Squares of codes associated to Grassmannians over F2

Dattatraya Sadashivrao Mangnale

Asst. Teacher Mahatma Gandhi Secondary and Higher Secondary School Mudkhed (Jn.) Dist: Nanded (MH) India

Abstract

In this paper we develop the formalism of product of linear codes under component wise multiplication. The square $C^{*^{2}}$ of a linear error correcting code C is the linear code spanned by the coordinate-wise products of every pair of (non necessarily distinct) word \sin Grassmann binary code C is studied.

Product of linear codes
Schur Product: Let F be any field and an integer $n 1$. Let de note componen-twise multiplication in F^{n}, i.e.

$$
\left(x_{1}, x_{2}, \cdots, x_{n}\right) *\left(y_{1}, y_{2}, \cdots, y_{n}\right)=\left(x_{1} y_{1}, \cdots, x_{n} y_{n}\right) . \quad \geq \quad *
$$

This is also called Schur Product. Let C, D be linear codes over F_{q}, then we define their product $C * D$ as the set

$$
\{c * d: c \in C, d \in D\}
$$

Example Consider the codes $C=\{(0,0,0,0),(1,0,1,1),(0,1,1,0),(1,1,0,1)\}$ and
$D=\{(0,0,0,0),(1,0,0,0),(0,1,1,1),(1,1,1,1)\} \subseteq \mathrm{F}^{4}$ then the product is given by $C * D=\{(0,0,0,0),(1,0,0,0),(0,0,1,1),(1,0,1,1),(0,1,1,0),(0,1,0,1)$,
$(1,1,0,1)\}$.
Proposition 0.1(Bounds on dimension and min. distance)(i)dimC $\leq \operatorname{dimC}{ }^{2} \leq$

$(\operatorname{dimC}) \cdot(\operatorname{dimC}+1)$

2
(ii) $d\left(C^{* 2}\right) \leq d(C)$

Proof Let $\operatorname{dim} C=k$,fix the basis $\quad g_{1}, g_{2}, \ldots, g_{k} \quad$ for C. The corresponding F_{q} system of generators for $C^{*}{ }^{2}$ is $g_{i}\left\{\quad * \quad\left\{g_{j}: 1_{\leq} \leq \dot{j} \dot{X}^{\prime}\right\}_{\}} k\right.$,therefore, $\operatorname{dim}\left(C^{*^{2}}\right) \leq\left|\left\{g_{i} * g_{j}: 1 \leq i \leq j \leq k\right\}\right|$.
Corresponding to g_{1}, we obtain k generators of the form $g_{1} * g_{j}$, for g_{2} we get $k-1$ generators $g_{2} * g_{j}$, and soon. Thus, the total number of generators
$g_{i} * g_{j} ;(1 \leq i \leq j \leq k)$ isequalto $k+(k-1)+\ldots+3+2+1=\frac{k(k+1)}{}$ hence
$\operatorname{dim} C^{* 2} \leq \frac{k(k+1)}{2}=(\operatorname{dim} C)_{2}(\operatorname{dim} C+1)$
Now, themap $c>\rightarrow c * c$ isinjective, anditisclearthat $C \subseteq C^{*^{2}}$, thereforedim $C \leq$
$\operatorname{dim} C^{*^{2}} \ldots$ (2).Ther fore from(1)and(2)weget $\operatorname{dim} C \leq \operatorname{dim} C^{*^{2}} \leq(\operatorname{dim} C) \cdot(\operatorname{dim} C+1)$

Proposition 0.2(Singleton-like Bound) It hold sthatd $\left(C^{*}{ }^{2}\right) \leq \max \{1, n-2 d i m C+2\}$
Note: For very small dimension of C or $C^{*^{2}}$ the boundi sachieved.
Proposition 0.3Suppose that $d\left(C^{*^{2}}\right)>1$. If $d\left(C^{*^{2}}\right)=n \quad 2 \operatorname{dim} C+2$, then C is either a Reed-Solomon code or a direct sum of self-dual codes, where self duality is relative to a non-degenerate bilinear form which is not necessarily the standard inner product. Furthermore, if in addition $\operatorname{dimC2}$ and $d\left(C^{*}\right) 3$, then C is a ReedSolomon code.
Squares of Reed-Solomon codes are infact ag a in Reed-Solomon codes. Givenintegers $0 \leq m<n$, a finite field Fofcardinality $|\mathrm{F}| \geq n$ and avector $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right) \in \mathrm{F}^{n}$

$$
\begin{equation*}
\alpha_{i} v_{0} * v_{i}=0 \tag{1}
\end{equation*}
$$

thenforall $j=1, \ldots, m$

$$
\begin{equation*}
\sum_{i=1}^{h} \alpha_{i} v 0, j v i, j=0 \Rightarrow \sum_{i=0}^{h} \alpha i v i, j=0 \tag{2}
\end{equation*}
$$

$\operatorname{as} v_{0, j} /=0 ;$ therefore ${ }_{i=1}^{\Sigma_{h}} \quad \alpha_{i} v_{i}=$ Oandsincethe v^{\prime} sarelinearlyindependentthis
yields $\alpha_{i}=$ Oforalli $=1, \cdots, h$.

Corollary0.5LetCbeanMDS $[n, k]_{q}$ code.If $2 k-1 \leq n t h e n t h e d i m e n s i o n o f$
product $k^{*} \geq 2 k-1$.
Proof Let G be a generator matrix for C, written as

$$
\left(\begin{array}{lll}
1 & & \\
& \ddots & \\
& & 1
\end{array}\right)
$$

Where $G^{\perp} \in M_{k, n-k}\left(\mathrm{~F}_{q}^{*}\right)$ (by MDS hypothesis).The MDS hypothesisand $2 k-1 \leq n$ imply that $k \leq d$, which implies that any $k-1$ rows of G are linearly independent .Hence we can apply the previouslem machoosingas v_{0}, \ldots, v_{k-1} anysetofrows and
conclude.
Example Let $k \leq n \leq q$, fix n distinct elements $x_{1}, \ldots, x_{n} \in F_{q}$ and let Cbe theReed-Solomon[$\left.n, k\right]_{q}$ code generated by them atrix

$$
\mathrm{G}=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
x_{1} & \cdots & x_{n} \\
\vdots & & \vdots \\
x_{1}^{k-1} & \cdots & x_{n}^{k-1}
\end{array}\right)
$$

Then C * is generated by

$$
G^{*}=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
x_{n} & \cdots & x_{n} \\
\vdots & & \vdots \\
x_{1}^{2 k-2} & \cdots & x_{n}^{2 k-2}
\end{array}\right)
$$

in perticular , $\mathrm{rkG} *=\min \{2 k-1, n\}$. Hence , if $2 k-1 \leq n, C *$ is a Reed-Solomon $[n, 2 k-1] q$ code.

Grassmanians and Grassman codes

The Grassmanian $G^{\prime}, m(F)$ is the set of `- dimensional linear subspace of a m - dimensional vector space over a field F .

If $\mathrm{F}=\mathrm{Fq}$ then we can find its cardinality $\left|G_{l, m}(F q)\right|$ which is given by $\left|G_{l, m}(\mathrm{Fq})\right|=$

$$
\left[\frac{m}{l}\right] \quad q=\frac{\left(q^{m}-1\right)\left(q^{m}-q\right) \cdots\left(q^{m}-q^{l-1}\right)}{\left(q^{l}-1\right)\left(q^{l}-q\right) \cdots\left(q^{l}-q^{l-1}\right)}
$$

Grassmannians as a projective variety can be viewed as follows:
Fix a basis $\{e 1, e 2, \ldots, e m\}$ of V. Let $W \in G l, m$ and let $\{v 1, v 2, \ldots, v\}$ be a basis of W. This basis gives rise a $l \times m$ matrix Aw = (aij) of rankl. Now, fix the indexing set $\mathrm{I}(\mathrm{l}, \mathrm{m})=\left\{\alpha=\left(\alpha 1, \alpha 2, \ldots \alpha_{l}\right) \in Z^{l}: 1 \leq \alpha 1 \leq \ldots \leq \alpha^{\prime} \leq m\right\}$ be an indexing set [ordered, say lexicographically] for the points of p_{k}^{q}. Given any $\alpha \in I(l, \mathrm{~m})$ and any $l \times \mathrm{m}$ matrix $\mathrm{A}=$ (aij), let $p \alpha(a)=\alpha-$ th minor of $A:=\operatorname{det}(a i \alpha j) 1 \leq i ; j \leq l$.then $p(W)=(p \alpha(A W)) \alpha \in I(l, m) \in p_{\mathrm{Fq}}^{k-1}$ is called Plücker coordinate of W . The map $\mathrm{W} \rightarrow \mathrm{p}(\mathrm{W})$ of $\mathrm{Gl}, \mathrm{m}(\mathrm{Fq}) \rightarrow p_{\mathrm{Fq}}^{k-1}$ is an injective map and its image equals the zero of locus of certain quadratic polynomials, this map is then called as Plücker embedding.

Grassman Code:

The non degenerate [n, k]q -code corresponding to the projective system defined by $G_{l, m}(\mathrm{Fq})$ (with its Plücker embedding) is denoted by $\mathrm{C}(l, \mathrm{~m})$ and is Grassman Code.

Computing $\mathrm{C}(2,4) * 2$

$C(2,4)(F 2)$ is the Grassmann code obtained from Grassmannian $G(2,4)(F 2)$, The Plucker coordinates of $G(2,4)$ in $P_{F 2}^{5}$ have been computed here:

$$
p 1=(1,0,0,0,0,0), p 2=(0,1,0,0,0,0), p 3=(0,0,1,0,0,0), \cdots p 35=(1,1,1,1,1,0)
$$

These Plucker coordinates gives us a generator matrix of order 6×35 given below:

$$
\left(\begin{array}{ccccc}
& & & & \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
p_{1} & p_{2} & p_{3} & \cdots & p_{35} \\
\vdots & \vdots & \vdots & \cdots & \vdots
\end{array}\right)
$$

The dimension k of this code is 6 and the length n is 35 . Here, we have calculated the dimension of $\mathrm{C} * 2$ as 21 and computed the generator matrix of order 6×35.

REFERENCES

[1]. C.T. Ryan, An application of Grassmann varieties to Coding Theory, Congr. Numer.57(1987),257-271
[2]. C.T. Ryan, Projective codes based on Grassmann varieties, Congr. Numer.57(1987),237-279.
[3]. I. Cascudo, On Squares of cyclic codes, IEEE Trans. Inform. Theory, 65(2) (2019), 1034-1047.

