only needed one pxpexc value, 

one pxpex value, three xylem values, and six different parameterized models (Fig. 2a). In a 

subsequent stage, we used various combinations of environmental model input variables to run these 

six models with various parameterizations. This includes several precipitation sources. 

 

Prior to the field sample's actual harvest date, δ18O and climatic data, as well as other time frames over which to 

integrate these data, were collected (Table 2). Each set of model parameters produced unique model simulations 

depending on the combination of the model's input variables (Fig. 2a). We calculated root mean squared error 
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(RMSE) values based on the comparison to our reference dataset for each of the combinations of input variables for 

each of the six parameter combinations in order to assess the performance differences between the various model 

parameters and variable input options. 

 

We discovered that the δ18O values of strawberry bulk dry material could be accurately predicted by all six distinct 

parameterized models. Using strawberry-specific model parameters produced the best model performance, with a 

minimum RMSE of 0.95. With a minimal RMSE of 1.11, even the most broad parameters, however, still performed 

admirably (Fig. 2). Models that employed at least one general parameter derived from average literature values for 

leaves underperformed those that used average parameters (xylem and expect) for berry-producing plants or 

parameters specific to strawberry plants (Fig. 2a,b). The strawberry-specific model parameters (strawberry xylem 

and berry/strawberry pxpexc) produced the overall best results (Fig. 2a,b). Regardless of the species, the model 

parameterized with average berry-producing plant attributes consistently performed second best (Fig. 2a,b). The 

choice of average berry-producing plant or strawberry-specific values for the model parameter xylem instead of the 

option of pxpex/pxpexc values in particular turned out to be more crucial for improving model performance (Fig. 

2a). 

 

Our investigation also showed that, regardless of the parameterization of the model, the choice of model input data 

has a significant impact on the quality of the model output (Fig. 2c-j). Despite the lower spatial resolution of the 

CRU data, models using data from the E-OBS dataset (0.1° grid)30 outperformed models using monthly mean 

temperature from the climatic research unit (CRU) (0.5° grid)29 out of the 65,536 different combinations of input 

parameter choices we tested (Fig. 2c). Similar results were obtained using relative humidity values generated from 

CRU vapor pressure data as opposed to E-OBS data (Fig. 2e). The model comparisons also revealed that the input 

data for temperature and vapor pressure for the month before the collection of a reference sample were used to 

produce the best predictions (Fig. 2d,f, Supplementary Information dataset S1 to S6). The models employing 

monthly values from the OIPC31, which are not specific for a certain year, often displayed a better fit than those 

using Piso (26 out of the 30 lowest RMSEs) for precipitation δ18O data. AI32, which foretells values for particular 

years and months (Fig. 2g). Nevertheless, Piso.AI's estimated mean of the three months preceding sampling 

(Supplementary Information dataset S6) served as the foundation for the single best-fit values. However, the chosen 

data source for vapor δ18O values did not reveal such a distinct trend (Fig. 2i). The choice of the time period prior 

to the collection of the reference sample did not yield a consistent best choice for the precipitation and vapor δ18O 

input variables, in contrast to the temperature and vapor pressure data (Fig. 2h,j). 

 

After comparing every model parameter and input data option, we discovered two nearly identical highest 

performing models. 

 

developing models. The models that used parameters specific to strawberries had an RMSE of 0.95 and the models 

that used average model input parameters for berry-producing plants had an RMSE of 0.96 (Figs. 2 and 3). The 

best-performing model for berry-producing plants used monthly air temperature and vapor pressure data from CRU 

from one month prior to the collection of a reference sample in a particular year, precipitation δ18O values from the 

precipitation-weighted mean of the three months leading up to the harvest date of a sample from the long term 

mean monthly values provided by OIPC, and vapor δ18O values calculated under the assumption that isotopic 

equilibrium with the pre-harvest atmosphere. 

 

For the example month of July 2017, the best-performing average berry model projected strawberry bulk dried 

tissue δ18O values that ranged from + 31 to + 16 across the European continent (Fig. 3b). The most notable outliers 

came from eight locations in Germany and Sweden, where the model either over predicted or under predicted the 

measured δ18O variability by 2.0 to 3.5 times (Fig. 3a). This indicates that the measured δ18O variability within 

one region was often higher than the variability recorded by the model. Although we obtained strawberry bulk dried 

tissue δ18O values ( 1 ) from berry samples that were collected on the same field and the same day (primarily from 

Germany and Finland), the model-induced uncertainty mainly fell within the 95% quantile of that variability (Fig. 

3a). 

 

DISCUSSION 

 

We show that a stable oxygen isotope model for plants can be a useful tool for forecasting the geographical 

variability of δ18O values in fruit. This model predicts the δ18O values of organic compounds in leaves and wood. 

Models parameterized using common across-species averaged leaf-derived values for the model parameters xylem 

and anticipated can predict observed data with an average RMSE of 1.11 when given the best environmental input 

data. Model parameters that were particularly determined for strawberry plant leaves (xylem) and berries (apex) 

were necessary for the model that accurately predicted δ18O values of bulk dried strawberry tissue. However, this 

model's performance was only slightly better than the best-performing model, which was parameterized with 

average values for the leaves (xylem) and berries (pxpexc) of berry-producing plants generally (RMSE = 0.95 vs. 
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RMSE = 0.96). ‰). This shows that for berry-producing plants, employing average parameters will be sufficient for 

high-quality model performance. The model performs reasonably well even when its parameters are general values 

calculated for leaves and averaged across various species. An important result of this work is the resilient 

performance of the models with diverse parameterizations. It implies that the mechanistic stable oxygen isotope 

model of plant physiology can be applied broadly to simulate the geographic variability of δ18O values in fruit. Our 

analysis also reveals that the effectiveness of the model depends on the careful selection of model input variables 

that are specific for the year and month of sample collection-with varied lead durations. 

 
 

Image 2. Analyses of the model fit for all combinations of parameters and input data. The model's root mean square 

error (RMSE) values are shown in all panels. They were calculated using a comparison of the observed and 

modeled bulk-dried tissue δ18O values (n = 154) from reliable reference samples. Each dot corresponds to the 

RMSE (in VSMOW) resulting from a particular model parameter and input data combination. RMSE values are 

ranked based on model fit. From the entire set of 65,536 tested possibilities in each of the six different 

parameterized models (n 14,850 for each parameter combination), Panel (a) displays the sorted RMSE values that 

are lower than 25. The symbols are colored based on the various model parameter combinations (xylem and 

pxpex/pxpexc) used for the simulations, either general parameters for leaves averaged across various species using 

literature values ("general"), parameters that are average values for leaves (xylem) and berries (pxpexc) of plants 

that produce berries ("berry"), or parameters specifically determined for leaves. 

 

Strawberry plants' berries (apex) and fxylem ("strawberry"). Only the models with RMSE values less than 1.25 are 

displayed in Panels (b–j). 

 

(Panel a, red square). Symbols for the various model parameter combinations are introduced in panel (b), which 

displays the ranking model fits for the same model parameter and input data combinations as panel (a). Panels (c-j) 

continue to use the same symbols. For more information, see the panel in the figures and the datasets S1 to S6 in 

the Supplementary Information. In panels (c) to (j), the symbols are colored according to the model input data used 

for the simulation. Comparing the usage of CRU29 and E-OBS30 input data, panels (c) and (e), panels (g), and 

Panels (d, f, h, and j) compare the use of various lead time intervals preceding the collection date of the reference 

material (see methods). (i) Compare the usage of OIPC31 to Piso.AI32 isotope data sources. For panels (d) and (f), 

several time intervals produced RMSE values more significant than the shown range and are therefore not indicated 

in the legends because the panels only display the best model fits for RMSE values up to 1.25. 

 

 

 

 

 

 

 

 

 
Mean temperature CRU 

Mean temperature E-OBS 

 

 

 

 

 

 

 

 

 
Mean temperature CRU 

Mean temperature E-OBS 

OIPC 

Piso.AI 

OIPC 

Piso.AI 

R
M

S
E

 (
‰

 V
S

M
O

W
) 

R
M

S
E

 (‰
 V

S
M

O
W

) 
R

M
S

E
 (

‰
 V

S
M

O
W

) 
R

M
S

E
 (

‰
 V

S
M

O
W

) 

a) Overall model fit 

 
 

20 

 
 

10 

 
 

0 

c) Temperature data source 

 
 

 
1.2 

 

 
1.1 

 

 
1.0 

b) Overall model fit zoom 

 

d) Temperature lead time 

 

1.2 1.2 
 

 
1.1 

 

 
1.0 

 
1.1 

 

 
1.0 

11 year May to July mean 

At sampling month 

One month before sampling 

Two months before sampling 

Mean three months before sampling 

 

e) Relative humidity data source f) Vapor pressure lead time 

 

1.2 1.2 

 

1.1 1.1 

 

1.0 1.0 

 

g) δ18O precipitation data source h) δ18O precipitation lead time 

 

1.2 1.2 

 

1.1 1.1 

 

1.0 1.0 

 

i) δ18O vapor data source j) δ18O vapor lead time 

 

1.2 1.2 

 

1.1 1.1 

 

1.0 1.0 

 

Best Worst 

Model rank 
Best Worst 

Model rank 

f
xylem 

general 

berry 

general 

p
x
p

ex 
/ p

x
p

ex
c 

general 

general 

berry/strawberry 

strawberry general 

berry berry/strawberry 

strawberry berry/strawberry 

 

 

 

 
 

11 year Ma 

At sampling month 

month before sampling 

months before sampling 

Mean three re sampling befo months 

One 

Two 

ly mean y to Ju 

 

 

 
11 year May to July mean 

h 

sampling 

Two months before sampling 

Three months before sampling 

Four months before sampling 

Mean three months before sampling 

Yearly May to July mean 

pling mont 

month before 

At sam 

One 

11 year Ma 

pling mont 

month before ng 

Two months before sampling 

Three months before sampling 

Four months before sampling 

Mean three months before sampling 

Yearly May to July mean 

sampli 

h At sam 

One 

ly mean y to Ju 

f
xylem 

general 

berry 

general 

p
x
p

ex 
/ p

x
p

ex
c 

general 

general 

berry/strawberry 

strawberry general 

berry berry/strawberry 

strawberry berry/strawberry 

Zoom to model fits of 

RMSE ≤ 1.25 ‰ 
shown in other panels. 

R
M

S
E

 (
‰

 V
S

M
O

W
) 

R
M

S
E

 (
‰

 V
S

M
O

W
) 

R
M

S
E

 (
‰

 V
S

M
O

W
) 

R
M

S
E

 (
‰

 V
S

M
O

W
) 

R
M

S
E

 (
‰

 V
S

M
O

W
) 

R
M

S
E

 (
‰

 V
S

M
O

W
) 



 International Journal of Enhanced Research in Science, Technology & Engineering 

ISSN: 2319-7463, Vol. 7 Issue 11, November-2018, Impact Factor: 4.059 

Page | 29 

 

 
 

Image 3. Results of applying plant physiological isotope models to simulate the bulk dried δ18O values of berries. 

(a) The measured actual bulk dried tissue reference samples δ18O values are displayed against the modeled bulk 

dried tissue δ18O values generated from the model parameterized with general data for berries (n = 154; RMSE = 

0.96 ). The dashed lines display the 95% quantile of the observed within-field variability of strawberry δ18O bulk 

dried tissue values, and the solid line represents the 1:1 line. (b) A map of Europe displaying the anticipated 

regional distribution of strawberry bulk dry tissue δ18O values, in this case obtained in July 2017. R, version 3.5.3, 

was used to build the map (https://www.r-project.org/). 

 

We discovered that model simulations with parameters defined for berry-producing plants (both average across 

berry-producing plants and strawberry-specific) produced model outputs that were marginally better than those with 

parameters obtained from averaging leaf-derived literature values across species (Fig. 2). Berries, like the majority 

of other fruit, rely on sugars imported from active photosynthetic organs (i.e., leaves), making them predominantly 

heterotrophic (carbon-sink) tissues. These sugars transmit a leaf water δ18O signal that is physiologically and 

climatically driven21,22,26,33,34. The Craig-Gordon model can calculate this leaf water's δ18O value, which gets 

imprinted into sugars with a fixed fractionation of +27, if the model is modified to include the parameter xylem, 

which accounts for the dilution of the evaporatively δ18O-enriched leaf water by the plant's source water35. We 

used xylem values recently discovered from separate growth chamber tests for strawberry plants (0.30) or berry-

producing plants in general (0.26), respectively, for the two best-performing models. These xylem values were 

marginally higher than the mean values (0.22; 36–40) that were generally reported for leaves from different species 

in the literature. The average xylem value given by the previously researched plants, which included less productive 

wild plants with potentially lower transpiration rates, was 0.22. Higher xylem values could be the result of higher 

transpiration rates in berry-producing plants used in agriculture. 

 

Some of the oxygen in the sugars exchanges with the surrounding water while being transported from leaves 

through the phloem to carbon-sink tissues like berries and while being synthesized into carbohydrates in the sink 

tissues41,42. Comparing this water to leaf water43 reveals that it lacks δ18O. As a result, the sugar and 

carbohydrate levels in sink tissues are different from those of leaves28,44. The parameter expert in the model, 

among other things, accounts for this effect. Our investigation demonstrates that the match of anticipated 

strawberry-dried tissue δ18O values to those of reference samples was enhanced by using pxpexc values that are 

particular to berries in berry-producing plants. The expected value for berry bulk dried tissue was higher than the 

mean value typically reported for the cellulose of leaves (0.46 vs. 0.4045-49), which we found in separate growth 

chamber experiments (which are identical for strawberries and berries in general)28. Increased oxygen exchange in 

sugar with plant source water (pex) during phloem transport from leaves to, as well as during carbohydrate 

synthesis in the berries, may be the cause of a greater pxpexc value in berries than the pxpex value of leaf-cellulose. 

Additionally, it is consistent with a recent finding in strawberries and raspberries28 that berries often contain more 

δ18O-depleted source water than leaves (px). Further, this pattern demonstrates that bulk dried tissue of berries 

contains compounds with lower δ18O values than cellulose itself50, which is explained by a greater pxpexc value, 

in comparison to pure cellulose of leaves. 

 

Using the mean air temperature of the coarser spatially resolved models for various parameterized Compared to the 

higher resolution E-OBS dataset (0.1° grid), the CRU dataset (0.5° grid) produced a better model fit (Fig. 2). Other 

than the spatial resolution, there are no obvious discrepancies between the two data sources, and the reference 

samples' E-OBS and CRU mean temperatures correlated with a r2 of 0.81. 

 

For the locations considered in this investigation, 0.98 (y = 1.04x 0.007). We found model prediction skill to be 

generally better when using long-term monthly climatology-based precipitation δ18O data from the gridded OIPC 

datasets as input data, as opposed to Piso.AI, even though the best-performing model used precipitation δ18O 

values from Piso.AI, which uses station coordinates and provides values for single months and years. It is a little 

unexpected that model fits derived from inputs with lower spatial resolution and climatological data as opposed to 
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contemporaneous input data were typically more accurate than those produced from inputs that more accurately 

reflect conditions at any given point in time. This may be related to the fact that the reference samples we utilized 

as a validation target frequently only have vaguely defined growing locations and collecting dates in the sample 

metadata (usually only postal codes, region names, and the month in which the lab received the sample). When 

using the finer products from CRU and OIPC instead of the more finely geographically and temporally resolved E-

OBS and Piso.AI products, this may have led to errors in the attribution of climate or precipitation δ18O values 

from adjacent nearby areas. Additionally, Piso.AI often produces a larger annual cycle than OIPC, so even if 

choosing the right integration time can lead to a better fit (see best-performing model), choosing the wrong one can 

have more serious repercussions. OIPC and Piso.AI differ from one other in terms of data sources and integration 

timeframes. Due to the frequently prolonged residence time of water in soil before plant uptake,51,52 it may be the 

case that by averaging on interannual timescales, the monthly climatology precipitation δ18O values from OIPC 

more accurately replicate typical δ18O values of the source water that the plants use. Both procedures have the 

same result: they even out the extreme δ18O readings that could happen in any given month. If this explanation is 

accurate, it also suggests that future validation work utilizing fresh reference samples obtained with more exacting 

metadata may lead to predictions being improved. 

 

Our model output comparison demonstrates that the model's prediction ability was significantly enhanced by 

incorporating climate input data for a particular year's growing season. This is demonstrated by the improvement in 

model predictions of the average berry parameterized model when utilizing input data relevant to the growing 

season (RMSE = 0.96 ) as opposed to input data averaged over an 11-year period (2007 to 2017) using the mean 

growing season (RMSE = 1.27 ). The period preceding sample collection (i.e., during which a product grew) for 

which climatic input data are averaged before they are fed into the model is crucially important for accurately 

applying a plant physiological model to simulate δ18O values of bulk dried tissue for any growing season. When 

simulating the δ18O values in berry bulk dried tissue, we discovered that utilizing average values for air 

temperature and vapor pressure from one month before to sampling (during the berry's growth) is the most 

appropriate time period. The fact that climatic drivers of leaf water and consequently bulk dried tissue δ18O values 

in plants, namely temperature and vapor pressure, can vary significantly from year to year and within a year is the 

reason for improved model predictions when inter- and intra-annual variability climatic model input variable is 

taken into account. Because of this, leaf water's δ18O value varies both annually and during the growth season. This 

temporal variability of plant organic δ18O values at a certain geographic area can be significantly influenced by the 

inter- and intra-annual variability in leaf water variability values46,53. In contrast to the commonly used reference 

datasets, which are typically unable to be established for a specific growing season, plant physiological stable 

isotope models have the option to simulate this variability by using climatic input variables for specific years or 

specific portions of the growing seasons. 

 

We show how much interannual variability in bulk-dried tissue δ18O levels is caused by the climate. 

Assuming that all locations from which real reference samples were gathered in this study can be represented by 

employing growing season-specific model input variables (Fig. 4). In order to do this, we simulated bulk-dried 

tissue δ18O values for strawberries for the three months of the growth season (May–July) for each of the 11 years 

from 2007 to 2017 (33 values per site; see methods for more information on this model simulation). Then, for each 

sampling point in the resulting 11-year time series, we calculated the widest possible range of values (Fig. 4). 

According to the data, strawberries' bulk-dried tissue δ18O levels can vary across years by up to 4.10. It's 

interesting to note that there are different geographical patterns in the interannual variability of bulk dried tissue 

δ18O values of strawberries, with reduced variability in southern and mid-range latitudes and higher variability in 

northern latitudes. Site-specific predicted ranges of δ18O readings appeared to follow a latitudinal pattern that was 

linear and statistically significant (r2 = 0.65, p 0.001). The greater seasonal climate variability in higher latitudes is 

probably the cause of these varied spatial patterns. Our investigation demonstrates that for the simulation of bulk-

dried tissue δ18O values of fruit at higher latitudes, the use of climatic input variables unique to the growth season 

becomes increasingly important. This uncertainty cannot be resolved by the widely used method of comparing 

suspect samples of agricultural products that are produced annually to reference data, which is frequently gathered 

over several years. However, as a workaround for the traditional reference dataset approach, multiple reference 

datasets may be built up over time for various months. 

 

The temporal selection of precipitation and vapor δ18O data is less than that of the input data from climatic models. 

extremely important for faithfully reproducing the measured values. We demonstrate that any combination of 

precipitation and vapor oxygen isotope input predicts the measured strawberry δ18O bulk dried tissue levels with 

an accuracy between RMSE values of 0.95 and 0.96 for the best two parameterized models with the best timing of 

climate. Correspondingly, to 1.17 and 1.20 (Fig. 2 g, i). There is a lag between precipitation and plants' source water 

δ18O values, according to studies that evaluated the seasonal pattern of precipitation, soil, and plant source water 

values. There is evidence that plants utilise precipitated water before and, primarily for trees, throughout the 

growing season51,54,55. According to our findings, the source water for strawberries incorporates precipitation 

events both before and during the growth of the berry. The model is resilient to variation in the input data for 
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precipitation and vapor (δ18O) between years, therefore potential anomalies won't significantly affect the model's 

ability to predict the future. It is significant to highlight that the kind of particular origin analysis that our approach 

enables requires exact assertions about the location of origin and picking date of the suspicious plant sample in 

addition to the caliber and timeliness of the model input data. If the berry-specific model input parameters were 

used, a one-month inaccuracy in the metadata would lower the model's predictive ability due to incorrectly 

allocated input data, leading to a 0.33-percent higher RMSE. The model application detailed here was created for 

strawberries produced in open fields, not greenhouses, it should also be noted. Consequently, for a successful 

analysis, metadata confirming a suspect sample's natural growth circumstances is essential. 

 

The use of the model. 

We created prediction maps for δ18O values of bulk dried tissue from three example strawberries collected in July 

2017 using the best average berry model to demonstrate the capability of the Craig-Gordon-derived plant 

physiological isotope model to identify the source of an unknown sample for a specific growing season. This kind 

of forecast 

 

 
 

Image 4. Map of Europe displaying the sites where real reference samples were taken, as well as the expected range 

of strawberry bulk dry tissue δ18O values for each site throughout the entire growing season (May to July) and the 

years the sample set was taken (2007–2017). The most accurate berry-specific model was used to make predictions 

(see text). R, version 3.5.3, which may be downloaded at https://www.r-project.org, was used to make the map. 

 

The map is the key item of interest for the forensic food sector since it displays every potential place of origin for 

an unidentified sample. The simulations demonstrate that it is possible to discriminate between samples from 

northern Europe, central Europe, and southern Europe. (Fig. 5). The assignment maps also demonstrated that 

distinct geographic regions may be identified inside numerous different nations. Small areas of south-western 

France and mid-western Germany (the Cologne Area), for instance, displayed similar δ18O values to those of the 

southern European samples (Fig. 5c). In this study, we showed that stable oxygen isotope models of plant 

physiology were capable of producing resolved, accurate, and precise region-of-origin assignments for agricultural 

food items across time. The isotope-based detection of food fraud will gain from the applicability of model-based 

region-of-origin assignments for agricultural plant products. The model's robustness and lack of need for species-

specific parameterization are two important advantages. This allows the model to be applied, with only minor 

changes to the model's parameters, to other agricultural plant items or geographical areas in addition to 

strawberries, which are used here as an example. Although some degree of validation work with genuine samples is 

required, this ensures that the model may be quickly deployed to constrain the geographic origin of any agricultural 

plant product. 

 

The model's ability to replicate year- and season-specific δ18O values of a particular plant product and, thus, 

account for the potentially large temporal variability in such data, is another important advantage. When traditional 

reference isotope databases are used for origin validation, this is frequently not practicable. Finally, our modeling 

approach can pinpoint every probable provenance location without the need for significant reference samples over 

the whole potential region of origin, both in terms of space and time. As a result, it may also be utilized as the main 

tool to effectively learn about all potential places where a suspicious sample originated and to offer precise 

guidance on where to gather fresh and/or extra reference samples. Predictions based solely on modeled δ18O values 

are insufficient to pinpoint the precise growth zone, but they represent a significant improvement over a reference 

sample-based technique. The potential regions of origin may be even more limited when used in conjunction with 
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other techniques, such as stable isotope analyses of hydrogen, nitrogen, carbon, or sulfur, which also exhibit distinct 

geographic patterns depending on underlying bedrock/mineralogy or agricultural practices and have frequently been 

used in origin determination11,56. These techniques may also be used in conjunction with other authentication 

techniques, such as proteomics or trace element analysis10. By concealing areas where a specific agricultural plant 

product cannot be grown or is known not to grow, these strategies can also be improved. As a result, our work 

demonstrates that combining input data (climate and stable isotope values for precipitation) In addition, plant 

physiological isotope models present a novel and potent tool that can enhance the use of stable isotopes to combat 

food fraud. 

 

METHODS 

 

Several references samples. Agroisolab GmbH (Jülich, Germany) provided the real, independent strawberry 

(Fragaria ananassa) reference samples used in this study's model validation. Between 2007 and 2017, the 

corporation either directly collected the samples or had approved sample collectors do it on their behalf. Such 

genuine reference samples are used primarily to directly compare the stable isotope compositions (oxygen, 

hydrogen, carbon, nitrogen, or sulfur) of the samples to those of unknown provenance. Each reference sample was 

accompanied by metadata that detailed its geographic origin, such as the community name, postal code, or location 

coordinates, as well as the month and year the strawberry sample was harvested. We used δ18O readings from 154 

reference samples in total. The majority of samples were gathered in Finland, Sweden, the UK, Germany, and 

Sweden (Fig. 1). Instead of being cultivated in a synthetic greenhouse, all reference samples were grown on 

strawberry fields that were open to the public. The research complies with all applicable institutional, appropriate 

national, and international norms and laws. All berry samples were obtained from cultivated, non-endangered plant 

species (the "garden strawberry"). 

 

Samples were collected in the field, stored in airtight containers, and sent right away to Agroisolab, where they 

were frozen before being analyzed. Dichloromethane was used to solvent-extract the lipids for at least 4 hours using 

a Soxhlet extractor in order to examine the oxygen-stable isotope composition of the organic strawberry tissue. The 

remaining samples were ground into a fine powder after being dried. The powder, 1.5 milligrams, was measured 

into silver capsules. The silver capsules were acclimated in a desiccator with a fixed relative humidity of 11.3% for 

at least 12 hours. After additional vacuum drying, the samples were analyzed using an isotope-ratio mass 

spectrometer (IRMS) Horizon from NU Instruments in conjunction with a high-temperature furnace (Hekatech, 

Wegberg, Germany). The pyrolysis temperature was 1530 °C, and the covalently bonded SiC used in the pyrolysis 

tube was patented by Agroisolab. The measurement's repeatability was superior than 0.6%. 

 

Calculation using the oxygen isotope model. The oxygen isotopic composition of leaf water or organic compounds 

produced therein is simulated by plant physiological stable isotope models as δ18O values in per mil (), where 

δ18O = (δ18O/16O)sample/(δ18O/16O)VSMOW 1 and VSMOW is Vienna Standard Mean Ocean Water as 

determined by the VSMOW-Standard Light Antarctic Precipitation (SLAP) scale. Modeling plant water δ18O 

values23,58 is based on the Craig-Gordon model57, which was created to quantitatively characterize the isotopic 

enrichment of standing water bodies during evaporation and later modified for plants. The baseline for the model is 

plant source water, which is the soil water derived from precipitation that plants absorb through their roots without 

isotope fractionation. 

 
 

 

 
Where + is the equilibrium fractionation between liquid water and water vapor, k is the kinetic fractionation 

connected to the diffusion via the stomata and the boundary layer, and δ18Oe_leaf is the oxygen isotope enrichment 

above the water source at the evaporative location in leaves. The ea/ei ratio compares the intercellular vapor 

pressure within a leaf to the ambient vapor pressure in the atmosphere. The ambient vapor above the source water, 

which in this study is considered to be in equilibrium with the source water (δ18OV = +)62,63, is known as 

δ18OVapor. If the atmosphere is evenly mixed and the supply water for the plants comes from recent precipitation 

events, this supposition can be applied. Typically, this is the case for crops that are grown in the temperate 

temperature of the mid-latitudes, particularly for the lengthy (several weeks) strawberry growth season. This 

assumption should be reevaluated 64 if a similar model is used in other climate zones, such as the tropics. 

Equations 2 and 3 can be used to derive the equilibrium fractionation factor (+)65,66 and kinetic fractionation 

factor (k)67.  

�18Oe leaf =
 

1 + ε+
  

(1 + εk)(1 − ea/ei) + ea/ei(1 + �18OVapor)
 
−1 

ε+ =

 

exp

 
 1.137  

∗ 103 − 
 0.4156  

− 2.0667 ∗ 10−3

 

− 1

 

∗ 1000 
 

(2) 

ε = 
28rs + 19rb k rs + rb 
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Where T is the leaf temperature in degrees Celsius. In our calculations, leaf temperature was set to 90% of the 

monthly mean air temperature, which describes a realistic leaf-energy balance scenario for well-watered crops 

68,69 and also produced the best model performance with respect to the reference data. As leaf-to-air temperature 

differences strongly influence leaf water δ18O values, this assumption needs to be independently tested in future 

applications. For instance, Chan and colleagues used their model to predict the effects of temperature on leaf water 

content. We consistently utilized stomatal conductance values of 0.4 mol/m2s and stomatal resistance values of 1 

m2s/mol70 for our model calculations, where rs is the stomatal resistance and rb is the boundary layer resistance in 

m2s/mmol, the inverse of the stomatal and boundary layer conductance. 

 

Because the model describes the δ18O values of water at the evaporation site while measurements typically give 

bulk leaf water δ18O values36,71, the Craig-Gordon model's predicted leaf water values are frequently enriched in 

δ18O relative to measured bulk leaf water δ18O values26,27. The two-pool modification to the Craig-Gordon 

model corrects this effect by separating bulk leaf water into a pool of evaporatively enriched water at the site. 

 

 
Figure 5 illustrates the prediction maps of three strawberry samples from unknown origins that were gathered in 

July 2017. The prediction model is based on the best berry-specific model (Fig. 3) and displays the likelihood of 

origin (greater than 32% in yellow, 5% to 32% in blue, and lower than 5% in grey). Bulk dry tissue Sample's δ18O 

value is (a) + 20 

 

 

 

 
+ 24.5 (mean German sample), (c) + 27 (mean southern European sample), and (mean Finish/Swedish sample). The 

best berry-specific model's mapped findings were subtracted from the prediction maps to get the δ18O values of the 

bulk dried tissue of the suspected sample. As a result, a map with a value of zero was produced, illustrating the 

locations where the sample's δ18O values are expected to be found. The likelihood of the sample's provenance 

decreases as the size of the discrepancy displayed on the map increases. The one-sigma (68%, yellow) and two-

sigma (95%, yellow and blue) confidence intervals around the areas exhibiting no difference to the δ18O value of 

the suspected sample can be given based on the prediction error of the best berry-specific model (RMSE = 0.96 ). 

R, version 3.5.3, was used to produce the three maps (https://www.r-project.org/). 

 

Using unenriched plant source water (δ18Osource water)25 and a pool of evaporation (δ18Oe_leaf generated from 

the Craig-Gordon model, Eq. 1), δ18Oe_leaf is computed as follows: 

 

In leaf water, xylem concentrations typically range from 0.10 to 0.3336-40, while greater concentrations have also 

been recorded 72. 

 

Recent research has revealed that the leaf water xylem values for strawberry plants range between 0.24 and 0.3428. 

The bulk leaf water's δ18O values as well as extra isotopic effects from the digestion of carbohydrates and post-

photosynthesis processes are often reflected in the organic molecules in leaves21,22,34. The fractionations take 

place during the primary digestion of carbohydrates (trioses and hexoses), when carbonyl-group oxygen exchanges 

with leaf tissue water42. This procedure results in δ18O enrichment, also known as wc42 and measured to be + 27 

21,22,73. 

 

When sucrose molecules are converted to glucose and then rejoined during the production of cellulose from 

primary assimilates, some of the oxygen in the carbonyl group can then exchange with water in the growing cell. 

δ18Oleaf water =
 

1 −fxylem

 
∗ δ18Oe_leaf +

 
fxylem ∗ δ18Osource water 

δ18Oe_leaf = (�18Oe_leaf + δ18Osource water) + (�18Oe_leaf ∗ δ18Osource water)/1000) 

δ18Ocellulose = pxpex ∗
 

δ18Osource water + εwc

 
+
 

1 − pxpex

 
∗
 

δ18Oleaf water + εwc 

δ18Obulk = pxpexc ∗
 

δ18Osource water + εwc

 
+
 

1 − pxpexc
 
∗
 

δ18Oleaf water + εwc 

https://www.r-project.org/


 International Journal of Enhanced Research in Science, Technology & Engineering 

ISSN: 2319-7463, Vol. 7 Issue 11, November-2018, Impact Factor: 4.059 

Page | 34 

 

The isotope fractionation (wc) during this procedure is thought to be identical to that during the carbonyl oxygen 

exchange during primary carbohydrate absorption ( + 27 )41,42. The water in the growing cell33 thus partially 

modifies the δ18O values of the primary assimilate during the synthesis of cellulose. This procedure is described in 

equation (6). 

 

Where px is the percentage of unenriched source water in the bulk water of the cell where cellulose is 

synthesized33, sex is the fraction of carbonyl oxygen in cellulose that exchanges with the medium water during 

synthesis, and δ18Ocellulose is the oxygen isotopic composition of cellulose. It has been discovered that bulk water 

in growing cells, specifically in the leaf growth-and-differentiation zone, where cellulose is generated, 

predominantly reflects the isotopic composition of source water43. Consequently, px in Eq. In Eq, 6 is probably 

bigger than the xylem. (5). For practical reasons, px or pex are often determined as the combined parameter 

pxpex45 rather than separately. Pxpex was discovered to range from 0.25 to 0.5445-49 for cellulose in grass, crop, 

and tree leaves. 

 

We try to imitate the δ18O values of dried bulk tissue in this work, as in many applicable situations where plant 

δ18O values are employed for origin analysis. In addition to carbs, bulk dried plant tissue (δ18Obulk) also contains 

substances including lignin, lipids, and proteins that may be δ18O-depleted in comparison to carbohydrates50. We 

added the parameter c because the model must take this into account. We employ pxpex and c as a combined model 

parameter in our method because they cannot be determined independently. 

 

According to Cueni et al. (in review), there was no statistically significant difference between the strawberry's pure 

cellulose and bulk dry tissue δ18O levels. Consequently, for strawberries, pxpex and pxpexc are equivalent and 

range from 

 
Table 1. fxylem and pxpex/pxpexc parameter values for the strawberry bulk dried tissue simulations' δ18O values. 

0.41 to 0.51. In the context of the data set utilized in this investigation, this method enables the calculation of bulk 

dry tissue δ18O values without knowledge of δ18O values for cellulose. The method used by Barbour & Farquhar 

(2000), in contrast, determines the bulk dried tissue's δ18O values by applying an offset (cp) to the cellulose's δ18O 

values. 

 

choosing a model's parameters. We used several combinations of the parameter values to determine the best values 

for the major model parameters for the prediction of strawberry bulk dried tissue δ18O levels. To determine 

whether a leaf-level parameterization of the model is sufficient or whether a berry-specific parameterization is 

required for producing a satisfying model prediction, we specifically compared average parameter values from the 

literature derived from leaves and parameter values explicitly derived for berries (Cueni et al. in review). These 

values were either (i) averaged fxylem and pxpex values from various species reported in the literature for leaf 

water and cellulose, (ii) averaged fxylem and pxpexc values from berry-producing plants, or (iii) values for fxylem 

and pxpexc specifically obtained from strawberry plants. For leaf water and leaf, we utilized mean literature values 

that were initially acquired. 

 

The mean leaf-derived xylem value for berries (average of the values of raspberries and strawberries) was 0.26, and 

the value for pxpexc was found to be 0.46 (Table 1) (data derived from Cueni et al. in review). We used a leaf-

derived xylem value of 0.30 for strawberry plants, and we calculated a value of 0.46 for bulk dry tissue (pxpexc) 

(data derived from Cueni et al. in review) (Table 1). There were a total of six distinct model input parameter 

combinations because different berry species' pxpexc values were identical. 

 

Selection of input data for environmental models. Spatial gridded climate and precipitation isotope data layers were 

used as model inputs to spatially apply the strawberry parametrized bulk-dried tissue oxygen model. However, 

employing the best and most appropriate input variables is necessary for the correct modeling of geographically 

different δ18O values. Therefore, we investigated the significance of the input data's temporal averaging and lead 

time in relation to the berry's picking date. These were referred to as the "integration time" of the input data 

altogether. It has been demonstrated that plant tissue water and organic compound δ18O values are influenced by 

the growing season's climate46,53 and precipitation δ18O values of rain events before and during the growing 

season51,54,55. Thus, determining the best type and integration time of model input variables required for this kind 

of model simulation was the main goal of our work. Additionally, we employed a variety of spatial climate and 

precipitation isotope datasets in our analyses to select the best data source (Table 2). 

 

The mean monthly precipitation δ18O grids by Bowen (2015), which are updated versions of the grids made by 

Bowen and Revenaugh (2003) and Bowen et al. (2005) (Online Isotopes in Precipitation Calculator, OIPC Version 

 fxylem pxpex/pxpexc 

General 0.22 0.40 

Berry 0.26 0.46 

Strawberry 0.30 0.46 
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3.2), were compared with one another. They give monthly long-term mean precipitation isotope readings in the 

form of global grids. These worldwide grids have a resolution of 5'. (2) Piso.AI (Version 1.01)32 forecasts for 

precipitation isotopes. In accordance with station coordinates 32, this source offers values for specific months and 

years. On the one hand, we treated both data sets as two separate, independent input data sets and used them for the 

precipitation δ18O input data of the model as well as to extrapolate the vapor δ18O values from sets (see model 

description above). 

 

We used the gridded data products from the Climatic Research Unit (CRU) (TS Version 4.04)29 and the E-OBS 

gridded dataset by the European Climate Assessment & Dataset (Version 22.0e)30 for the climatic drivers of the 

model (air temperature and vapor pressure) (Table 2). The CRU dataset offered 0.5°-resolution global gridded 

monthly mean air temperature and mean vapor pressure. The daily mean air temperature and relative humidity for 

Europe were gridded and had a resolution of 0.1 arc-degrees in the E-OBS dataset. On the basis of these daily mean 

air temperature and relative humidity grids, we created monthly mean air temperature and grid layers. 

 

Prior to plucking, fruit tissue is formed over a period of weeks46,53. As a result, there is a lag time between the 

selection date and the date that most accurately captures the source water and vapor stable isotope signal impacting 

the isotope signal during tissue formation. We therefore looked into lead times of 1, 2, 3, and 4 months as well as 

the three months before to the selection date as the integration time of the input data (Table 2). Furthermore, we 

also utilized more general European strawberry growing season averages76, which were not dependent on the 

sampling year or the sampling month (annual May to July mean; Table 2). Using CRU mean monthly precipitation 

data, precipitation isotope data were derived as amount-weighted averages. This indicates that the long-term mean 

precipitation δ18O values obtained from OIPC were weighted using average monthly precipitation totals (May, 

June, and July) and yearly specific CRU monthly precipitation totals for the case of the three months or growing 

season averages for individual years. 

 

 
June and July) for the long-term growth season computation from 2007 to 2017. The same evaluation was also done 

using Piso's precipitation values. AI. 

 

model validation using reference samples. We determined the strawberry bulk dry tissue δ18O values for the 

location and growing period of each real reference sample using the plant physiological model discussed above. We 

evaluated all combinations of the data sources listed in Table 2 and each of the eight integration times mentioned in 

Table 1 for the model input data. The resulting 65,536 input variable combinations for each pair of model 

parameters (fxylem and pxpex/pxpexc, Table 1) produced model outputs that could be compared to observed 

reference samples. Our strategy can be explained by the equation given below: 

 

Where s is the data product for the selected input variable (Table 2), t is the integration period of the stated variable 

(Table 2), and δ18O plant is the simulated δ18O value of the strawberry. 

 

For the key model parameters fxylem and pxpex/pxpexc, we used the average of the values for raspberries and 

strawberries as well as strawberry-specific values found in Cueni et al.'s (in review) research. For pxpex, we used 

the values suggested for leaves by the literature. An average value of +27 (wc) was utilized in all calculations. Site-

specific elevation was retrieved from the ETOPO1 digital elevation model77 and used to determine the 

approximate atmospheric pressure in order to derive mean monthly relative humidity values from the given CRU 

vapor pressure data. Following Buck (1981), these values were added to the air temperature to calculate the 

saturation vapor pressure (relative humidity = vapor pressure/saturation vapor pressure), which was then used to get 

the relative humidity. The model's R-script is accessible on "figshare"; the URL is listed in the data availability 

statement. 

 

(a) Data products 

Input variable Data product sources 

Climate (Air temperature, vapor pressure/ RH) CRU, E-OBS 

δ18O-precipitation OIPC, Piso.AI 

δ18O-vapor OIPC, Piso.AI 

(b) Integration times 

Name Explanation 

At month of sampling Value of the variable from the month of sample collection 

One month before sampling Value of the variable from one month prior to sample collection 

Two months before sampling Value of the variable from two months prior to sample collection 

Three months before sampling Value of the variable from three months prior to sample collection 

Four months before sampling Value of the variable from four months prior to sample collection 

Mean three months before sampling 
Average value of the variable from the three months prior to sample collection (precipita- 
tion and vapor d18O values are amount-weighted using CRU precipitation totals) 

11 year May to July mean 
Average value of the variable from the growing season (May to July) averaged over the 
11-year period from which samples used in this study were collected 

Yearly May to July mean Average value of the variable from the growing season (May to July) of sample collection 
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Analyses using statistics. The statistical package R, version 3.5.379, was used to conduct the statistical studies. A 

linear regression model with an alpha level of 0.05 was used to compare the correlations between the range of 

observed δ18O values and latitude, as well as between the mean air temperatures measured by CRU and E-OBS. 

The outputs of the 65,536 models were compared with the observed δ18O bulk dry tissue values of the real 

reference samples (n = 154) using the root mean squared error (RMSE). This was done for each of the six 

physiological parameter combinations. 

 

prediction map computation. The forensic food industry has developed prediction maps that depict the potential 

geographic origins of samples with unknown provenance. We created the prediction maps that are displayed in Fig. 

Here are three examples of strawberry δ18O values from July 2017: (i) + 20 for a typical Finnish/Swedish sample, 

(ii) + 24.5 for a typical German sample, and (iii) + 27 for a typical southern European sample. 

 

A two-step process was used to calculate the prediction maps. First, we created a map of the anticipated bulk dry 

tissue δ18O strawberry values for berries harvested in July 2017. We used the average berry model input parameters 

(xylem and pxpexc, Table 1), as well as the model input data and integration time combination that fit the data the 

best (Fig. 2), which we evaluated earlier. Thus, we utilized the June 2017 CRU mean air temperature, vapor 

pressure, and precipitation δ18O values from OIPC, as well as vapor δ18O values calculated using April OIPC 

precipitation δ18O measurements. This algorithm produced a mapped model result since it used spatial maps as 

model input data. The prediction maps were computed in the subsequent step. To do this, we first deducted the 

δ18O value of the sample strawberry's bulk dried tissue from the best berry-specific model's projected result. This 

was carried out for each map pixel value. A map was created as a consequence, displaying the discrepancy between 

each map pixel's actual and anticipated δ18O values. Therefore, a value of zero is used to indicate the locations 

(pixels) projected to have the same δ18O value as the sample strawberry. The one-sigma (68%) and two-sigma 

(95%) confidence intervals around the areas exhibiting no difference to the δ18O value of the suspicious sample 

could be evaluated based on the prediction error of the best berry-specific model (RMSE = 0.96 ). This indicates 

that the sample's likelihood of provenance decreases as the difference between the sample value and the simulated 

value of δ18O increases. In other words, a difference of 0 to 0.96 between the sample's δ18O value and the 

projected δ18O value indicates a possible provenance of at least 68% (one sigma), while a difference of 0.96 to 

1.92 indicates a possible provenance of 68 to 27% (two sigmas). Regions on the map with larger variations than 

1.92 (greater than two sigmas) reflect regions with potential provenance, lower than 5%. 
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