Around a Nearly Norden Manifold

Ashutosh
Department of Mathematics, UGC NET Qualified (Reg. 1618260050)

Abstract

For this, we have studied a manifold that is practically a Norden manifold and obtained several significant theorems and findings. As a further contribution, we have defined a linear connection on a nearly Norden manifold and obtained some significant findings about this connection.

Keywords: Ricmannian, Curvature tensor, Torsion.

INTRODUCTION

We consider n-dimensional real differentiable manifold V_{n} of class C^{∞} endowed with a C^{∞} real vector valued function F such that
i.e.

$$
\begin{align*}
& \mathrm{F}^{2}(\mathrm{X})=-\mathrm{X} \tag{1}\\
& \overline{\overline{\mathrm{X}}}=-\mathrm{X}
\end{align*}
$$

where

$$
\mathrm{F}(\mathrm{X}) \underline{\underline{\text { def }} \overline{\mathrm{X}} \text { and ' } n \text { ' is even }}
$$

On V_{n} there exists a Ricmannian metric " g "satisfying

$$
\begin{equation*}
g(\bar{x}, \bar{y})=-g(x, y) \tag{2}
\end{equation*}
$$

then V_{n} satisfying above two equations is called an almost Norden manifold. Here equation (2) is equivalent to

$$
\begin{equation*}
\mathrm{g}(\overline{\mathrm{x}}, \mathrm{y})=\mathrm{g}(\mathrm{x}, \overline{\mathrm{y}}) \tag{3}
\end{equation*}
$$

Here $\{\mathrm{F}, \mathrm{g}\}$ is called an almost Norden structure on V_{n}. We can easily verify their structure is not \forall unique on V_{n}.

We define another structure $\{\mathrm{F}, \mathrm{g}\}$ on V_{n} such that

$$
\begin{equation*}
\mu \mathrm{F} \operatorname{def} \mathrm{~F} \mu \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{g}(\mathrm{x}, \mathrm{y}) \xlongequal{\operatorname{def}} \mathrm{g}(\mu \mathrm{x}, \mu \mathrm{y}) \tag{5}
\end{equation*}
$$

where x , y arearbitrary vector fields on V_{n} and μ is a non-singular tensor of type $(1,1)$.

Equation (6) and (7) shows that $\{\mathrm{F}, \overline{\mathrm{g}}\}$ is also an almost Norden structure on V_{n}.
Hence, almost Norden structure is not unique.

$$
\begin{align*}
& \text { By (4) we get }\left(\mu^{\prime} F\right)^{\prime} F=(F \mu)^{\prime} F \\
& \Rightarrow \quad \mu\left(F^{\prime} F\right)=F\left(\mu^{\prime} F\right) \\
& \Rightarrow \quad \mu^{\prime} \mathrm{F}^{2}=-(\mathrm{F} \mu)=\text { (F F) } \mu=\mathrm{F}^{2} \mu \\
& \Rightarrow \quad \mu^{\prime} F^{2}=-\mu \\
& \Rightarrow \quad F^{2}=-I_{n} \tag{6}\\
& \text { By (5) we get }{ }^{\prime} g\left({ }^{\prime} \mathrm{Fx}, \mathrm{Fy}\right)=\mathrm{g}\left(\mu^{\prime} \mathrm{Fx}, \mu^{\prime} \mathrm{Fy}\right) \\
& =g(F \mu x, F \mu y) \\
& =-\mathrm{g}(\mu \mathrm{x}, \mu \mathrm{y}) \\
& =-\overline{\mathrm{g}}(\mathrm{x}, \mathrm{y}) \\
& \text { i.e., } \tag{7}\\
& \overline{\mathrm{g}}(\mathrm{Fx}, \mathrm{Fy})=-\overline{\mathrm{g}}(\mathrm{x}, \mathrm{y})
\end{align*}
$$

We define associate tensor of $(1,1)$ type tensor field F as
${ }^{\prime} F(x, y)=g(\bar{x}, y)$ then we have
${ }^{\prime} F(x, y)=g(\bar{x}, y)=g(x, \bar{y})=g(\bar{y}, x)={ }^{\prime} F(y, x)$
i.e. $\quad \mathcal{F}(x, y)={ }^{\prime} F(y, x)$
i.e. $\quad \mathrm{F}(\mathrm{x}, \mathrm{y})$ is symmetric,
and also we have
${ }^{\prime} F(\bar{x}, \bar{y})=g(\bar{x}, \bar{y})=g(-x, \bar{y})=-g(x, \bar{y})$

$$
\begin{aligned}
& =-\mathrm{g}(\overline{\mathrm{x}}, \mathrm{y}) \\
& =-\mathrm{F}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

i.e. $\quad \mathrm{F}(\overline{\mathrm{x}}, \overline{\mathrm{y}})=-\mathrm{F}(\mathrm{x}, \mathrm{y})$
$\therefore \quad \mathrm{F}$ is pure in both slots.
Theorem 1 :If D is Ricmannian connection on an almost Norden manifold V_{n} then we have
(a) $\quad\left(D_{x}^{\prime} F\right)(y, z)=g\left(D_{x} F\right)(y, z)$
(b) $\quad\left(\mathrm{D}_{\mathrm{x}}{ }^{\prime} \mathrm{F}\right)(\overline{\mathrm{y}}, \mathrm{z})=-\left(\mathrm{D}_{\mathrm{x}}{ }^{\prime} \mathrm{F}\right)(\mathrm{y}, \overline{\mathrm{z}})$
(c) $\quad\left(\mathrm{D}_{\mathrm{x}}{ }^{\prime} \mathrm{F}\right)(\overline{\mathrm{y}}, \overline{\mathrm{z}})=\left(\mathrm{D}_{\mathrm{x}}{ }^{\prime} \mathrm{F}\right)(\mathrm{y}, \mathrm{z})$

Proof:(a) We have ${ }^{\prime} F(y, z)=g(\bar{y}, z)$
$\left(D_{x}{ }^{\prime} F\right)(y, z)+{ }^{\prime} F\left(D_{x} y, z\right)+{ }^{\prime} F\left(y, D_{x} z\right)=g\left(\left(D_{x} F\right) y, z\right)+g\left(\overline{D_{x} y}, z\right)+g\left(\bar{y}, D_{x} z\right)$
$\Rightarrow \quad\left(D_{x}{ }^{\prime} F\right)(y, z)=g\left(\left(D_{x} F\right) y, z\right)$
(b) Replacing y by $\overline{\mathrm{y}}$ in result (a)

$$
\begin{aligned}
\left(D_{x}^{\prime} F\right)(\bar{y}, z)= & g\left(\left(D_{x} F\right) \bar{y}, z\right) \\
& =-g\left(\overline{\left(D_{x} F\right) y}, z\right) \\
& =-g\left(\left(D_{x} F\right) y, \bar{z}\right) \\
& =-\left(D_{x}^{\prime} F\right)(y, \bar{z})
\end{aligned}
$$

(c) Replacing z by $\overline{\mathrm{z}}$ in (b) we get the required result.

Theorem 2 :On an almost Norden manifold V_{n} we have
(a) $\quad \mathrm{N}(\overline{\mathrm{x}}, \overline{\mathrm{y}})=-\overline{\mathrm{N}(\mathrm{x}, \mathrm{y})}=-\overline{\mathrm{N}(\overline{\mathrm{x}}, \mathrm{y})}=-\overline{\mathrm{N}(\mathrm{x}, \overline{\mathrm{y}})}$
(b) $\quad \mathrm{N}(\overline{\mathrm{x}}, \overline{\mathrm{y}}, \mathrm{z})=-\mathrm{N}(\mathrm{x}, \mathrm{y}, \overline{\mathrm{z}})=-\mathrm{N}(\overline{\mathrm{x}}, \mathrm{y}, \overline{\mathrm{z}})=-\mathrm{N}(\mathrm{x}, \overline{\mathrm{y}}, \overline{\mathrm{z}})$
(c) $\quad \mathrm{N}(\overline{\mathrm{x}}, \overline{\mathrm{y}}, \overline{\mathrm{z}})={ }^{\mathrm{N}} \mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{z})={ }^{\mathrm{N}} \mathrm{N}(\overline{\mathrm{x}}, \mathrm{y}, \mathrm{z})={ }^{\mathrm{N}} \mathrm{N}(\mathrm{x}, \overline{\mathrm{y}}, \mathrm{z})$
where $N(x, y, z) \xlongequal{\text { def }} g(N(x, y), z)$.
Proof :We know that Nijenheu's tensor w.r.t. $(1,1)$ type tensor field F is defined as
$\mathrm{N}(\mathrm{x}, \mathrm{y})=[F \mathrm{~F}, F y]+\mathrm{F}^{\prime}[\mathrm{x}, \mathrm{y}]-\mathrm{F}[F \mathrm{~F}, \mathrm{y}]-\mathrm{F}[\mathrm{x}, F y]$
i.e. $\quad N(x, y)=[\bar{x}, \bar{y}]+\overline{[x, y]}-\overline{[\bar{x}, y]}-\overline{[x, \bar{y}]}$

Results (a), (b), (c) can be easily derived from this definition.
Theorem 3 :On an almost Norden manifold if V is constravarient almost analytic term $\mathrm{L}_{\mathrm{V}} \mathrm{g}$ is pure in both slots.
Proof :Since V is contra variant almost analytic, therefore we get

$$
\begin{array}{lll}
\mathrm{L}_{\mathrm{V}} \mathrm{~F}=0 & \Leftrightarrow & \left(\mathrm{~L}_{\mathrm{V}} \mathrm{~F}\right) \mathrm{x}=0 \\
& \Leftrightarrow & {[\mathrm{v}, \overline{\mathrm{x}}]=\overline{[\mathrm{v}, \mathrm{x}]}}
\end{array}
$$

where " L " is Lic derivative and x is arbitrary vector field.
Taking Lic derivative of $g(\bar{x}, \bar{y})$ w.r.t. V
$\operatorname{L}_{V}(g(\bar{x}, \bar{y}))=\left(\operatorname{L}_{V} g\right)(\bar{x}, \bar{y})+g\left(L_{V} \bar{x}, \bar{y}\right)+g\left(\bar{x}, L_{V} \bar{y}\right)$
$\mathrm{V}(\mathrm{g}(\overline{\mathrm{x}}, \overline{\mathrm{y}}))=\left(\mathrm{L}_{\mathrm{V}} \mathrm{g}\right)(\overline{\mathrm{x}}, \overline{\mathrm{y}})+\mathrm{g}([\mathrm{v}, \overline{\mathrm{x}}], \overline{\mathrm{y}})+\mathrm{g}(\overline{\mathrm{x}},[\mathrm{v}, \overline{\mathrm{y}}])$
$\Rightarrow V(g(\bar{x}, \bar{y}))=\left(L_{v} g\right)(\bar{x}, \bar{y})+g(\overline{[v, x]}, \bar{y})+g(\bar{x}, \overline{[v, y]})$
$\Rightarrow\left(\mathrm{L}_{\mathrm{v}} \mathrm{g}\right)(\overline{\mathrm{x}}, \overline{\mathrm{y}})=\mathrm{V}(\mathrm{g}(\overline{\mathrm{x}}, \overline{\mathrm{y}}))-\mathrm{g}(\overline{[\mathrm{v}, \mathrm{x}]}, \overline{\mathrm{y}})-\mathrm{g}(\overline{\mathrm{x}}, \overline{[\mathrm{v}, \mathrm{y}]})$
$\Rightarrow\left(L_{V} g\right)(\bar{x}, \bar{y})=-V(g(x, y))+g([v, x], y)+g(x,[v, y])$
$\Rightarrow\left(\mathrm{L}_{\mathrm{V}} \mathrm{g}\right)(\overline{\mathrm{x}}, \overline{\mathrm{y}})=-\left(\mathrm{L}_{\mathrm{V}} \mathrm{g}\right)(\mathrm{x}, \mathrm{y})$.

Theorem 4 :If the vector field V is both contra-variant almost analytic and covariant almost analytic then $d^{\prime} F(x, y, v)=z\left(\left(D_{\bar{x}} v\right) y-\left(D_{x} v\right) \bar{y}\right)$
where $\mathrm{v}(\mathrm{x})=\mathrm{g}(\mathrm{x}, \mathrm{y})$ and D is Riemannian connection on V_{n}.
Proof :Since V is contra-variant almost analytic

$$
\begin{align*}
& \therefore \text { we have } L_{v} F=0 \quad \Leftrightarrow \quad\left(L_{V} F\right) x=0 \quad \Leftrightarrow \quad[v, \bar{x}]=\overline{[v, x]} \\
& \\
& \quad \Leftrightarrow \quad D_{\bar{x}} v=\left(D_{v} F\right) x+\overline{D_{x} v} \\
& \Rightarrow \quad \\
& \Rightarrow \quad\left(D_{\bar{x}} v, y=\left(D_{v} F\right)(x, y)+g\left(D_{x} v, \bar{y}\right)\right. \\
& \Rightarrow \quad\left(D_{\bar{x}} v\right)(y)=\left(D_{v} F\right)(x, y)+g\left(D_{x} v\right)(\bar{y}) \tag{1}\\
& \Rightarrow \quad\left(D_{v} F\right)(x, y)=\left(D_{\bar{x}} v\right) y-\left(D_{x} v\right)(\bar{y})
\end{align*}
$$

More we have used the result

$$
\left(D_{x} v\right)(y)=g\left(D_{x} V, y\right)
$$

Now, it is given " v " is covariant almost analytic,
\therefore we have

$$
\begin{array}{ll}
& v\left(\left(D_{x} F\right) y-\left(D_{y} F\right) x\right)=\left(D_{\bar{x}} v\right) y-\left(D_{x} v\right) \bar{y} \\
\Rightarrow \quad & v\left(\left(D_{x} F\right) y-\left(D_{y} F\right) x\right)=\left(D_{\bar{x}} v\right) y-\left(D_{x} v\right) \bar{y} \\
\Rightarrow \quad & \left(D_{x}^{\prime} F\right)(y, v)-\left(D_{y}^{\prime} F\right)(x, v)=\left(D_{\bar{x}} v\right)(y)-\left(D_{x} v\right)(\bar{y}) \\
\Rightarrow \quad & \left(D_{x}^{\prime} F\right)(y, v)+\left(D_{y}^{\prime} F\right)(x, v)=\left(D_{\bar{x}} v\right)(y)+\left(D_{x} v\right)(\bar{y}) \tag{2}\\
& \text { Adding (1) and (2) we get the required result. }
\end{array}
$$

Theorem 5 :If 1-form w is covariant almost analytic on an almost Norden manifold V_{n}, then

$$
\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{w})=0
$$

where

$$
\begin{aligned}
w(x) & \xlongequal{\text { def }} g(x, w) \\
& N(x, y, w)=g(N(x, y), w)
\end{aligned}
$$

Proof: We have

$$
\begin{align*}
& N(x, y)=\left(D_{\bar{x}} F\right) y-\left(D_{\bar{y}} F\right) x+\overline{\left(D_{y} F\right) x}-\overline{\left(D_{x} F\right) y} \\
& \Rightarrow g(N(x, y), w)=g\left(\left(D_{\bar{x}} F\right) y, w\right)-g\left(\left(D_{\bar{y}} F\right) x, w\right)+g\left(\overline{\left(D_{y} F\right) x}, w\right)-g\left(\overline{\left(D_{x} F\right) y}, w\right) \\
& \Rightarrow N(x, y, w)=w\left(\left(D_{\bar{x}} F\right) y\right)-w\left(\left(D_{\bar{y}} F\right) x\right)-w\left(\left(D_{y} F\right) \bar{x}\right)+w\left(\left(D_{y} F\right) \bar{y}\right) \tag{1}
\end{align*}
$$

Since " w " is covariant almost analytic
\therefore we have

$$
\begin{equation*}
w\left(D_{x} F\right) y-w\left(D_{y} F\right) x=\left(D_{\bar{x}} w\right) y-\left(D_{x} w\right) \bar{y} \tag{2}
\end{equation*}
$$

Replacing x by $\overline{\mathrm{X}}$ in (2)
$w\left(\left(D_{\bar{x}} F\right) y\right)-w\left(\left(D_{y} F\right) \bar{x}\right)=-\left(D_{x} w\right) y-\left(D_{\bar{x}} w\right) \bar{y}$
Replacing y by $\overline{\mathrm{y}}$ in (2)

$$
\begin{equation*}
w\left(\left(D_{x} F\right) \bar{y}\right)-w\left(\left(D_{\bar{y}} F\right) x\right)=\left(D_{\bar{x}} w\right) \bar{y}+\left(D_{x} w\right) y \tag{4}
\end{equation*}
$$

equation (3) $+(4)$ we get
$\left(\left(D_{\bar{x}} F\right) y\right)-w\left(\left(D_{y} F\right) \bar{x}\right)+w\left(\left(D_{x} F\right) \bar{y}\right)-w\left(\left(D_{\bar{y}} F\right) x\right)=0$

Using equation (5) in (1) we get

$$
\mathrm{N}(\mathrm{x}, \mathrm{y}, \mathrm{w})=0 .
$$

Theorem 6 :On an almost Norden manifold we have
$\left(K_{x y}{ }^{\prime}\right)(\mathrm{z}, \mathrm{W})={ }^{\mathrm{K}} \mathrm{K}(\mathrm{x}, \mathrm{y}, \overline{\mathrm{z}}, \mathrm{w})-{ }^{\mathrm{K}} \mathrm{K}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \overline{\mathrm{w}})$
where $K_{x y}=D_{x} D_{y}-D_{y} D_{x}-D_{[x, y]}$.
Proof : We have $\mathrm{K}_{\mathrm{xy}} \mathrm{z}=\mathrm{K}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
where $K_{x y}=D_{x} D_{y}-D_{y} D_{x}-D_{[x, y]}$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{K}(\mathrm{x}, \mathrm{y}, \overline{\mathrm{z}})=\left(\mathrm{K}_{\mathrm{xy}} \mathrm{~F}\right)(\mathrm{z})+\overline{\mathrm{K}(\mathrm{x}, \mathrm{y}, \mathrm{z})} \\
\Rightarrow & \mathrm{g}(\mathrm{~K}(\mathrm{x}, \mathrm{y}, \overline{\mathrm{z}}), \mathrm{w})=\mathrm{g}\left(\left(\mathrm{~K}_{\mathrm{xy}} \mathrm{~F}\right)(\mathrm{z}), \mathrm{w}\right)+\mathrm{g}(\overline{\mathrm{~K}(\mathrm{x}, \mathrm{y}, \mathrm{z})}, \mathrm{w}) \\
\Rightarrow & \mathrm{K}(\mathrm{x}, \mathrm{y}, \overline{\mathrm{z}}, \mathrm{w})=\left(\mathrm{K}_{\mathrm{xy}} \mathrm{~F}\right)(\mathrm{z}, \mathrm{w})+\mathrm{K}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \overline{\mathrm{w}}) \\
\Rightarrow & \left(\mathrm{K}_{\mathrm{xy}} \mathrm{~F}\right)(\mathrm{z}, \mathrm{w})=\mathrm{K}_{\mathrm{K}} \mathrm{~K}(\mathrm{x}, \mathrm{y}, \overline{\mathrm{z}, \mathrm{w}, \mathrm{w})-\mathrm{K}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \overline{\mathrm{w}})}
\end{array}
$$

Theorem 7 :If D is Ricmannian connection on an almost Norden manifold V_{n} we define connection B on V_{n} as

$$
\mathrm{B}_{\mathrm{x}} \mathrm{Y}=\mathrm{D}_{\mathrm{x}} \mathrm{y}+\mathrm{H}(\mathrm{x}, \mathrm{y})
$$

where " H " is a vector valued bilinear function then its torsion is given by
(i) $\mathrm{S}(\mathrm{x}, \mathrm{y})=\mathrm{H}(\mathrm{x}, \mathrm{y})-\mathrm{H}(\mathrm{y}, \mathrm{x})$
(ii) $\left.\quad \mathrm{S}(\mathrm{x}, \mathrm{y}, \mathrm{z})={ }^{\prime} \mathrm{H}(\mathrm{x}, \mathrm{y}, \mathrm{z})\right)^{\top} \mathrm{H}(\mathrm{y}, \mathrm{x}, \mathrm{z})$

Proof:Torsion ' S ' of connection B is given by
$S(x, y)=B_{x} y-B_{y} x-[x, y]$

$$
\begin{aligned}
& =D_{x} y+H(x, y)-D_{y} x-H(y, x)-[x, y] \\
& =H(x, y)-H(y, x)+D_{x} y-D_{y} x-[x, y] \\
& =H(x, y)-H(y, x)+0
\end{aligned}
$$

$S(x, y)=H(x, y)-H(y, x)$
$\Rightarrow \quad \mathrm{g}(\mathrm{S}(\mathrm{x}, \mathrm{y}), \mathrm{z})=\mathrm{g}(\mathrm{H}(\mathrm{x}, \mathrm{y}), \mathrm{z})-\mathrm{g}(\mathrm{H}(\mathrm{y}, \mathrm{x}), \mathrm{z})$
$\Rightarrow \quad \mathrm{S}(\mathrm{x}, \mathrm{y}, \mathrm{z})={ }^{\mathrm{H}} \mathrm{H}(\mathrm{x}, \mathrm{y}, \mathrm{z})-\mathrm{H}(\mathrm{y}, \mathrm{x}, \mathrm{z})$.
Theorem 8: On an almost Nordem manifold V_{n}. If the connection B satisfy $B_{x} g=0$ then
(a) $\quad \mathrm{H}(\mathrm{x}, \mathrm{y}, \mathrm{z})+{ }^{\top} \mathrm{H}(\mathrm{x}, \mathrm{z}, \mathrm{y})=0$
(b) $\quad{ }^{\prime} \mathrm{S}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{-}^{\prime} \mathrm{S}(\mathrm{y}, \mathrm{z}, \mathrm{x}) \mathrm{C}^{\prime} \mathrm{S}(\mathrm{z}, \mathrm{x}, \mathrm{y})=2^{\prime} \mathrm{H}(\mathrm{x}, \mathrm{y}, \mathrm{z})=2 \mathrm{~g}\left(\mathrm{~B}_{\mathrm{x}} \mathrm{y}, \mathrm{z}\right)-2 \mathrm{~g}\left(\mathrm{D}_{\mathrm{x}} \mathrm{y}, \mathrm{z}\right)$

Proof : Taking covariant derivative of $g(y, z)$ w.r.t. connection B and Riemannion connection D along x we get $\mathrm{x}(\mathrm{g}(\mathrm{y}, \mathrm{z}))=\left(\mathrm{B}_{\mathrm{x}} \mathrm{g}\right)(\mathrm{y}, \mathrm{z})+\mathrm{g}\left(\mathrm{B}_{\mathrm{x}} \mathrm{y}, \mathrm{z}\right)+\mathrm{g}\left(\mathrm{y}, \mathrm{B}_{\mathrm{x}} \mathrm{z}\right)$
and
$x(g(y, z))=\left(D_{x} g\right)(y, z)+g\left(D_{x} y, z\right)+g\left(y, D_{x} z\right)$
equation (1) - (2)
$0=g\left(B_{x} y-D_{x} y, z\right)+g\left(y, B_{x} z-D_{x} z\right)$
$\Rightarrow \quad 0=\mathrm{g}(\mathrm{H}(\mathrm{x}, \mathrm{y}), \mathrm{z})+\mathrm{g}(\mathrm{y}, \mathrm{H}(\mathrm{x}, \mathrm{z}))$
$\Rightarrow \quad 0={ }^{\prime} \mathrm{H}(\mathrm{x}, \mathrm{y}, \mathrm{z})+{ }^{\prime} \mathrm{H}(\mathrm{x}, \mathrm{z}, \mathrm{y})$
Now we have
$\mathrm{S}(\mathrm{x}, \mathrm{y})=\mathrm{H}(\mathrm{x}, \mathrm{y})-\mathrm{H}(\mathrm{y}, \mathrm{x})$
${ }^{\prime} \mathrm{S}(\mathrm{x}, \mathrm{y}, \mathrm{z})={ }^{\prime} \mathrm{H}(\mathrm{x}, \mathrm{y}, \mathrm{z})-{ }^{\prime} \mathrm{H}(\mathrm{y}, \mathrm{x}, \mathrm{z})$
By cyclic rotation of x, y, z in above we get
'S $(\mathrm{y}, \mathrm{z}, \mathrm{x})={ }^{\prime} \mathrm{H}(\mathrm{y}, \mathrm{z}, \mathrm{x})-{ }^{\prime} \mathrm{H}(\mathrm{z}, \mathrm{y}, \mathrm{x})$
${ }^{\prime} \mathrm{S}(\mathrm{z}, \mathrm{x}, \mathrm{y})={ }^{\prime} \mathrm{H}(\mathrm{y}, \mathrm{z}, \mathrm{x})-\mathrm{H}(\mathrm{x}, \mathrm{z}, \mathrm{y})$
equation (4) - (5) + (6) we get
${ }^{\prime} \mathrm{S}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{C}^{\prime} \mathrm{S}(\mathrm{y}, \mathrm{z}, \mathrm{x})+{ }^{\prime} \mathrm{S}(\mathrm{z}, \mathrm{x}, \mathrm{y})=2^{\prime} \mathrm{H}(\mathrm{x}, \mathrm{y}, \mathrm{z})=2 \mathrm{~g}(\mathrm{H}(\mathrm{x}, \mathrm{y}), \mathrm{z})$

$$
\begin{aligned}
& =2 g\left(B_{x} y-D_{x} y, z\right) \\
& =2 g\left(B_{x} y, z\right)-2 g\left(D_{x} y, z\right)
\end{aligned}
$$

REFERENCES

[1]. Mishra, R.S. : Structure on a differentiable manifold and their application, Chandrama Prakashan, Allahabad, 1984.
[2]. De, U.C. :Complex and contact manifold, Narora Publication.
[3]. Yano, K. : Differential Geometry on complex and almost complex spaces, Pergamon Press, New York, 1965.
[4]. Prakash, S. and Singh, S.D. : Tensor of type $(0,4)$ on an almost unified para-Norden contact metric manifold. Int. Jour. Math. Ana., Vol. 4, 2010, pp. 657-670.

