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ABSTRACT

In this study, we investigate Dirichlet Averages of the S-function developed and analysed by Saxena and Daiya [4],
where more general Prabhakar integrals are used in place of Riemann-Liouville integrals. In terms of Mittag-Leffler
functions, we examine and talk about its characteristics. Additionally, we demonstrate some uses for these Dirichlet
Averages of the S-function in difference-differential equations governing the dynamics of generalised renewal
stochastic processes as well as in some classical mathematical physics equations, such as the heat and free electron
laser equations.
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INTRODUCTION

A function's Dirichlet averages are an integral average of a specific kind in relation to the Dirichlet measure.
Carlson first mentioned the Dirichlet average in 1977. Numerous researchers have looked into it, including Carlson
[1, 2, 4], Zu Castel [5, 6] Massopust and Forster [6, 7], Neuman and Vanfleet [8], and others. Carlson provides a
thorough and in-depth analysis of several sorts of Dirichlet averages in his monography [3].

The present paper's goal is to explore the S-function's Dirichlet averages, S-function developed and analysed by
Saxena and Daiya [9], The S- functions are recognised to serve crucial roles in numerous applications of the
fractional calculus, much like the Mittag-Leffler type functions do. This is mostly caused by their connections to
the Mittag-Leffler functions via the Laplace and Fourier transforms.

Riemann-Liouville integrals and Dirichlet integrals, a multivariate integral and a generalisation of a beta integral,
are both used in this paper. Finally, using the fractional integrals in particular, we derive representations for the
Dirichlet averages Ry (8, B'; x, y)of the S-function.

Definitions and preliminaries used in the paper:
S-Function:
The S -function defined and studied by Saxena and Daiya [9] as follows:
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Where, k € R,a,B,y,T € C. R(a) > 0,a4,a,,..a,, by, by, ....by, R(a) > kR(7) and p < q + 1.The Pochhammer
symbol (7), defined interms of gamma function as follows:

_Irt+p (1, u=0r1tuEC
(®y = re@ {‘r(r + DT +2).... (t+pu-— 1)}

Standard simplex in R" ,n > 1: We denote the standard simplex inR® ,n> 1byE=E,=(uy , Uy, ... U, );

u =20,u, =20,.,u, =20anduy; + u, +u; +u, £1}

Dirichlet Measures : let b ec*>; K>2and let E =E;_; be the standard simplex in R¥"1 .The complex

measure u; defined by [1]
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Dirichlet average: let ' be a convex set inCandlet z=(z; , Zz5,.. Z, ) €Q™, n>2, and let f be a measurable
function on Q .Define

F(b; z) = fE _1f(uoz) d,, (u).where d,, (u) is a Dirichlet Measure.

_ _ I(b)I'(bp)...T (by) _ _
B(b)=B(by , b,... b, )= Tbyibyt b " R(bj)>0,j=1,2,3..,n
And uoz=Ytwizi+ (1 — Uy .. —Uyq ) 2y
Forn=1, f(b;z) =f(z), forn=2, we have
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Carlson [3] investigated the average for
f(2) = z*, keR,
Ry (b;z) = fEn_l(uoz)k dy,(u), (keR)
and for n= 2, Carlson proved that
(=
RiB, Blxy) = g Jy lwx + (1 —wyl*u £ (1 ~w) P~ d(u),
Where B, Ble C, min [R(B),R(B")] >0, x, ye R.

MAIN RESULTS

In this section, we are devoted to the study of the Dirichlet averages of the s- function (2.1) in the form
(@87, ray,a,..a,
M bbb BN =y pbaCuon) (0 (3.1)

Where R(B)>0,R(B')>0; x,y € R and B, Ble C.
Reimann- LiouviIIe fractional integral of order ae C, R(a) > 0 [10].

U3 X =15 )f (x—=0)* " f(t)dt, (x> a,aeR ) (3.2)
(@, B,v,7)
Representation of Ry, and M in terms of Reimann-Liouville fractional integrals. In this section we deduced
p.q
(@, B,v,7)
representations for the Dirichlet averages R,(B, B!, x,y) and M (B,B';x y)with fractional integral
p.q
operators.

Theorem 1:Let [i',ﬁ' € Complex numbers , R(f) > O, R(ﬂ') >0, and x,y be real numbers such that x > y and

(a,B,7,7)
1+Zl 1Bj 21 14,2 0,and M (B,B';x,y) and I%, be given by (3.1) and (3.2) respectively . Then the

P.q
Dirichlet average of the generalized Fox- wright functions is given by
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Where B8, Ble C, R(B) >0, R(B!) >0, x,y €Rand 1+Z] 1 B; Z] 14;2 0 (equality only holds for appropriately
bounded z).
Proof :According to equation (3.1) and3.2) we have,
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Putu(x —y) = t inabove equation, we get
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This proves the theorem.

CONCLUSION

The Mittag-Leffler function and its generalisation, the S-function, are essential to fractional calculus. It has been

show

n that one can use these functions to express the solution of a number of fundamental linear differential

equations. These functions behave as a generalisation of the exponential function while solving a fractional
differential equation. These functions are therefore essential to the fractional calculus. This paper investigates

sever

al internal links between the S-function and Hilfer derivatives of the generalised fractional integration

connected to the Gauss-hypergeometric function, in order to facilitate future research.
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