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ABSTRACT

Quantum mechanics is a part of quantum theory. The latter was initiated in 1900, when Max Planck announced the concept
of a quantum which brought a revolution. This year and this decisive event is referred to as the dividing point between the
classical physics and modern or quantum physics. The new period of physics was caused by many new basic discoveries:
X-ray, the electron, radioactivity etc. Quantum mechanics, based upon the consideration of the space L? (—o0, ), where
elements are called states and self-adjoint operators called observables, provided much inputs to study the operators,
particularly the self adjoint operator and non-self adjoint operators over Hilbert spaces. H. Weyl [40], in 1909, observed
that for a self-adjoint operator in a Hilbert space, perturbation by self-adjoint compact operator leaves an ‘essential’ part of
the spectrum invariant. Precisely that part of the spectrum which contains the limit points of spectrum and the points of
infinite-multiplicity.

This part of the spectrum, later on was termed after H. Weyl, as Weyl spectrum and this observation became a classical
version of Weyl's theorem. Thus, classically speaking, for a bounded self adjoint operator, the complement in the spectrum
of this part of self-adjoint operators coincide with the isolated points of the spectrum which-are the eigen-values of finite
multiplicity and in the present form we say that a bounded linear operator is said to satisfy Weyl's theorem, if the
complement of the Weyl's spectrum in the spectrum equals the set of isolated eigenvalues of finite multiplicity.

Ever since its formulation, for its large number of applications to physics, the problem of identifying operators satisfying
Weyl's theorem has been a subject of research for a host of mathematicians throughout the world. Notable contributions,
among others are from, L.A. Coburn [6], S.K. Berberian [2,3,4], V. Istrttescu [23], Karl Gustafson [14], K.K. Oberai [29,
30], S.C. Arora [1], W.Y. Lee and S.H. Lee [25, 26, 27, 28], D.R. Farenick [11], Youngoh Yang [41, 42, 43, 44].

In this introduction, We set and present notations, terminology to be used and a brief summary.

Unless stated otherwise H will denote an infinite dimensional Hilbert space and C, the space of complex-numbers. ||x]|,
denotes the norm of the vector x. By a subspace of H, we mean a closed linear manifold of H. If M is a subspace of H, M+
denotes the orthogonal complement of M in H. By an operator T on H, we shall mean a bounded linear transformation of H
into H. We write B(H) for the algebra of operators on H. For T in B(H), T* denotes the adjoint of T. R(T) (Ran T) stands
fbr the range space and N(T) (KerT, T™(0) for the null space of T. A subspace M is said to be invariant under T if
T(M)EM. If both M and M* are invariant under T, we say that M reduces T. If M* is invariant under T, T|,, denotes the
restriction of T to M. If S and T are operators on the Hilbert spaces H and K respectively, then the operator S @ T is an
operator on H @ K, defined by
(SOT) (x,y) = (Sx,Ty).

We now proceed to give various definitions pertaining to the spectrum and its parts. The spectrum o (T) of an

operator T is defined as
o(T) = {A€C: T —2Alisnotinvertible in B(H)}.
Theresolvent set p(T) of an operator T is defined as
p(T) = {AreC€ : R, = (I- Al)!, exists, is bounded and is defined on

a set which is dense in Hj.

The approximate point spectrum 7(T) of T is the set of all A in C

such that S(T-AD=#I for any operator S on H. Equivalently, Aen(T) if and

only if there exists a sequence (x> of unit vectors in H such that

| (T-ADx, || O as n—oo.
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A scalar A is called an eigenvalue of T if there exists a nonzero vector x such that (T- AI) x=0. The set of all eigenvalues of
T, denoted by my(T), is called the point spectrum of T. The null space N(T-AI) of T- Al is called the eigenspace
corresponding to the scalerA and dimension of N(T- A1) is called the multiplicity of the eigenvalue A. my¢(T) denotes the
set of those eigenvalues which are of finite multiplicity,y; (T) denotes the set of eigenvalues of infinite multiplicity.
oo (T) denotes the isolatedpoint spectrum of T, that is, the set of all isolated eigenvalues of a(T) which are of finite
multiplicity, and isoa(T) denotes the set of all isolated points of a(T). Also, acca-(T) denotes the set of all accumulation
points of a(T).

An operator Ton H is said to be compact if it maps every bounded set onto relatively compact sets. Equivalently,
the image of every bounded sequence contains a convergent subsequence. K(H) denotes the ideal of all compact operators
on H. The quotient algebra% which is a Banach algebra is known as the calking algebra. Let T = T + B(H) denote the
canonical image of T in the calkin algebra. Then the spectrum o (T) of T as an element of calkin algebra is called the calkin
or the essential-spectra of T and is denoted by o, (T). An operator T is called Fredholm operator if

(i) R(T) is closed, and

(ii) N(T) and N(T) are finite dimensional.

The index i(T) of a Fredholm operator T is defined as

i(T) = dim N(T) — dim N(T %)
where dim M is the dimension of the subspace M. The Atkinson _theorem  [15, Problem 142] gives an elegant
characterization of o, (T) as

o (T) = {Ae€: T-Al is not a Fredholm opcratorj.
The Weyl spectrum o (T) of T is defined as

o (T) = M c (T+K).

KeK(H)
Equivalently,
o (T) = {AeC€: T-Al is not a Fredholm operator of index zero}.

Any Fredholm operator of index zero is called a Weyl operator.

Therefore,
w (T) = {AesC: T-Al is not Weyl}.
The Convex hull convS of a set S «— " is the intcrsection of all
convex sels containing S. A = @ is said to be a semibare point of o(T)
if it lies on the circumference of some closed disk that contains no other

point of o(T). A subset of complex measure is said to be thin if its planer

lebesgue measure is zero. Also, an operator T in B(H) is said to be offinite rank if R(T) is finite dimensional. An operator
T in B(H) is said to have finite ascent if there exists some non negative integer m such that

N(T™) = N(T™™).
The smallest non negative integer m satisfying this condition is called the ascent of T. An operator T in B(H) is said to
have finite descent if there exists some non negativeinteger m such that
R(Tm)J_ — R(Tm+1)l.
The smallest non negative integer m satisfying this condition is called the descent of T.
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An operator T in B(H) is called self-adjoint if T=T*, normal if TT* = T*T, essentially normal if T*T - TT* is compact,
unitary if TT*=T*T=I, isometry if T*T=I and coisometry if TT*=I.

We now proceed to define various classes of non-normal operators. An operator T is called hyponormal if its self
commutator [T*T] = T*T-TT* is positive, M-hyponormal if there exists M>0 such that
| (T—-2Z)x|I< M| |[(T—2Z)x|| forall xinH and for all Z in analytic quasihyponormal if there exists a function f
analytic on a neighbourhood of o(T) such that f(T)* (T*T-TT*) f(T)>0, seminormalif either T or T* is hyponormal,
algebraically-hyponormal if there exist a nonconstant polynomial p such that p(T) is hyponormal. An operator T in B(H)
is said to be of class W if essential-spectrum of T equals the Weyl spectrum of T, that means, 0. (T) = w (T). T is said to
satisfy Growth condition (G,) if

T —AD 1| < !

di,o(ry > EoD

¢,
and is said to satisfy reduction-(G)) if every direct summand of T satisfies
(G,). This means that if T = T ,@&T, then T, and T, both satisfy condition
(G,) as operators on their respective domains.

Let T = {ze@ : | Z | = 1} denote the unit circle in the complex
plane @, p the normalised lebesgue measure on T and L2(T) = L2, the
Hilbert space of complex-valued measurable square integrable functions
on T. L? has a canonical orthonormal basis given by the trigonometric

functions e _(z) = z" for each n in I, the set of integers. The Hardy space

H? (T) = H? is the closed linear span of {e, n=0,1,2,....}. An element
fe L? is referred to as analytic if feH? and coanalytic if
f €« L2ZOH2 If P : L? — H2? denotes the projection operator, then for every
¢ € L= (T), the space of f_:ssentially bounded measurable functions, the

operator T, on H? defined by

T, g = P (¢8)
for each g in H? is called the Toeplitz operator with symbol ¢. C(T)
denotes the set of all continuous complex-valued functions on the unit
circle T and H=(T) = L~k 132, Both C(T) and H=(T) arc Banach algcbras.
The elements of the closed scll-adjoint subalgebra QC, which is dcl'"ueu:_l

to be

QC = (H=(T)Y+C(T)) — (GI=(+C())

are called qguasicontinuous functions.

The three problems regarding Weyl’s raised by K.K. Oberoi [30] in the year 1977 are discussed in the following three
sections.
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The first problem raised by K.K. Oberoi was the following:-

Let T in B(IH1?) be Toeplitz. Then does Weyl's theorem hold for T2 ?

The problem remained open for nineteen years and was finally answered
by D.R. Farenick and W.Y. Lee [11] negatively in the year 1996. In the

process, they proved the following

If ¢ is continuous and f is any analytic function defined on some
open set containing o-(T¢ ), then in general, G('rl’od)) = F (O—(T(I)))'
Also, FH(Teap? = £ (::r('.‘l"q,}) if and only if Weyl's thecorem holds for
ftT‘b ). This mcocans o (ﬂ:T‘t‘ = o F (T‘b 3. Im addition, if ¢ is defined

on the unit circle as

¢_{—c250 -~ 1 (0 =0 = )

| (t =0 = 27m)
then, o ([ 2) = (o (T >3

This establishes that square of a Toeplitz opcorator nccecd not satisly the

Weyl's thcorem. All this compriszsecs of scction 1 of the disscrtation.

Secction 2 discussces 1the sccond problem raised by KUK, Obcorai. Theoe

problem states the following -

Let T in B(II) be hyponormal. Then does Weyl's thcecoren hold
for T= 2

This problemm was answered in affirmative by W.Y. Lee and
S.H. Lee [28]. They proved [Theorem 3.3, 28] that it T in B(FD) is

hyponormal, then Weyl's theorem holds for T2.

In section 3 we study the third problem raised by K.K. Oberai. The

pProblem states the following :

Let T be in B(H). If Weyl's theorem holds for T and F is a finite rank

operator commuting with T, then does Weyl's theorem hold for T+F?

The answer which comprises of section 2.3 given by W.Y. Lee and S.H. Lee [28] in the year 1996, presents an example of
an operator T in B(H) and a finite rank operator F in B(H), commuting with T, such that Weyl's theorem holds for T, but it
does not hold for T+F and thus answers the problem in negative.

In the year 1977, Kirti K. Oberai [30] raised the following three problems:

Problem 1: Let T in B(H?) be Toeplitz. Then, does Weyl's theorem hold for T%?
Problem 2 : Let T in B(H?) be Hyponormal. Then, does Weyl's theorem hold for T2?
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Problem 3 : Let T be in B(H). If Weyl's theorem holds for T and F is a finite rank operator commuting with
T, then does Weyl's theorem hold for T+F?

In this work, our aim is to discuss the solutions of the above mentioned problems obtained during these years. Accordingly,

this chapter has been divided into three sections, discussing each problem in the respective section.

Section 1 :Toeplitz Operators
The first problem raised by K.K. Oberai [30] as mentioned is the following :-Let T in B(H?) be Toeplitz. Then, does Weyl's
theorem hold for T%?

Recently, D.R. Farenick and W.Y. Lee [11] in 1996, answered this question negatively by giving an example of a Toeplitz
operator whose square does not satisfy Weyl's theorem. Without mentioning, it may be understood that, in this section our
space is H, and the functions are defined on unit circle. To get the needful accompalished, we begin with the following :

Lemma 1 [11]: Let ¢ be continous and T;, be Toeplitz operator induced by ¢. Also let f be an analytic fucntion defined on
some open set containing
a(Ty). Then

G(Tfo¢) c f(o (Tq) )

and

oS (Tf0¢) = f(o( T¢ )

if and only if Weyl's theorem holds for f(T¢ ). Also, then

o (F(TyN= o (£CTy .
Proof : We prove this Lemma in three steps.

Step 1: With T¢, Toeplitz, ¢ in QC, the class of quasicontinuous functions,
and f analytic on an open set containing G(T¢ ). We claim that

Trop — f (Ty) is compact.

We know that [10]if y is in H® + C (T), then T\IJ is Fredholm if and only if
W 18 invertible in H* + C (T). With this in mind, we let A ¢ o ( T¢) . Then,

both ¢ — A and ¢ — A are invertible in H* + C (T). Hence
(- A)y'eQc (1)
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Also, the Toeplitz operators whose symbols belong to the class QC [ 11 ] satisfy

the following algebraic relation :

T\|I T(]) - kr\;/(j) eK®2» 2)

for every ¢eH> (T) + C (T) and w €L~ (T), where K(H?) is the ideal of
compact operators on H2. From (1) and (2), we have that for  in L~ and A, Lt

in @
T — Ty Tq?i B Mg gyl SR
whenever A & o( T¢ ).
The argument above extend to rational functions to yield the following:
Ifr is any rational function with all its poles away off o‘(Td) ). then

. 5 2
P T~ Ty oy = REHSY,

Since fis analytic on an open set containing c(T¢ ). by Runge's thecorem, there

exists a sequence of rational functions <r'_) such that the poles of cach r, lie
outside of’ G(T¢ ) and r,, —funiformly on c('l‘(b ). Thus r, (T¢ ) — l‘('l'(') ) in the

norm topology of L(H?). Furthermore, as

r odp —> ffodPp

uniformly, we have
lr od > Tfocb
in the norm topology. Therefore

T — £(T, ) =1t (T

fodp b r od ~Th (T¢ >
which is compact. Hence the claim. This proves step 1.

Step 2 : Claim : co(f('l"d) D)) = c('l‘fo(b).

Since Weyl spectrum is stable under the compact perturbations, it follows

from step 1, that
a( f('r(b )) = (’D(’l<r‘_)¢ )= G(’T(‘od) b

This proves the claim.
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Step 3 : Claim : DCF(TY D = SCFCTY DD — 78 (FCTy M
if and only if
STy = FCCTy 2.

By Step 2. ST ) = @I D). Also
(T I = CE(TY I = £((Ty, 3D

Since for ¢ L= (T, o(T)) is connected, so is f(c(T¢ )= c(f(T¢ d.therefore.

the set :rtm(f('rd) ) is empty. So we conclude that

C'D(f('l‘d> D= 0’(f('1‘<‘> D —~ ‘rroo(f(T¢ »D
if and only if

G(Tfo¢ D= f(O(Td, ».
This proves the theorem. = |

Remark 2 [11] - If ¢ is not continous, it is possible for Weyl's thecorem to

hold for some f(’l:‘> D) without < ( Tfo¢ ) being equal to F(o‘('l‘d, ).
For example, let
$(ci®) — 073 (0 =6 <27
be a piece-wise continuous function. The operator 'I::b is invertible but -l;bz

Since fis analytic on an open set containing c:r(’l;b ). by Runge's thecorcim, there

exists a sequence of rational functions (;-"> such that the poles of each r | lie

outside of’ cr('l;b) and r, —funiformly on G(T(b ). Thus r, ('1;1> ) —> l"('l;p ) in the

norm topology of L({(FI?). Furthermore, as
r.odp — fop
uniformly. we have
Te 0ob > Troop
in the norm topology. Therefore

T

fop — FCTy > =1t CT, — e, T 35

rnocb
which is compact. HFHence the claim. This proves step 1.

Step 2 : Claim : w(f(’l"¢ ))=0(Tf0¢).

Since Weyl spectrum is stable under the compact perturbations, it follows

from step 1, that
@CF(TY D) = (T e > = T g,

This proves the claim.
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Step 3 = Claim = (ECTY, ) = SCECTE D) — 7T Lo CECT, D
if and only if

By Step 2. ST 2 = @(F(T I . Also
DCECTY, 3> = SUECTY, 3 = £ (T .

Since for ¢ L= (T). o(TI) is connected, so is f(o('l:b ) = c(f(T¢ dM.therefore.

the set nOO(f(T:!) ) is empty. So we conclude that

©CFCTy, D) = SCECTY DD ~ 780 (FCTy DD
if and only if

This proves the theorem. ()

Remark 2 [11] - If ¢ is not continous, it is possible for Weyl's theorem to

hold for some f (1, ) without < ( T ) being equal to F(o( I, D).
% fodp P
For example, let
Hei®) — 190/ 3 O =06 <27

.l;bz

be a piece-wise continuous function. The operator 'I‘¢ is invertible but

is not invertible. Hence

0 o ( T¢2 P

However, ® ( T, ?*)= o (T,*)and =, ( T, ?) is empty. Therefore, Weyl's-
¢ + o L2

thecorem holds for T¢ =3

o ( 1}}) = ( 1§b) o ( 1&)2) = ( 1})2)

The following example shows that Weyl's theorem may not hold for T¢2 if

T¢ is a Toeplitz operator.

Example 3 [11] : There exists a continuous function ¢ = C (T) such that

o (G2) = {(Tyd32.

ILLet ¢ be defined by

—eZi® 4 1 (0 =06 = xn)

iey _
b)) e2° __ 3 (it =0 =< 27)
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The orientation of the graph of ¢ is shown in the following figure :

Evidently. ¢ is continuous, ¢ has winding number +1, with respect to any hole

of C, and winding number -1, with respect to any hole of C,. Thus, we have
o (Ty ) =& (T
and o (T¢ ) = Conv ¢ (T).

On the other hand a straight forward calculation shows that ¢2? (T) is
the cardiod r = 2(1-+cos 0). In particular, ¢? (T) traverses the cardioid once in
a counter clockwise direction and then once in clockwise direction. Thus,
winding number of ($? - A) = O for each A in the hole of ¢? (T). Flence T , is
a Weyl operator and is therefore invertible for each A in the hole of ¢2 (T).

This implies that o ( ";1)2 ) is the cardioidg r = 2(1+cos O).
AS, {G(Tq, I3*P={Conv ¢ (T)}? = {(r,0 ) : r < 2(1l+cos @)}
it follows that cr(-';t2)=t {o( Tq, B i o ]
Section 2 : Hyponormal operators

In this section we obtain the soulution of the following second probelm raiscd

by K.EK. Oberai [30] :
Let T in B (H) be Hyponormal. Then does Weyl's theorem hold for T7?
To begin our study, we first recall the following :

Drefinition <4 [10] : An operator T in B(H) is said to be Hyponormal if its

self~-commutator [T*T] = T*T - T T * is positive.

Definition S [30] : An operator T in B(H) is said to be Isoloid if the

isolated points of o(T) are eigenvalues ol T.
We begin answering the abowve gquestion with the following lemma :

Lemma o [28] : Let T and S be commuting hyponormal operators. Then,

TS is Weyl if and only if T and S both are Weyl.

Proof : Let S and T be Weyl. Then S and T are Fredholm and i(S) = i1 = O.
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Now. we know that [39, thecorem 2.3 ] the product of two Fredholm opcecrators
is F'redholm and i(ST) = i(S) + i(I). Therefore, it follows that ST is Fredholm

and i(ST) — O. Hence, ST is Weyl.
Conversely, let ST be Weyl. As ST=TS, therefore

KerSuUUKer T KerST and KerS¥*¥ U Ker T* < Ker(ST)Y)*. As, ST is Weyl.,
dim Ker S and dim Ker T both are finite and alsodim Ker S* and dim Ker T%*
are finite. A gain range of S and range of T are closed [16, thecorem 3.2.2].
Hence S, T are Fredholm. Since S and T are hyponormal, i(S) = O, i(I) = O.
But i(ST) — 0. Hence i(S) + i(I') = O. This gives that i(S) = O = i(I). Thus both
S and T are Fredholm operators each of index O. Therefore., S and 1T are both

Weyl. - |

The following theorem due to S.H.IL.ee and W .Y .IL.ee [28] provides a

complete answer to the above-mentioned problem :

Theorem 7 [28] : Let T in B(II) be hyponormal. Then Weyl's theorem

holds for T2.
Proof : We are to show that Too (I = o (I — o (12).

That is, we show that

A e o(T?) —w(TI?) if and only if A = TI:OO('I‘z).

First, we observe that if L is square root of A, then

A & acc (o(T?)) if and only if =%+ ji. e vaceasC)Y) 00 seasa 1)
where acc (o (1)) denotes the set of accumulation points of o(17).

Now, let A ec(T?) — @ (T?2). This gives that T2 - A is Weyl but not invertible.
Since we know that [2] for any operator T, o(T) — o (I) is eilher cempty or
consists of eigenvalues of finite multiplicity., we have, A = 71:0(']‘2 Y. Hencel it
remains to show that A is an isolated point of o(1T73). Now,

T2 - 2A =(CI - 1)) (I + )

Therefore, T - 11 and T + it are both Weyl. Since Weyl's theorem holds for 17,
it follows that == 1 & acc o(T). Thus we have A & acc o(IT32). As T2 - A is not
invertible, therefore A is an isolated point of o(T?). This means
that A = 71:00(’1‘2).

Conversely, let 2 = 71:00(1‘2). Then T2 - A is not invertible. We need to
show that T? - A is Weyl. By our assumption, we have

A e iso o(T?) and O= dim (I2-2A )" (0O) = oo  iii.ea.. 2)
By (1), we have == 1L & acc o(T). Since (1T =% )" (0O) < (I32- A )!' (0O), it follows

from the second part of (2) that dim (T" == A ) ' (0) = co. If %+ L € iso o( 1), then
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since T is isoloid [36], it follows that T == it is not one-one. This gives that

O==dim (T == p )! (0) = oo.

Since Weyl's theorem holds for 17, it follows that 1" - pu and 'T" + e are both
Weyl. Therefore, T2 - A is Weyl. If Lt ep (1) or - 1t ep (T). then also a

similar argument gives that 172 - A is Weyl. 2
Section 3 : Commuting finite rank operators
The third problem raised by K.IK. Oberai [30] was :

[L.et T"be in B(HD. If Weyl's theorem holds for T and F is a finite rank opcrator

commuting with T, then does Weyl's theorem hold for T-+F?

In this section, we first give two perturbation thcorems on Weyl's thecorem
and then discuss example which answers the above question by oberai

negatively [28], [21].

We recall the following [28]. [71. [12]. [16]

ICT is Weyl and K compact, then THK is Weyl! ... (@ D]
[T is Weyl, then T+HK is invertible for some compact operator I<  ......... 2)

Evidently, if T is Weyl and one-one then it is invertible and thus we have [2],
o (T) —~w () =7, I ... 3

Lemma 8 [28] : Let T be in B(H). If F is a finite rank operator, thhen
dinmn T (O)= oo if and only iff dimnm (TH+EF)»"' (0)< oo D— ]
Further if TF = FT. then

A = ace o(IT) if and only if A = acc o(I+F) cacasans L3}

Theorem 9 [28] : Let T in B{(H) be isoloid. L.et FF be a finite rank operator

commuting with T. If Wewl's theorem holds for T, then it holds for T+ also.

Proof : We are to show that

o (TH+F) — w (T + F) = ., (T+F).

This means that

o= o (THEF)Y — o (T + F)y if and only if A =TT, (T+FD.

Wlithout any loss of generality we may assume that 20 = 0.

Thus, let 0= o (T+F) — o (T + F). Hence T+F is Weyl., but not invertible. As

o (T+F) — o (T + F) — 7, (T+F). 0 = 7, (T+F),

therefore., it remains to show that O is isolated in o(TH+F). By our assumption
and (1), T is Weyl. Since Weyl's theorem holds for T, if followvws that

0O = p(IT)or O  iso o (T

Thus by (5) we have O ace o(I'+F). Since T#+F is not invertible, vwe hawe
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Oe iso o(T+F) and o (T+F) — w (T + F) < n,, (T+F).

Conversely, we suppose that 0 en,, (T+F). Hence T+HF is not
invertible. It is to be shown that THF is Weyl. By our assumption we

have

0 € iso o(T+F) and 0 < dim (T-+F)"' {(0) < co.

By (4) and (5), we obtain

0 & acec o(1) and dim T (0) < oo ... (6)

IT is invertible, then T+F is Weyl. IfT is not invertible, then by first part of
(6), we have 0 € iso o(T). Since T is isoloid, it follows that T is not one-one.
This together with the second part of (6) gives

O <dim T (0) < oo.

Thus, since Weyl's theorem holds for T, it follows that T is Weyl and hence,

s0 is T+F. - |

Theorem 10 [21] : Let T in B(H) be quasinilpotent. Let IF be any finite rank
operator commuting with T. If WeyI's theorem holds for T, then it holds for
T+F also.

Proof : By Gelfand theory of commutative Banach alegbras, we get

S(TH+F) = o(T) + o(F) = {0, A, Ay ccccu A, 3.

where A, = 0, A, € o(F). Then

PRpieis X, Yo Ty, (THF).L

Now, since o (T+F) = o(T) = {0}, it remains to show that O & =, (T"+I7). As
Weyl's theorem holds for T and T is quasinilpotent, o(T) = {0}. Then
N(T) = {0} or N(T) is infinite-dimensional. L.et N(T) = {0}. Therefore. T is
one-one. Then, there is no finite rank operator commuting with T except
I' = 0 and so 0 & w,, (T+F). Next, let N(T) be infinite dimensional. and let
A=F| y¢y- Then

NCA) = N(T) m N(F).

So, we get that N(T) m N(F) is infinite dimensional. Hence, O & =, (T+F).

Thus, Weyl's theorem holds for T+F. o

Now, if T is not assumed to be isoloid or quasinilpotent, then the above
two theorems may fail to hold. Thus the following example answers the

question of oberai negatively.

Example 11 [28] : There exists T in B(H) and a finite rank operator I,

commuting with T, such that Weyl's theorem holds for T, but it does not hold
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for T+F.
Define
10
T:[O S] 1 L®L->LOL
and
K0
= L,eL->Lel,
F {0 O] 9523
where S:1,—1, isan injective quasinilpotent operator and K : 1, — 1,
is defined by K (X, X, X5 coevreneee ) =(-%,0,0, e )-

Then F is of finite rank and commutes with T. Also

c(T) =0 (T)={0,1} and T, (T)y=1¢.
This implies that Weyl's theorem holds for T. We, however, have

s (T+F)=o (T+F)={0,1} andr, (T+F)={0}.

Consequently, Weyl's theorem does not hold for T+F. u
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