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Abstract 

 

In this paper we construct the matrix product code using generator matrix of Grassmann codes 

associated with projective Grassmann variety over a binary field. We determine the parameters length, 

dimension, minimum distance, and size of these codes. 

 

 

      Introduction 

 

Matrix product codes over finite field Fq were introduced by Blackmore and Norton[1] as a 

generalization of certain well known construction of linear codes such as Plotkin’s construction, the 

ternary construction, and etc. Later on the decoding algorithms of these codes were studied by 

Hernando, lally, and Ruano [5]. Ozbudak and H. Stichtenoth [8]. 

 

The study of Grassmann codes was initiated by Ryan and Ryan [10] and later ex-tended by Nogin [7], 

Ghorpade and Lachuad [2], Ghorpade, Patil and Pillai [3], Hansen, Jhonsen and Ranestad[4]. 
 

Let G(2,4) denote the set of 2 dimensional subspaces of a 4 dimesnional vector space over binary field F2={0,1}.  

 

Let C(2,4)  be the linear code associated with G(2, 4) of dimension 4 and of length 16. Let A denote the generator 

matrix of C(2,4). We give a matrix product construction [C1,C2,,Cl] A over a binary field.  

 

In this paper, we determine the generator matrix of Grassmann code over binary field. The generator 

matrix of Grassmann code is a full rank code due to its alge-braic geometric properties. We use this 

generator matrix and give the Blackmore construction of Matrix product code. We determine the 

parameters length, dimen-sion and minimum distance of these codes.We also give generator matrix of 

Grass-mann Matrix product codes. 

 
This paper is organized as follows:  
 
In section 1, we explain the basics of matrix product codes and their known parameters. In section 2, 
we discuss Grassmnn vari-eties, Grassmann codes. In section 3, we determine the generator matrix of 
binary Grassmann code G(2,4). Finally, in section 4, we give lower bound for the mini-mum distance of 
Grassmann codes. 
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1 Matrix Product Codes 

 

Definition 1: (Matrix Product Codes). Let 1 2, ,···,C C Cl  be linear codes of length 

n over Fq. Let A= (aij) be be an ml  be matrix over Fq. Then the set 

{[ 1 2, ,···,c c cl ]×A:ci∈Ci is n×1 column vectors,1≤i≤ l } is called a matrix product code. It is denoted 

by CA(
1 2, ,···,C C Cl

). 

That is, the set of all matrix products 
1 2· ]·[ ·c c cl

× A, where 
1 2· ]·[ ·c c cl

 is of order 

n× l  and A is of order l ×m. This set is a sub space of n mF  and   is called matrix 

product code. 

 

Definition 2: (Code words of Matrix Product Code). A code word of 1 2, ,  ....( ),AC C C Cl  
is a matrix 

of order nm given by: 
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We can recognize this form of code word as a vector c=(c1,c2,,ck,,cnm) of  

length nm in nm

qF , where the k th entry ck is the (r+1,s)th entry of the above matrix such that k = rm + 

s. That is, divide k by m to get quotient r and remainder s. Then the dot product of (r+1)th row of 

1 2· ]·[ ·C C Cl  and s th column of A gives ck∈C. 

1.1 Example of Matrix Product Code 

 

LetC1={(0,0,0),(0,1,1)}, and C2={(0,0,0),(1,1,0),(1,0,1),(0,1,1)} be two codes of length 3 over the 

binary field and Let A= 
1 0 11

0 1 0 1

 
 
 

   be a matrix of order 2×4. Then, the code words of CA(C1,C2) are 

listed below : 

(i).  
12

2

0 0 0 0 0 0
1 0 11

0 0 0 0 0 0 (0,0,0,0,0,0,0,0,0,0,0,0)
0 1 0 1

0 0 0 0 0 0

F

   
    

       
    

   

 

(ii). 
12

2

0 1 0 1 0 1
1 0 1 1

0 1 0 1 0 1 (0,1,0,1,0,1,0,1,0,0,0,0)
0 1 0 1

0 0 0 0 0 0

F

   
    

       
    

   
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(iii) 
12

2

0 1 0 1 0 1
1 0 1 1

0 0 0 0 0 0 (0,1,0,1,0,0,0,0,0,1,0,1)
0 1 0 1

0 1 0 1 0 1

F

   
    

       
    

   

 

(iv) 
12

2

0 0 0 0 0 0
1 0 1 1

0 1 0 1 0 1 (0,0,0,0,0,1,0,1,0,1,0,1)
0 1 0 1

0 1 0 1 0 1

F

   
    

       
    

   

 

(v)  
12

2

0 0 0 0 0 0
1 0 1 1

1 0 1 0 1 1 (0,0,0,0,1,0,1,1,1,0,1,1)
0 1 0 1

1 0 1 0 1 1

F

   
    

       
    

   

 

(vi) 
12

2

0 1 0 1 0 1
1 0 1 1

1 1 1 1 1 0 (0,1,0,1,1,1,1,0,1,0,1,1)
0 1 0 1

1 0 1 0 1 1

F

   
    

       
    

   

 

(vii) 
12

2

0 1 0 1 0 1
1 0 1 1

1 0 1 0 1 1 (0,1,0,1,1,0,1,1,1,1,1,0)
0 1 0 1

1 1 1 1 1 0

F

   
    

       
    

   

 

(viii) 
12

2

0 0 0 0 0 0
1 0 1 1

1 1 1 1 1 0 (0,0,0,0,1,1,1,0,1,1,1,0)
0 1 0 1

1 1 1 1 1 0

F

   
    

       
    

   

 

1.2 Parameters of Matrix Product Code 

 
From definition 2, we observe that the matrix product code code C is of length nm, and each kth entry 

ck in each codeword c is obtained by multiplying (q + 1)th row of 1 ], ,[C ClL  and rth column of A, 

where q and r are such that k=nq+r. In [1], it has been proved that if A is non singular matrix then the 

size of the matrix product code 1,··· ),(AC C Cl  is equal to the product 1 2| || |···| |C C Cl . 

 

Definition 3. A matrix A is said to be non singular by columns matrix (NSC) if a 

t×t minor consisting of any t columns of A is non zero, for1 t  l . 

 

If we choose A to be NSC, then the minimum distance of matrix product code 

1,··· ),(AC C Cl  is given by the following theorem due to Blackmore and et al. 

 

Theorem 1: (Minimum Distance of Matrix Product Code). [1] If A is non singular by columns 

matrix and d(C) denote the minimum distance of C then 
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1 2( ) { (, 1) ,···, 1( },)d C min md m d m d    ll  
 

Where di is minimum distance of Ci for 1≤i≤m. 

 

Moreover, if A is triangular then 1 2( ) { (, 1) ,···, 1( }.)d C min md m d m d    ll  

 

One can refer to [1] for the detailed proof. 

 

1.3         Grassmannians and Grassmann Codes 

 
Study of Grassmann codes associated with projective Grassmann variety over finite field Fq was initiated by 

Ryan and Ryan and studied extensively by Nogin, Ghorpade, Lachuad, Patil, Pillai, Hansen, Johnsen, Ranestad 

[7,2,3, 4]. In this section, we briefly give the introduction about Grassmannians and Grassmann codes.The 

Grassmannian G(t,s)(V) over a field F is the set of all t dimensional sub spaces of s dimensional vector space V.  

 

We describe Grassmannians as a projective variety as follows: Fix a basis {e1,e2,...es} of V. Let W be a t-

dimensional sub space of V . A basis {v1, v2, . . . , vt } of W gives rise to a t×s matrix AW= (aij) of rank t 

whose rows are coordinates with respect to {e1,e2,...,es} of v1,v2,...,vt.  

 

For any α   I(t, s), we let pα(A) be the αth minor of AW by which we mean t× tth minor of AW given by 

 

1 1 1 2 1

2 1 2 2 2

1 1 2

( )

l

l

W

t l

a a a

a a a
P A

a at a

  

  


  



L

L

M M M

L

 

Thereare   (  
s 
)
 
such t ×t minors. A different choice of a basis of W changes AW to CAW where C is 

some nonsingular t× t matrix with entries in F . Clearly, pα(CAW)=det(C)pα(AW). Therefore, the  s

t -

tuple(...,pα(A),...) where α varies over I(t,s) is uniquely determined by W up to proportionality.  

 

Thus each W∈G(t,s)

is mapped to a unique point in
  1

s
t

P  . This gives rise to a ( ) 1
( , )

s
tG t s P 

  

given by W [...:pα(AW):...]. This map is called the Plücker embedding of 

G(t,s) and the coordinates of π(W)=(...,pα(AW),...) are called the Plückerco- 

ordinates of W. We will The set {π(W)∈ ( ) 1s
tP
 : π(W)=(...,pα(AW),...)} is a 

non degenerate projective system in ( ) 1s
tP
  which give a non degenerate linear code under the well 

known Tsfasman-Vlăduţ correspondence over finite field Fq([9]).This code is called Grassmann code.  

 

It is denoted by C(t, s). It has been proved that the length, dimension, and minimum distance of 

Grassmnn code is: 
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2 

: , : , : respectively,
q

s s
n k d q

t t

   
    
   

 

Where 

 
1

1

( 1)( )...( )

( 1)( )...( )

s s s t

t t t t

q

s q q q q q

t q q q q q





    
 

   
                (2) 

   : ( )t s t                                                     (3) 

2 Binary Grassmann Code C(2,4) 

 
In this section we work over a binary field F2 and determine explicitly the generator matrix of 

Grassmann code C(2,4) over F2 using Tsfasman-Vlăduţ correspondence. 

Consider the Grassmannian G(2,4) of 2 dimensional sub spaces of vector space F
4
. 

2 

     
4 4 4

1 2 3 4 2 2
   , , ,    { } | | .   2 16.Let e e e e be a fixed basis of F We know that F    

Since the underlying field is binary field, it is obvious to check that distinct vectors are linearly 

independent. Hence the span of any two distinct vectors in 
4

2
F gives the two dimensional sub space of

4

2
F .Then a two dimensional sub space W of  (2,4)is of the 

4

2, , : ,{ }i jformW u u   
i j i j i j

u u u u u u F Then by (2), |G(2,4)|= 
2

4

2

 
 
 

=35

Hence, we have 35 plucker coordinates in the projective space 
 4
2 1

P
 =P

5 
listed 

below: 
 
 
P1=(1,0,0,0,0,0)P10=(1,0,0,1,,0,0)P19=(1,1,0,1,0,0)P28=(1,0,1,1,0,1) 
P2=(0,1,0,0,0,0)P11=(1,0,0,0,,1,0)P20=(1,0,1,0,1,0)P29=(1,1,0,0,1,1) 
P3=(0,0,1,0,0,0)P12=(0,0,0,1,,1,0)P21=(0,0,0,1,1,1)P30=(0,1,1,1,1,1) 
P4=(0,0,0,1,0,0)P13=(0,1,0,1,,0,0)P22=(0,1,1,0,0,1)P31=(1,1,1,0,1,1) 
P5=(0,0,0,0,1,0)P14=(0,1,0,0,,0,1)P23=(1,1,1,0,0,0)P32=(1,0,1,1,1,1) 
P6=(0,0,0,0,0,1)P15=(0,0,0,1,,0,1)P24=(1,0,0,1,1,0)P33=(1,1,1,1,0,1) 
P7=(1,1,0,0,0,0)P16=(0,0,1,0,,1,0)P25=(0,1,0,1,0,1)P34=(1,1,0,1,1,1) 
P8=(1,0,1,0,0,0)P17=(0,0,1,0,,0,1)P26=(0,0,1,0,1,1)P35=(1,1,1,1,1,0) 
P9=(0,1,1,0,0,0) P18=(0,0,0,0,,1,1)P27=(0,1,1,1,1,0) 
 
This proves the following theorem. 

 

Theorem 2. [Generator Matrix of Binary C(2,4)] The generator matrix of C(2,4) 

Of order 6×35 isgiven by 
  

              
6 7 8 35

t t tI P p p  M L             (4) 
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··· 

— ≤≤ 

3 Minimum Distance of Binary Grassmann Matrix Product Codes 

 
In this section we use the Blackmore construction of matrix product code for a generator matrix matrix 

G of binary Grassmann code C(2, 4) and give formula for minimum distance of corresponding matrix 
product codes. Following theorem gives the minimum distance of binary Grassmann Matrix product 
code. 

Theorem 3. Let C1,C2,,C6be binary linear codes of lenth 6 and let G be the generator matrix of the 
binary Grassmann C(2, 4) given by theorem (2). Then minimum distance 

Proof. The Grassmannian G(2, 4) over F2 as a projective variety is a subset of pro-jectivespaceP
5
. The 

Plucker coordinates under the Plucker embedding form a [35, 6]2- projective system. Therefore, by the 

Ts afasmann-Vladut correspondence, there exists a [35, 6]2 linear code C(2, 4). Since the Plucker 
embedding is indeed an embedding, therefore, there does not exists any i such that the ith entry is zero 

forall code words. This shows that the code C(2, 4) is non degenerate. That is, it is not contained in any 
coordinate hyper plane. 

Hence, the generator matrix of this code is full rank matrix. Also, the minimum distance of C(2, 4) 

over F2 is d = 2δ
. Here δ=2 (4  2)=4.Therefore,d=2

4=16. 

Let di, 1 i6  be the minimum distance of linear codes Ci, 1 i  6. Then, by theorem 1, the minimum distance 

of C(2, 4)is d≥min{35d1,34d2,33d3,32d4,31d5,30d6} (5) 
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