
 International Journal of Enhanced Research in Management & Computer Applications

 ISSN: 2319-7471, Vol. 11 Issue 12, December, 2022, Impact Factor: 7.751

Page | 70

Demystifying the Operational Complexity with

Distributed Tracing

(A Step Ahead in Open Telemetry)

Amit Sengupta

Senior Delivery Manager, Software Engineering, Capgemini America

ABSTRACT

Microservices provides enormous agility and flexibility to software development process. By partitioning large

applications into interdependent services which communicate via explicit network communication contracts, each

team encapsulates their implementation from the others. In practice, microservices are really a tradeoff for one set

of organizational and technical problems for others. While the benefits of microservices amount to greater

independence, clearer organizational boundaries and greater agility, such benefits do come with some distinct costs:

Loss of Traceability- As part of microservice design augmentation single end-user request is broken across multiple

processes, possibly written in multiple frameworks and implementation languages which makes it much harder to

track what exactly happened in the course of processing a request. Unlike a monolithic process, where we could gather the

complete story of how a request was handled from a single process written in a single language, we no longer have an easy

way of doing that in a microservices environment.

Increased troubleshooting spend – With the loss of traceability the act of tracking down and fixing sources of errors

inside microservice architectures can be tremendously more expensive and time-consuming than its counter-parts. To add

to this, in most cases failure data cannot be correlated in a clear manner inside microservices. Instead of an immediately

understandable stack trace, we have to work backwards from status codes and error messages propagated across the

network.

Cross-team Dependencies - Requests has to make multiple hops over the network and has to be handled by multiple

processes developed by independent teams, figuring out exactly where an error has occurred and whose responsibility it is

to fix, does become an exercise of frustration. The practice of debugging microservices often involves sitting developers

from multiple product teams down in a conference room correlating timestamped logs from multiple services. The core of

the problem really is that distributed approaches to developing software, such as microservices, really require different tools

than what we used in the past when developing monoliths. We can’t expect to attach debuggers to four different processes

and try to step-through-debug requests in that environment and that is where Distributed Tracing becomes an impeccable

requirement.

Keywords: - Distributed Tracing, Open Telemetry, Microservices Patterns, Customer Journey Analysis, Customer Success,

Enterprise Resiliency and Reliability

Concept of Distributed Tracing: -

When a request is received in a distributed system, it can go through several microservices and infrastructure components

before returning a response. Distributed tracing provides a way to visualize and track the path of requests flowing through

distributed applications.

Components of Distributed Tracing: -

The components of a distributed tracing system might vary based on the implementation, but a typical system is built up

with the below components:

Trace

A trace refers to a complete end-to-end path of a request or transaction as it flows through a distributed system. It represents

the journey of a specific operation as it traverses various components and services in a distributed architecture.

 International Journal of Enhanced Research in Management & Computer Applications

 ISSN: 2319-7471, Vol. 11 Issue 12, December, 2022, Impact Factor: 7.751

Page | 71

Span

A span represents a single operation or unit of work within a distributed system. It captures the timing and metadata

associated with a specific operation and provides a way to track and understand the behavior of individual components and

services.

Context propagation

Context propagation refers to passing contextual information between different components or services within a distributed

system. In distributed tracing, context propagation is crucial for connecting and correlating spans to construct a complete

trace of a request or transaction as it flows through various services.

Instrumentation libraries

Instrumentation libraries are software components that developers integrate into their applications to collect tracing data.

They are specifically designed to generate, collect, and manage trace data, which includes information about spans and the

overall trace.

Instrumentation libraries can automatically capture useful information such as start time, end time, and metadata about each

operation (span). They are also responsible for context propagation, ensuring that trace context is passed along with

requests as they move through different services in a distributed system.

Tracing through data collectors

These are the components that receive and store trace data, usually in a distributed datastore such as Elasticsearch or

Cassandra. Some of the available and well known tracing data collectors would be Jaeger, Zipkin, Open Telemetry

Collector, AWS X-Ray and Google Cloud Trace.

Visualization and analysis

These are the UI Based components that provide a graphical representation of the trace data, allowing developers to

visualize the flow of requests through the system and identify performance issues.

Trace Analyzer

These are tools that provide detailed analysis of trace data, allowing developers to identify bottlenecks and optimize system

performance. Some of the available trace analysis tools that are widely used are Helios, Trace

Compass, Amegraphs, Performance Co-Pilot (PCP), Grafana, Apache SkyWalking, Dynatrace.

Techniques to setup distributed tracing for microservices: -

Setting up distributed tracing across application microservices landscape would typically involve integrations for the

tracing components: -

A unique identifier is assigned to each incoming request

When a request enters your system, a unique identifier is assigned to it. This identifier tracks the request as it moves

through the system. This is called a “Trace Id”. Bellow image shows how a trace id is assigned to a request as it flows down

the downstream components.

https://www.jaegertracing.io/docs/1.43/
https://zipkin.io/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/collector/
https://aws.amazon.com/xray/
https://cloud.google.com/trace
http://gethelios.dev/?utm_source=medium&utm_medium=cloud+native+daily&utm_campaign=distributed+tracing+tool
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.eclipse.org/tracecompass/
https://www.datadoghq.com/knowledge-center/distributed-tracing/flame-graph/#:~:text=A%20flame%20graph%20visualizes%20a,fix%20bottlenecks%20in%20their%20applications.
https://pcp.io/
https://grafana.com/
https://skywalking.apache.org/
https://www.dynatrace.com/?utm_source=google&utm_medium=cpc&utm_term=dynatrace&utm_campaign=ww-brand&utm_content=none&gclsrc=aw.ds&gclid=Cj0KCQjwiZqhBhCJARIsACHHEH8qET8ZgY7PW9Wq259Yp-kJeyEYGJdDEuIHQw5KQSEeoPCjzVayVx8aArrMEALw_wcB

 International Journal of Enhanced Research in Management & Computer Applications

 ISSN: 2319-7471, Vol. 11 Issue 12, December, 2022, Impact Factor: 7.751

Page | 72

 Instrumentation libraries capture trace data

As the request moves through the system, various components and services capture trace data and add it to the request’s

trace context. This includes timestamps, service and endpoint names, and any relevant metadata. The below image depicts

the trace context.

Trace data is propagated through the system

As the request moves from one component to another, the trace context is also propagated. This allows all the components

involved in the request to add their trace data to the request’s trace context.

Trace data is collected and stored

A tracing data collector receives the trace data from each component and service involved in the request and stores it in a

distributed datastore such as Elasticsearch or Cassandra.

Trace data is visualized and analyzed

Developers can use trace visualizers and analysis tools to view the trace data and identify any performance issues or

bottlenecks in the system. Below is a screen from Helios dataflow visualization.

The above distributed tracing technique provides a way to monitor and debug complex, distributed systems and help

simplify and visualize customer journey within a complex microservices landscape contributing towards customer success.

http://gethelios.dev/?utm_source=medium&utm_medium=cloud+native+daily&utm_campaign=distributed+tracing+tool

 International Journal of Enhanced Research in Management & Computer Applications

 ISSN: 2319-7471, Vol. 11 Issue 12, December, 2022, Impact Factor: 7.751

Page | 73

Benefits of Distributed Tracing: -

The benefits of distributed tracing for software development teams are numerous.

1. Distributed tracing radically improves developer productivity and output by drastically reduce time spent

debugging and troubleshooting issues with your systems. It does makes it easy to understand the behavior of

distributed systems.

2. Distributed tracing works across multiple applications, programming languages, and transports. For Ex - Ruby on

Rails applications can propagate traces to .NET applications over HTTP, RabbitMQ, WebSockets, or other

transports and all of the relevant information can still be uploaded, decoded, and visualized by the same tracing

engine such as Zipkin.

3. Distributed tracing can also help improve time and speed to market by enabling correlation between feature

delivery with customer servicing performance.

4. Distributed tracing also facilitates excellent cross-team communication and cooperation. It eliminates costly data

silos that could otherwise hinder developer’s ability to quickly locate and fix sources of error.

REFERENCES

[1]. https://docs.openshift.com/container-platform/4.13/observability/distr_tracing/distr_tracing_arch/distr-tracing-

architecture.html

[2]. Jatin Vaghela, Security Analysis and Implementation in Distributed Databases: A Review. (2019). International

Journal of Transcontinental Discoveries, ISSN: 3006-628X, 6(1), 35-42.

https://internationaljournals.org/index.php/ijtd/article/view/54

[3]. Sravan Kumar Pala. (2016). Credit Risk Modeling with Big Data Analytics: Regulatory Compliance and Data

Analytics in Credit Risk Modeling. (2016). International Journal of Transcontinental Discoveries, ISSN: 3006-

628X, 3(1), 33-39.

[4]. Anand R. Mehta, Srikarthick Vijayakumar, A Comprehensive Study on Performance engineering in nutshell,

International Journal of All Research Education and Scientific Methods (IJARESM), ISSN: 2455-6211, Volume 7,

Issue 7, July-2019. Available at: https://www.ijaresm.com/uploaded_files/document_file/Anand_R._Mehta_iPlu.pdf

[5]. Goswami, Maloy Jyoti. "Challenges and Solutions in Integrating AI with Multi-Cloud Architectures." International

Journal of Enhanced Research in Management & Computer Applications ISSN: 2319-7471, Vol. 10 Issue 10,

October, 2021.

[6]. https://www.techtarget.com/searchitoperations/tip/Considerations-when-getting-started-with-distributed-tracing

[7]. https://traefik.io/blog/the-importance-of-distributed-tracing-and-monitoring-in-a-microservice-architecture/

[8]. Sravan Kumar Pala, “Synthesis, characterization and wound healing imitation of Fe3O4 magnetic nanoparticle

grafted by natural products”, Texas A&M University - Kingsville ProQuest Dissertations Publishing,

2014. 1572860. Available online

at: https://www.proquest.com/openview/636d984c6e4a07d16be2960caa1f30c2/1?pq-origsite=gscholar&cbl=18750

[9]. Anand R. Mehta, Srikarthick Vijayakumar, DevOps in 2020: Navigating the Modern Software Landscape,

International Journal of Enhanced Research in Management & Computer Applications ISSN: 2319-7471, Vol. 9

Issue 1, January, 2020. Available at: https://www.erpublications.com/uploaded_files/download/anand-r-mehta-

srikarthick-vijayakumar_THosT.pdf

[10]. https://middleware.io/blog/what-is-distributed-tracing/

[11]. Goswami, Maloy Jyoti. "Utilizing AI for Automated Vulnerability Assessment and Patch Management."

EDUZONE, Volume 8, Issue 2, July-December 2019, Available online at: www.eduzonejournal.com

[12]. Bharath Kumar. (2021). Machine Learning Models for Predicting Neurological Disorders from Brain Imaging Data.

Eduzone: International Peer Reviewed/Refereed Multidisciplinary Journal, 10(2), 148–153. Retrieved from

https://www.eduzonejournal.com/index.php/eiprmj/article/view/565

[13]. Jatin Vaghela, A Comparative Study of NoSQL Database Performance in Big Data Analytics. (2017). International

Journal of Open Publication and Exploration, ISSN: 3006-2853, 5(2), 40-45.

https://ijope.com/index.php/home/article/view/110

[14]. https://guides.micronaut.io/latest/micronaut-microservices-distributed-tracing-xray-maven-java.html

[15]. Sravan Kumar Pala, “Detecting and Preventing Fraud in Banking with Data Analytics tools like SASAML, Shell

Scripting and Data Integration Studio”, IJBMV, vol. 2, no. 2, pp. 34–40, Aug. 2019.

Available: https://ijbmv.com/index.php/home/article/view/61

https://docs.openshift.com/container-platform/4.13/observability/distr_tracing/distr_tracing_arch/distr-tracing-architecture.html
https://docs.openshift.com/container-platform/4.13/observability/distr_tracing/distr_tracing_arch/distr-tracing-architecture.html
https://internationaljournals.org/index.php/ijtd/article/view/54
https://www.ijaresm.com/uploaded_files/document_file/Anand_R._Mehta_iPlu.pdf
https://www.techtarget.com/searchitoperations/tip/Considerations-when-getting-started-with-distributed-tracing
https://traefik.io/blog/the-importance-of-distributed-tracing-and-monitoring-in-a-microservice-architecture/
https://www.proquest.com/openview/636d984c6e4a07d16be2960caa1f30c2/1?pq-origsite=gscholar&cbl=18750
https://www.erpublications.com/uploaded_files/download/anand-r-mehta-srikarthick-vijayakumar_THosT.pdf
https://www.erpublications.com/uploaded_files/download/anand-r-mehta-srikarthick-vijayakumar_THosT.pdf
https://middleware.io/blog/what-is-distributed-tracing/
http://www.eduzonejournal.com/
https://www.eduzonejournal.com/index.php/eiprmj/article/view/565
https://ijope.com/index.php/home/article/view/110
https://guides.micronaut.io/latest/micronaut-microservices-distributed-tracing-xray-maven-java.html
https://ijbmv.com/index.php/home/article/view/61

