

Squares of codes associated to Grassmannians over F2

Dattatraya Sadashivrao Mangnale

Asst. Teacher Mahatma Gandhi Secondary and Higher Secondary School Mudkhed (Jn.) Dist: Nanded (MH) India

ABSTRACT

In this paper we develop the formalism of product of linear codes under component wise multiplication. The square C^{*2} of a linear error correcting code C is the linear code spanned by the coordinate-wise products of every pair of (non necessarily distinct) word sin Grassmann binary code C is studied.

Product of linear codes

Schur Product: Let F be any field and an integer n1. Let de note componen-twise multiplication in F^n , i.e.

$$(x_1,x_2,\cdots,x_n)*(y_1,y_2,\cdots,y_n)=(x_1,y_1,\cdots,x_n,y_n). \geq x_1,x_2,\cdots,x_n,y_n$$

This is also called Schur Product. Let C, D be linear codes over F_q , then we define their product C*D as the set

$$\{c*d:c\in C,d\in D\}$$

Example Consider the codes $C = \{(0,0,0,0), (1,0,1,1), (0,1,1,0), (1,1,0,1)\}$ and

 $D=\{(0,0,0,0),(1,0,0,0),(0,1,1,1),(1,1,1,1)\}\subseteq F^4$ then the product is given by

 $C*D=\{(0,0,0,0),(1,0,0,0),(0,0,1,1),(1,0,1,1),(0,1,1,0),(0,1,0,1),$

(1,1,0,1).

Proposition 0.1(Bounds on dimension and min. distance)(i) $dimC \le dimC^{*2} \le \frac{(dimC).(dimC+1)}{(dimC)}$

 $(ii)d(C^{*2}) \leq d(C)$

Proof Let dim C = k, fix the basis $g_1, g_2, ..., g_k$ for C. The corresponding F_q system of generators for C^{*^2} is g_i $\{g_j: 1 \leq \underline{i} \quad \underline{j}\}\}$ k, therefore, $\dim(C^{*^2}) \leq |\{g_i * g_i: 1 \leq i \leq j \leq k\}|$.

Corresponding to g_1 , we obtain k generators of the form $g_1 * g_j$, for g_2 we get k-1 generators $g_2 * g_j$, and soon. Thus, the total number of generators

$$g_i * g_j; (1 \le i \le j \le k)$$
 is equal to $k + (k-1) + ... + 3 + 2 + 1 = \frac{k(k+1)}{2}$ hence

$$dimC^{*2} \le \frac{k(k+1)}{2} = \frac{(dimC) \cdot (dimC+1)}{2}$$

Now, themap $c \rightarrow c * c$ is injective, and it is clear that $C \subseteq C^{*2}$, the <u>refore dim C</u> \leq

$$dimC^{*2}...$$
(2). Ther fore from (1) and (2) we get $dimC \le dimC^{*2} \le (dimC).(dimC+1)$

Proposition 0.2(Singleton-like Bound) It hold sthatd $(C^*) \le max\{1, n-2dimC+2\}$

Note: For very small dimension of $CorC^{*2}$ the boundi sachieved.

Proposition 0.3Suppose that $d(C^{*2}) > 1$. If $d(C^{*2}) = n$ 2dimC + 2, then C is either a Reed-Solomon code or a direct sum of self-dual codes, where self duality is relative to a non-degenerate bilinear form which is not necessarily the standard inner product. Furthermore, if in addition dimC2 and $d(C^{*2})$ 3, then C is a Reed-Solomon code.

Squares of Reed-Solomon codes are infact ag a in Reed-Solomon codes. Givenintegers $0 \le m < n$, a finite field Fofcardinality $|F| \ge n$ and $a \lor b = (b_1, b_2, ..., b_n) \in F^n$

2

International Journal of Enhanced Research in Science, Technology & Engineering ISSN: 2319-7463, Vol. 11 Issue 5, May-2022, Impact Factor: 7.957

Of evaluation points under the condition that b_i b_j if i, the Reed-Solomon code $RS_{F,b}(m,n)$ is defined as $RS_{F,b}(m,n) = \{(f(b_1),f(b_2),\ldots,f(b_n)): f\in F[X], \deg f\leq m\}$ and it is a code of dimension m+1 and minimum distance n-m. We have that $(RS_{F,b}(m,n))^{*2} = RS_{F,b}(2m,n)$, as long as 2m < n. Otherwise $(RS_{F,b}(m,n))^{*2} = RS_{F,b}(n-1,n) = F^n$.

Lemma0.4Let $v_0 \in (F_q^*)^m$, v_1 , v_2 ,..., $v_h \in F^m$. If v_1 ,..., v_h are linearly independent over F_q then $v_0 * v_1 \cdot \cdots v_0 * v_h$ are linearly independent over F_q

Proof Let $v_{i,j}$ denote the j^{th} co-ordinate of the vector v_i . Let $\alpha_1, \alpha_2, \ldots, \alpha_h F_q$ be such that

thenforallj=1,...,m $\sum_{i=1}^{h} \alpha_{i}v_{0,j}v_{i,j} = 0 \Longrightarrow \sum_{i=0}^{h} \alpha_{i}v_{i,j} = 0,$ (1)

 $as v_{0,j}/=0$; therefore $a_i v_i=0$ and since the v^i sarelinearly independent this i

yields α_i =0foralli=1, · · · ,h.

Corollary0.5LetCbeanMDS $[n,k]_q$ code. $If2k-1 \le n$ thenthedimensionof $productk^* \ge 2k-1$.

Proof Let G be a generator matrix for C, written as

Where $G^{!} \in M_{k,n-k}(\mathbb{F}_q^*)$ (by MDS hypothesis). The MDS hypothesis and $2k-1 \le n$ imply that $k \le d$, which implies that any k-1 rows of $G^{!}$ are linearly independent. Hence we can apply the previouslem machoosing as $v_0, ..., v_{k-1}$ any set of rows and conclude.

Example Let $k \le n \le q$, fix n distinct elements $x_1, \ldots, x_n \in F_q$ and let C be the Reed-Solomon $[n,k]_q$ code generated by them atrix

$$G = \begin{pmatrix} 1 & \cdots & 1 \\ x_1 & \cdots & x_n \\ \vdots & & \vdots \\ x_1^{k-1} & \cdots & x_n^{k-1} \end{pmatrix}$$

Then C * is generated by

$$G^* = \begin{pmatrix} 1 & \cdots & 1 \\ x_n & \cdots & x_n \\ \vdots & & \vdots \\ x_1^{2k-2} & \cdots & x_n^{2k-2} \end{pmatrix}$$

in perticular, $rkG* = min\{2k - 1, n\}$. Hence, if $2k - 1 \le n$, C* is a Reed-Solomon [n, 2k - 1]q code.

Grassmanians and Grassman codes

The Grassmanian G',m(F) is the set of '- dimensional linear subspace of a m- dimensional vector space over a field F.

If F = Fq then we can find its cardinality $|G_{l,m}(Fq)|$ which is given by $|G_{l,m}(Fq)|$ =

International Journal of Enhanced Research in Science, Technology & Engineering ISSN: 2319-7463, Vol. 11 Issue 5, May-2022, Impact Factor: 7.957

$$\left[\frac{m}{l}\right] \quad q = \frac{(q^m-1)\,(q^m-q)\,\cdots(q^m-q^{l-1})}{(q^l-1)\,(q^l-q)\,\cdots(q^l-q^{l-1})}$$

Grassmannians as a projective variety can be viewed as follows:

Fix a basis {e1, e2, . . . ,em} of V . Let W \in Gl,m and let {v1, v2, . . . , v`} be a basis of W . This basis gives rise a $l \times m$ matrix Aw = (aij) of rankl. Now, fix the indexing set I(l, m) = { α = (α 1, α 2, . . . α l) \in Z^l : $1 \le \alpha 1 \le . . . \le \alpha$ ` $\le m$ } be an indexing set [ordered , say lexicographically] for the points of p_k^q . Given any $\alpha \in I(l, m)$ and any $l \times m$ matrix A = (aij) , let p α (a) = α - th minor of A :=det(ai α j) 1 \le i; j \le l.then p(W) = (p α (AW)) $\alpha \in I(l, m) \in p_{Fq}^{k-1}$ is called Plücker coordinate of W . The map W \rightarrow p(W) of Gl,m(Fq) $\rightarrow p_{Fq}^{k-1}$ is an injective map and its image equals the zero of locus of certain quadratic polynomials ,this map is then called as Plücker embedding.

Grassman Code:

The non degenerate [n, k]q -code corresponding to the projective system defined by $G_{l,m}(Fq)$ (with its Plücker embedding) is denoted by C(l,m) and is Grassman Code.

Computing C(2, 4)*2

C(2, 4)(F2) is the Grassmann code obtained from Grassmannian G(2,4)(F2), The Plucker coordinates of G(2, 4) in P_{F2}^5 have been computed here:

$$p1 = (1, 0, 0, 0, 0, 0), p2 = (0, 1, 0, 0, 0, 0), p3 = (0, 0, 1, 0, 0, 0), \cdots p35 = (1, 1, 1, 1, 1, 0)$$

These Plucker coordinates gives us a generator matrix of order 6×35 given below:

$$\begin{pmatrix} \vdots & \vdots & \vdots & \cdots & \vdots \\ p_1 & p_2 & p_3 & \cdots & p_{35} \\ \vdots & \vdots & \vdots & \cdots & \vdots \end{pmatrix}$$

The dimension k of this code is 6 and the length n is 35. Here, we have calculated the dimension of C *2 as 21 and computed the generator matrix of order 6×35 .

REFERENCES

- [1]. C.T. Ryan, An application of Grassmann varieties to Coding Theory, Congr. Numer. 57(1987), 257-271
- [2]. C.T. Ryan, Projective codes based on Grassmann varieties, Congr. Numer.57(1987),237-279.
- [3]. I. Cascudo, On Squares of cyclic codes, IEEE Trans. Inform. Theory, 65(2) (2019), 1034-1047.