
International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 179

A New Algorithm for Generalized Log-Barrier

Function of Nonlinear Programming
Abbas Y. Al-Bayati

1
, Hawraz N. Al-Khayat

2

 1
College of Telafer Basic Education, Telafer University, Iraq.

2
Department of Mathematics, College of Computer Sciences and Mathematics, Mosul University, Iraq.

Abstract: A new generalized variable Penalty function for solving nonlinear programming problem is present.

The method poses a sequence of unconstrained optimization problem with mechanisms to control the quality of

the approximation for the Hessian matrix. The hessian matrix is proposed in the terms of constraint function

and their first derivatives. The unconstrained problems are solved using a modified Newton's algorithm. The

new method combines the best features of the interior and exterior method for inequality constraint. Our new

algorithm is more efficiently than when compared with other established algorithms to solve standard

constrained optimization problems.

Keywords: Constraint Optimization, Penalty methods, ill-Conditioning, Nonlinear Programming.

1. Introduction

In this paper, we consider the general constrained minimization problem:

 Minimize)(xf
nRx (1)

subject to the general (possibly nonlinear) inequality constraints

 mjxc j  1 0)((2)

and (possibly nonlinear) equality constraints

0)(xh j ljm 1 (3a)

with the simple bounds

 iii UxL  ni1 (3b)

where)(xf is the objective function,)(xc j are inequality constrains and)(xh j are equality constraints.)(xf ,

)(xc j and)(xh j are continuous and usually assumed to possess continuous second partial derivatives and x is a

vector of n components, nxxx ,....,, 21 . we consider the problems of finding a local minimizer of the function)(xf .

For 0l there will be unconstrained optimization problem. This problem is often referred to as the mathematical

programming (nonlinear programming) means nonlinear objective function or nonlinear constraints or both. A point


x

which satisfies all the functional constraints is said to be a feasible point. A fundamental concept, that provides a great

deal of insight as well as simplifies the theoretical development, is that of an active constraint. An inequality constraint

0)(xci is said to be active at feasible point


x if 0)(xci and inactive at x if 0)(xci . By convention, we

refer to any equality constraint 0)(xhi as active at any feasible point [6]. The constrained optimization problem

may have only equality constraints, (exterior point methods (Penalty function)), inequality constraints or both. While

the problem which have only inequality constraints, (interior point methods (Barrier function)). The sequence of

unconstrained minimization technique (SUMT) developed by Fiacco and McCormick [2] with penalty functions [l] has

been applied with almost all popular forms of unconstrained methods. Newton’s method [2-4] is a powerful technique

for unconstrained minimization since the minimum of a quadratic function),,(22

jiji xxxxff  , can be approached

in just one step as opposed to other methods in which the number of steps for optimization procedure (one measure of

computational efficiency) is a linear function of the number of variables xi. However, for such performance Newton’s

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 180

method requires the computation of an exact second derivative matrix, which often can be very expensive. An approach

that significantly reduces the computational cost by reducing the total number of iterations, is the concept of obtaining

the explicit approximations for the second partial derivative (Hessian matrix) in terms of the constraint functions and

their first derivatives. In Ref. [6] such approximations were proposed for the variable penalty function which used a

floating parameter for minimizing the error in the approximation of the Hessian matrix. The proposed approximation

[2] was shown to be very successful when optimization process was started from an infeasible point. With feasible

starting points, however, the algorithm was not so effective due to poor approximations.

2. The Penalty Function Methods.

Penalty function methods are developed to eliminate some or all of the constraints and add to the objective function a

penalty term which prescribes a high cost to infeasible points. In theory, penalty function method uses unconstraint

optimization methods to solve constraints optimization problems. Discrete iterative setup can be started with infeasible

or feasible starting point and guide system to feasibility and ultimately obtained optimal solution. Penalty function

methods transform the basic optimization problem into alternative formulations such that numerical solutions are

sought by solving a sequence of unconstrained minimization problems. Let the basic optimization problem, with

inequality constraints, be of the form:

 Minimum)(xf

subject to

 mjxc j  1 0)((4)

is problem is converted into an unconstrained minimization problem by constructing a function of the form

)()(),(xpxfrx kk  (5)

the significance of the second term on the right side of (5),called the penalty term, If the unconstrained minimization of

the k function is repeated for a sequence of values of the penalty parameter kr the solution may be brought to

converge to that of the original problem stated in (4). This is the reason why the penalty function methods are also

known as sequential unconstrained minimization techniques (SUMT) [9].

3. The Classify of the Penalty Function.

The penalty function formulations for inequality constrained problems can be divided into categories: Exterior and

Interior methods. The exterior-point method is suitable for equality and inequality constraints. The new objective

function),(krx is define by

)(
1

)(),(xp
r

xfrx
k

k  (6)

where kr is a positive scalar and the remainder of the second term is the penalty function. Interior-point method is

suitable for inequality constraints. The new objective function),(krx is define by

 (7)

where kr is a positive scalar and the remainder of the second term is the barrier function. (see [7]). Although both

exterior and interior-point methods have many points of similarly, they represent two different points of view. In an

exterior-point procedure, we start from an infeasible point and gradually approach feasibility, while doing so, we move

away from the unconstrained optimum of the objective function. In an interior-point procedure we start at a feasible

point and gradually improve our objective function, while maintaining feasibility. The requirement that we begin at a

feasible point and remain within the interior of the feasible inequality constrained region is the chief difficulty with

interior-point methods. In many problems we have no easy way to determine a feasible starting point, and a separate

)()(),(xprxfrx kk 

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 181

initial computation may be needed. Also, if equality constraints are present, we do not have a feasible inequality

constrained region in which to maneuver freely. Thus interior-point methods cannot handle equalities.

Figure 1. Penalty functions

3.1 Exterior Point Methods (Penalty function)

The exterior penalty is the easiest to incorporate into the optimization process. Here the penalty function)(xp is

typically given by

 



l

mj

jp

m

j

jp xhrxcrxp
1

2

1

2))(()}(,0{max()((8)

the subscript p is the outer loop counter which we will call the cycle number. we begin with a small value of the

penalty parameter, pr and minimize the pseudo-objective function k . We then increase pr and repeat the process

until convergence.

3.1.1 Penalty Lemma (For more detail see [11]).

)()(),(

)()(

)()(

),(),(

_

1

1

11

xfxfrx

xfxf

xPxP

rxrx

iii

ii

ii

iiii



















3.2 Interior point methods (Barrier function)

Where the problem converted into unconstrained optimization problem:

)()(

))(()(min),(
1

xPrxf

xcbrxfrx

k

m

j

jjkk



 




 (9)

Where kr is positive scalar.

 



m

j

jj xcbxP
1

))(()((10)

jb is continuous function of jc , 0jb , xasb j ,0 approach to boundary of the constraints jc , which have

several forms:

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 182

1))(()( xcxb jj (Carrol,1961)[15] (11)

)()(xcxb jj  (Toint and Nicholas,1997)[16] (12)

))((*1)(xclnxb jj  (Frish,1955)[17] (13)

(For more details see [18, 19]).

There are different types of Barrier method:

A. Reciprocal.

 In the past, a common penalty function used for the interior method was defined by

 





m

j j xc
xp

1)(

1
)((14)

Using (8) and including equality constraints via the exterior penalty function of (14)

 






l

mj

jp

m

j j

ppp xhr
xc

rxfrrx
1

2

1

''))((
)(

1
)(),,( (15)

Here
'

pr is initially a large number, and is decreased as the optimization progresses. The last term on (15) is the exterior

penalty as before, because we wish to drive)(xh j to zero. Also, pr has the same definition as before and)(xf is

the original objective function. In our remaining discussion, we will omit the equality constraints, remembering that

they are normally added as an exterior penalty function as in (15) [8].

B. Log-Barrier Method.

An alternative form of (15) is

 



m

j

jp xcrxP
1

')](log[)((16)

and this is often recommended as being slightly better numerically conditioned.

 C. Polyak’s Log-Barrier Method.

Polyak [11] suggests a modified log-barrier function which has features of both the extended penalty function and the

Augmented Lagrange multiplier method. The modified log-barrier penalty function is defined as:

 



m

j p

jp

jp

p

p
r

xc
rrxM

1
'

'']
)(

1log[),,( (17)

where the nomenclature has been changed to be consistent with the present discussion. Using this, we create the

pseudo-objective function

 



m

j p

jp

jp

p

p
r

xc
rxfrx

1
'

'']
)(

1log[)(),,( (18)

We only consider inequality constraints and ignore side constraints. equality constraints can be treated using the

exterior penalty function approach and side constraints can be considered directly in the optimization problem.

Alternatively, equality constraints can be treated as two equal and opposite inequality constraints because this method

acts much like an extended penalty function method, allowing for constraint violations.

3.2.2 Barrier Lemma (for more detail see [11]).

),()()(

)()(

)()(

),(),(

_

1

1

11

iii

ii

ii

iiii

rxxfxf

xfxf

xBxB

rxrx



















International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 183

3.3 Extended Interior Penalty Function

This approach attempts to incorporate the best features of the reciprocal interior and exterior methods for inequality

constraints. For equality constraints, the exterior penalty is used as before and so is omitted here for brevity.

 A. The Linear Extended Penalty Function

The first application of extended penalty functions in engineering design is attributable to Kavlie and Moe [11]. This

concept was revised and improved upon by Cassis and Schmit [11]. Here the penalty function used in (8) takes the

form

 



m

j

j xcxp
1

~

)()((19)

 where

)(

1
)(

~

xc
xc

j

j  0)(cxcif j  (20)

2

0

0
~)(2

)(
c

xcc
xc

j

j


 0)(cxcif j  (21)

The parameter 0c is a small negative number.

B. The Quadratic Extended Penalty Function

The idea of this method is to find extended quadratic penalty function. However, the second derivative is continuous at

0)(cxc j  . Haftka and Starnes [12] creating a quadratic extended penalty function as

(22) 0)(cxc j  ,
)(

1
)(

~

xc
xc

j

j




 0

0

2

00

~

)(,3
)(

3
)(1

)(cxc
c

xc

c

xc

c
xc j

jj

j 



































 (23)

C. General Form of The Constrained when 0)(cxc j 

If n is odd then we have





















































 







 1

0

1

1

2

0

1

2

1

0

1

100

...
)()(1 n

n

j
n

n

n

j
n

n

j
n

n

j

c

c

c

c

c

xc

c

xc

c
 (24)

When n even we have





















































 







 1

0

1

1

2

0

1

2

1

0

1

100

...
)()(1 n

n

j
n

n

n

j
n

n

j
n

n

j

c

c

c

c

c

xc

c

xc

c
 (25) For

more detail see [3].

D. Variable Penalty Function

A variable penalty function is proposed by Prasad [5], which is designed to minimize the errors in the approximations

of the Hessian matrix. When used in conjunction with a second order method (modified Newton’s method) the

formulation has been found quite effective in reducing the ill-conditioning nature of the problem and also in lowering

down the “optimal” value of r so that smaller values of r can be used to start SUMT. The variable penalty function

approach creates a penalty which is dependent on three parameters:

0,, cs  as follows: When S≠1

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 184

 (26)

 (27)

and

When S=1

 (28)

 (29)

 and 0c are the two independent penalty parameters which control the shape of the penalty function. These

parameters will be determined later. It can be checked that the expressions (26-27) and (28-29) satisfy and its first and

second derivatives at the transition point 0c [5]. The Eq. (26-27) called inverse variable penalty function and denoted

by (IVPF) and the Eq. (28-29) called logarithmic variable penalty function and denoted by (LVPF).

4. New Generalized Variable Penalty Function

The generalized variable penalty function is add the term in variable penalty function to obtained more accuracy and

small error which introduce by round of error is define by :

When S=1 , if n is even

(30)

(31)

)log(11
2

1
111

2

1
)(

0

0

0

2

0

3

0

1

00

ccif

c
c

c

c

c

c

c

c

c

c

c
c

k

kk

n

k

n

k

kv

































































 

To examine the affectivity of the new algorithm, let vi consider two example for n=4 (even) and n=5 (odd) because n=3

has been consider by [5].

When n=4

 (32)

00

0

2

0

3

0

4

0

)log(11
2

1
11

2

1
)(ccifc

c

c

c

c

c

c

c

c
c k

kkk
kv 


















































 )33)

(32) & (33) become as, respectively


























































)3()232()33()2(

)log(

)(

0

2

0

3

0

4

0

0

BAA
c

c

c

c
A

c

c

c

c
A

ccifc

c
kkkk

kk

kv


 (35)

Where [A=1/2 , B=log(0c)]

 

 )
1

1
11

2
1)(

1
)(

0

1

0

0

2

0

3

0

0

1

ccifc
sc

c

c

cs

c

c
c

ccif
s

c
c

k

skkk
kv

k

s

k
kv




























































00

0

2

0

3

0

0

)log(11
2

1
1)(

][log)(

ccifc
c

c

c

c

c

c
c

ccifcc

k
kkk

kv

kkkv



































0)log()(ccifcc kkkv 

0)log()(ccifcc kkkv 

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 185

When n is odd

 (36)

)37(

)log(11
2

1
11

2

1
1)(

0

0

0

2

0

3

0

1

00

ccif

c
c

c

c

c

c

c

c

c

c

c
c

k

kk

n

k

n

k

kv

































































 
For

example when n=5

 (38)

00

0

2

0

3

0

4

0

)log(11
2

1
11

2

1
)(ccifc

c

c

c

c

c

c

c

c
c k

kkk
kv 


















































 )39)

(38) &(39) become as, respectively













































































0

0

2

0

3

0

4

0

5

0

0

)3()2325(

)3310()210()5(

)log(

)(

ccifBAA
c

c

c

c
A

c

c

c

c
A

c

c

ccifc

c

k
k

kkkk

kk

kv




 (40)

where [A=1/2 , B=log(0c)]

4.1 Modified Newton's Method

To apply Newton's method with SUMT procedure ,the point
*x that minimizes the function),(rxv

 (41)

for a given value of r is found by using an iterative procedure. If
nx is the initial guess for

*x at an iteration t a

better approximation
1nx is found from

 (42)

where v is the gradient of v , H is the matrix of the second derivatives of),(rxv at the point x
n
 given by

 (43)

and  is the step size from
nx to

1nx , dropping the superscript n and using (41) & (43) can be expressed as

 
 






















l

k ji

kv

ji

ij
xx

c
r

xx

xf
H

1

22)()(
 (44)

 
 




































































l

k ji

k

kv

j

k

i

k

kv

ji

ij
xx

xc
c

x

c

x

c
cr

xx

xf
H

1

22)(
)()(

)(
 (45)

using the definitions of variable penalty function

0)log()(ccifcc kkkv 

0)log()(ccifcc kkkv 





l

k

kvv crxfrx
1

)()(),(

),(1

1 rxHxx nnn   



n

j

n

i

v

ij
xx

H





2

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 186

If n even

 












































































































































































































































































































































)47(1

1113

1
2

1
)2(1)1(1

2

1

1161
2

)3)(2(

1)2)(1(1
2

1
)1(

)(

)46(1

0

2

0

2

0

3

0

2

0

1

0

0

0

4

0

3

0

2

0

2

0

0

2
2

2

c

c

xx

c

c

c

c

c

c

c
n

c

c
n

c

c
n

c

xj

c

x

c

c

c

c

cs
nn

c

c
nn

c

c
nn

c

c

c

xx

c
c

xj

c

x

c
c

xx
k

ji

k

kk

n

k

n

k

n

k

k

i

k

k

n

k

n

k

n

k

k

ji

k

k

k

i

k

k

ji

v















If we assume

)48(1161)2)(1(1
2

1
)1(

0

3

0

2

0































c

c

c

c
nn

c

c
nnG k

n

k

n

k  

)49(11131)1(1
2

1

0

2

0

2

0

1

0








































c

c

c

c

c

c
n

c

c
n kk

n

k

n

k  

thus, (46) & (47) becomes

 

 








































































































































































)51(1)(

)50(1)(

0
2

0

2

0

0

2
2

2

c

c

xx

c
c

xj

c

x

c
G

c

c

c

xx

c
c

xj

c

x

c
c

xx
k

ji

k

k

i

k

k

ji

k
k

k

i

k
k

ji

v





when n is odd

 












































































































































































































































































































































)53(1

1113

1)2(1
2

1
)1(1

1161)3)(2(

1
2

1
)2)(1(1)1(

)(

)52(1

0

2

0

2

0

3

0

2

0

1

0

0

0

4

0

3

0

2

0

2

0

0

2
2

2

c

c

xx

c

c

c

c

c

c

c
n

c

c
n

c

c
n

c

xj

c

x

c

c

c

c

c
nn

c

c
nn

c

c
nn

c

c

c

xx

c
c

xj

c

x

c
c

xx
k

ji

k

kk

n

k

n

k

n

k

k

i

k

k

n

k

n

k

n

k

k

ji

k
k

k

i

k
k

ji

v















If we assume

)54(1161
2

1
)2)(1(1)1(

0

3

0

2

0































c

c

c

c
nn

c

c
nnG k

n

k

n

k  

)55(11131
2

1
)1(1

0

2

0

2

0

1

0








































c

c

c

c

c

c
n

c

c
n kk

n

k

n

k  

thus, (52) & (53) becomes

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 187

 

 








































































































































































)57(1)(

)56(1)(

0
2

0

2

0

0

2

2

2

c

c

xx

c
c

xj

c

x

c
G

c

c

c

xx

c
c

xj

c

x

c
c

xx
k

ji

k

k

i

k

k

ji

k

k

k

i

k

k

ji

v





4.2 Determination of Constant.

In order to establish a suitable value for constant, it is desirable to find the upper and lower limits that constant can

assume without compromising the characteristics of a penalty function. The shape of the variable penalty function

curves depends on constant. In order to ensure a higher penalty for a higher constraint violation, a curve increasing

monotonically with negative kc is needed. The slope of the variable penalty function is obtained as:

for n odd









































































































)59(1

1113

1
2

1
)1(1

)(

)58(1)(

)(

0

0

2

0

21

01

0

0

1

c

c

c

c

c

c

c

c
n

c

c
n

c

c

c
c

c
k

kk

n

k

n

k

k

k

k









)60(011131)1(
2

1
1

0

2

0

2

0

1

0








































c

c

c

c

c

c
n

c

c
n kk

n

k

n

k  

To get a monotonically increasing function, it is enough to have  negative, since in the that case it is not possible to

find any real negative value of kc for which

 .0)(' kc

However, we can see from negative values of constant increase the magnitude of the associated error 1 , Thus, one

has to limit constant to positive values. For such positive values of constant, the penalty function does not show a

strictly increasing monotonic behavior. It is thus important to select a positive value for constant which ensures an

increasing penalty behavior, at least up to the most negative constraint that one may encounter. This requirement can be

set as

)/()/(*

0

~

0 dccdcc kk   (61)

where
*d is the most negative constraint ratio and

~

d is a value of (0/ cck) for which .0)(
~

' d A limiting

situation would be when
~

d equals
*d , i.e. the penalty for the most critical constraint violation is a maximum at the

value specified by the most negative possible constraint. The range of  can be established using this limiting case.

This gives,

2*

*

)1(3

)1(1






d

d
 for LVPF (62)

For the possible range of kc , i.e.  kc0 , the bounds on  can be established:

2*

*

)1(3

)1(1
0






d

d
 for LVPF (63)

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 188

 i.e.
3

2
0  for LVPF

The value A = 0 corresponds to the case when an infinitely negative d* is allowed. in this particular situation (A = 0),

the inverse variable penalty function formulation (IVPF) degenerates to a quadratic extended interior penalty function,

introduced by Haftka and Starnes [12]. A = 1 and A = 2/3 correspond to the case when d* is zero. for s = 1 or 2, is very

small. In the strategy for choosing best A, we therefore keep A to be a constant and equal to 1 or 2/3 in the respective

variable penalty formulations. This value is not changed as long as the intermediate x stays in the feasible region

(0kc). The best possible choice of A when constraints are violated (0kc) is governed by the following criteria.

 (64)

To generalize the new idea mentioned in this paper , the positive deftness property will be generalized for 4n

because for 3n , motioned in [5].

Where n=5

 (65)

From (65) we get

 (66)

15

1
0


  (67)

)2(
3

)310(
)3(2

3

1

0

2

0

3

0

4

0

s
c

cs

c

c
s

c

c

c

c kkkk 










































 (68)

Since S =1, (68) will becomes

1
3

7
22

3

1

0

2

0

3

0

4

0














































c

c

c

c

c

c

c

c kkkk (69)

If n is odd in general the new constant is

1

0

1

0















n

k

old
new

c

c
n


 (70)

when n even









































































































)72(1

1113

1)1(1
2

1

)(

)71(1)(

)(

0

0

2

0

21

01

0

0

1

c

c

c

c

c

c

c

c
n

c

c
n

c

c

c
c

c
k

kk

n

k

n

k

k

k

k









)73(011131)1(1
2

1

0

2

0

2

0

1

0








































c

c

c

c

c

c
n

c

c
n kk

n

k

n

k

s  

when n = 4

011131
2

1
4

0

2

0

3

0





























c

c

c

c

c

c kkk
s  (74)

)2()1(
0

2

0

s
c

c
s

c

c kk
s 























0111314
2

1
15

0

2

0

3

0

4

0






































c

c

c

c

c

c

c

c kkkk 

4

0

15 












c

ck




International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 189

From (74) we get

3

0

12 












c

ck


 (75)

3

1
0  (76)

Then (74) becomes

0
3

)35(
)21()1(

3

2

0

2

0

3

0
































s

c

c
s

c

c
s

c

c kkk
S (77)

Since S=1, (77) will becomes

0
3

2

3

2

0

3

0




















c

c

c

c kk (78)

If n is even in general the new constant is

1

0

1
2

1
0














n

k

old
new

c

c
n


 (79)

4.3.1 Selecting constants and Updating.

During an iteration, with any arbitrary starting point, the following conditions can exist:

(a) all the constraints kc are satisfied;

(b) all the constraints kc are violated; and

(c) some of the constraints are satisfied and some are not, i.e., mixed. there are two case

First case:

The first iteration in our loop of new algorithm s.t.:

1. If condition (a) arises and if n is even the value of new constant is selected using :

2

1
n

old
new


  (80)

this comes from (63) and ensures the minimum error in the approximation of the hessian matrix.

If n is odd , the value of new constant is selected using

 (81)

2. If the condition (b) or (c) arises and if n odd

1

0

*

1
















n

old
new

c

c
n


 (82)

If n is even

1

0

*

1
2

1













n

old
new

c

c
n


 (83)

in which c* represents the most violated constraint encountered during an iteration.

4.3.2 Succeeding case.

The succeeding iterations in our loop of new algorithm s. t. in the subsequent iterations, the VPM algorithm determines

the degree of severity on the constraints. If, at any instant, condition (a) occurs, the value for  is determined using

(63).

n

old
new







International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 190

If condition (b) appears, it is based on value of n:

if n is even:

the new constant is selected based on Eq. (48) , i.e.,

2

0

*

1
2

1
)1(

1















nnew

c

c
nn

 (84)

if n is odd:

the new constant is selected based on Eq. (54) , i.e.,

2

0

*

1)1(

1













nnew

c

c
nn

 (85)

in which c* represents the most violated constraint encountered during an iteration.

4.4 New Initial Value of Algorithm.

Initial Value of the Penalty Parameter kr . Since the unconstrained minimization of),(krx is to be carried out for a

decreasing sequence of kr , it might appear that by choosing a very small value of 0r , we can avoid an excessive

number of minimizations of the function  . But from a computational point of view, it will be easier to minimize the

unconstrained function),(krx , the numerical values of kr has to be chosen carefully in order to achieve a faster

convergence. we have to find kr such that depend on)(x [14].

the initial value 0r which is derived as

)()(),(xrxfrx kk   (86)

Such that 0),(krx

We have

 0)()( xrxf k (87)

Now 0kr , then we obtain

)(

)(
min

x

xf
r




 (88)

In the above suggestion corresponding to the assumption for deriving a new parameter to make balance between the

previous algorithms, we have suggested the following a new algorithm.

4.5 New Theorem.

 Consider problem to minimize)(xf subject 0)(xc j for mj ,....,1 . Let KKT condition is satisfying the

second order sufficiency condition for a local minimum. Defined }0)(:{
~

 xcjJ j , }0)(:{
~

 xcjN j and the

cone }0)(0)(,0{
~~

NjallfordxcandJjfordxcdC jj  . Then, if there exists kr such

that 1 kk rr therefore),(krx is positive definite Cd  and
~

x is strict local minimum for (1) for all 0kr .

International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com

Page | 191

Proof. Since),,(
~~~

x  is KKT a solution satisfy the second–order sufficiency condition for a local minimum in cone 

C and ),,( xL  the Hessian of the Lagrange function of (1). Suppose that there exists kd with 1kd , such that  

 



m

j

jkkkk xcrxfrx
1

)]([)(),(   (89) 

Thus, the gradient of ),( kk rx should be defined by  

 



m

j

jjkkkk xcxcrxfrx
1

' )())(()(),(   (90)  

The second derivatives of ),( kk rx  defined by  

 
 


m

j

m

j

T

jjjjjkkkk xcxcxcxcxcrxfrx
1 1

''2'22 )()())(()())(()(),(   (91) 





m

j

T

jjjkk xcxcxcxLrx
1

''22 )()()]([),,(),(                                                       (92) 

Where ),,(2 xL is the Hessian Lagrangian function for Eq.(1) with multiplier  and   





m

j

k

T

jjj

T

kk

T

kkkk

T

k dxcxcxcddxLddrxd
1

''22 )()()]([),,(),(                              (93) 

Clearly the first term ),,(2 xL  is positive definite on the cone C, then we shall prove the second term of (95)  

If n is even then the second derivative is define by :  

 

 









































































































































































































)95(1
1161

2
)3)(2(

1)2)(1(1
2

1
)1(

)(

)94(1

0

0

4

0

3

0

2

0

2

0

0

2

2

c

c
xj

c

x

c

c

c

c

cs
nn

c

c
nn

c

c
nn

c

c

c

xj

c

x

c
c

xx
k

k

i

k

k

n

k

n

k

n

k

kk

i

k

k

ji

v







for 

LVPF we require prove that 0)('' jc which depend on the constants  

.                 
3

2
0        

2

0

*

1
2

1
)1(

1















nnew

c

c
nn

  

So we have 0),(2  kkk

T

k drxd  for Jj or Nj  and so we have 
~

x  is a strict local minimum.  

Now if n is odd then the second derivative is define by :  

 

 



































































































































































































)97(1

1161)3)(2(

1
2

1
)2)(1(1)1(

)(

)96(1

0

0

4

0

3

0

2

02

0

0

2

2

c

c

xj

c

x

c

c

c

c

c
nn

c

c
nn

c

c
nn

c

c

c

xj

c

x

c
c

xx
kk

i

k

k

n

k

n

k

n

k

kk

i

k

k

ji

v








 



International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com 

Page | 192 
 

for LVPF we require prove that 0)('' jc which depend on the constants 

 .                
3

2
0        

2

0

*

1)1(

1













nnew

c

c
nn

  

 

So we have 0),(2  kkk

T

k drxd  for Jj or Nj  and so we have 
~

x  is a strict local minimum.  

 

 

4.6  Outline New Generalized Log-Barrier Methods. 

 

Step1: Find an initial approximation 0x  in the interior of the feasible region for the inequality constraints i.e. 

0)( 0 xc j . 

Step2: Set  1j  and 10 r   is the initial value of 0r . 

Step3: Set jjj cHd   

Step4: Set jjjj dxx 1   where   is scalar. 

Step5: Update ijH  by correction matrix defined in (45) . 

Step6: Check for convergence i.e. if   1jj xx satisfied then Stop, otherwise, continue .  

Step7: Set 
10

1
k

k

r
r   and take 

*xx  and set k = k+1 and go to Step 4. 

 

5. Results and Conclusions 

       

In order to evaluate the characteristics of the new LVPF methods, five numerical examples were considered. They are 

stated in the Appendix. Most of the test examples have been drawn from the literature, and it is hoped that the set is 

fairly representative in view of its mathematical nonlinearity. Is considered as the comparative performance of the 

following algorithm. This paper includes four parts: 

 

1. Quadratic Logarithmic Penalty Method (QLP) (n=2). 

2. Prasad Logarithmic Variable Penalty Method (PLVP) (n=3). 

3. New Generalize Log-Barrier Variable Extended Methods (GLBVe) 

when  (n is even n=4 , 6, 8, 10 ) 

4. New Generalize Log-Barrier Variable Extended Methods (GLBVo)  

when (n is Odd n= 5, 7, 9 ) 

         

All the results are obtained using (Laptop) . All programs are written in visual FORTRAN language and for all cases 

the stopping criterion taken to be  1jj xx ,
510 , and with (S=1). In this paper, all the algorithms use the 

same ELS strategy which is the quadratic interpolation technique directly adapted from [4] . 

The comparative performance for all of these algorithms are evaluated by considering NOF which  is  the  number  of  

function  evaluation  and  NOI  is  the  number  of  iteration  and  NOG  is  the  number  of  gradient evaluation and 

NOC number of constrained evaluation. We use some different value of the initial penalty constant 0r  and the cut-off 

point 0c  to see its effect on resulting approximation of the second derivatives. We have compared in Table (1) our new 

algorithm (GLBVe) with quadratic logarithmic and in Table (2) we have compared our new algorithm (GLBVo)  with 

Prasad logarithmic variable penalty . 

 



International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com 

Page | 193 
 

Table (1): Comparison of  New1 (GLBVe) algorithm with QLP algorithm  

 

Test P. Param. 

n=2 

QE 

NOF(NOG) 

NOI(NOC) 

n=4 

NEW1 

NOF(NOG) 

NOI(NOC) 

n=6 

NEW1 

NOF(NOG) 

NOI(NOC) 

n=8 

NEW1 

NOF(NOG) 

NOI(NOC) 

n=10 

NEW1 

NOF(NOG) 

NOI(NOC) 

1 
0c  = .05 

0r =.01 

18906(500) 

1(1) 

5831(500) 

1(1) 

105(18) 

1(1) 

96(17) 

1(1) 

109(17) 

1(1) 

2 
0c  =.05 

0r =0.8 

46970(500) 

2(1) 

8772(500) 

1(1) 

8697(500) 

1(1) 

7198(500) 

2(1) 

7177(500) 

2(1) 

3 
0c  =.02 

0r =.01 

4992(500) 

1(1) 

220(5) 

1(1) 

22(3) 

1(1) 

21(3) 

1(1) 

15(2) 

1(1) 

4 
0c  =.02 

0r =.01 

43378(500) 

1(1) 

14446(500) 

1(1) 

26(2) 

1(1) 

7(2) 

1(1) 

6(2) 

1(1) 

5 
0c  =.05 

0r =.01 

31653(500) 

2(1) 

12034(500) 

2(1) 

8261(500) 

2(1) 

7975(500) 

2(1) 

7975(500) 

2(1) 

Total  
145899(2500) 

7(5) 

41303(2005) 

6(5) 

17111(1023) 

6(5) 

15297(1022) 

7(5) 

15282(1021) 

7(5) 

 

 

Table (2): Comparison of  New2 (GLBVo) algorithm with Prasad's algorithm PLVP  

 

Test P. Param. 

n=3 

PLVP  

NOF(NOG) 

NOI(NOC) 

n=5 

NEW2 

NOF(NOG) 

NOI(NOC) 

n=7 

NEW2 

NOF(NOG) 

NOI(NOC) 

n=9 

NEW2 

NOF(NOG) 

NOI(NOC) 

1 
0c =.5 

0r =.01 

3830(500) 

2(1) 

2976(500) 

2(1) 

2890(500) 

2(1) 

2587(500) 

2(1) 

2 
0c =.05 

0r =.01 

12009(500) 

1(1) 

9518(500) 

1(1) 

1540(16) 

2(1) 

259(4) 

2(1) 

3 
0c =.2 

0r =.01 

24507(500) 

2(1) 

20545(500) 

2(1) 

19305(500) 

2(1) 

18648(500) 

2(1) 

4 
0c =.02 

0r =.01 

42954(500) 

2(1) 

41376(500) 

2(1) 

40344(500) 

2(1) 

39271(500) 

2(1) 

5 
0c =.02 

0r =.01 

6857(500) 

1(1) 

6373(500) 

1(1) 

5480(500) 

1(1) 

4996(500) 

1(1) 

Total  
90157(2500) 

8(5) 

80788(2500) 

8(5) 

69559(2016) 

9(5) 

65761(2004) 

9(5) 

 

 



International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com 

Page | 194 
 

Appendix 

 

1. min     21)( xxxf   

     s.t 

          

2 2

1 2

1 2

25 0

0

[3,2]

x x

x x

x

  

 



  

2. min    
2

2
2

1 )1()2()(  xxxf  

   s.t   

       

2

1 2

1 2

0

2 0

[ 2,2]

x x

x x

x

  

  



 

3. min      
2

2
2

1 )1()2()(  xxxf  

    s.t 

         

1 2

2
21
2

2 1 0

1 0
4

[.7 ,.7]

x x

x
x

x

  

   



 

4. min 
2

2

2

1)( xxxf                  s.t.                  

                                

1 2

2 2

1 2

1

2

2 4

5

0

0

x x

x x

x

x

 

   





 

5. min 
2

2

2

1)( xxxf                            

     s.t. 

        𝑥1 + 2𝑥2 = 4 

 𝑥 = [.9,2] 
 

 

References 

 
[1]. A. Mathews and D. Davies. A comparison of modified Newton methods for unconstrained optimization. Comput. l 14, 

293-294, (1971). 

[2]. A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques. Wiley. 

New York (1968).  

[3]. A. Y. Al. Bayati and A. M. Qasim. A new hybrid algorithm to the modified barrier function form. Journal of Education & 

Science, Mosul ,Iraq , 21(4), 131-148, (2008). 

[4]. B. D. Bunday. Basic Optimization Methods. Edward Arnold, London. (1984). 

[5]. B. Prasad. A Class of Generalized Variable Penalty Methods for Nonlinear Programming. Journal Optimization Theory 

Appl., 35( 2), 159 – 182, (1981). 

[6]. B. Prasad. Variable penalty methods for constrained minimization. Comput. Mafh. Appiics. 6(l), 79-97, (1980). 

[7]. B. S. Gottefred and J. Weisman. Introduction to Optimization Theory. Prentice-Hall, Englewood Cliffs, N.J. (1973). 

[8]. C. Vanderplaats. Very Large Scale Optimization. NASA/CR. (2002). 

[9]. F. A. Lootsma. A survey of methods for solving constrained minimization problems via. unconstrained minimization. 

Numerical Methods for Nonlinear Optimization (Edited by F. A. Lootsma), Academic Press, New York. 313-347, (1972). 

[10]. R. Fletcher and T. L. Freeman, A modified Newton method for minimization. Journal Optimization Theory Applies. U(3), 

357-372, (1977). 

[11]. R. M. Freund. Penalty and barrier methods for constrained optimization. Massachusetts Institute Of Technology. (2004). 

[12]. R. T. Haftka and J. H. Starnes. Applications of a quadratic extended interior penalty function for structural optimization. 

AIAA Journal. 14(6), 718–724, (1976).  

[13]. R. V. Patel. System Optimization.  Department of Electrical and Computer Engineering, University of Western Ontario 

London Ontario, Canada. (2000). 



International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 
Vol. 3 Issue 7, July-2014, pp: (179-195), Impact Factor: 1.252, Available online at: www.erpublications.com 

Page | 195 
 

[14]. S. Rao, Singireas. Engineering optimization theory and practice. John Wiley & Sons Inc. All rights reserved. (2009). 

[15]. Carrol  , C.W.,   "The created Response Surface Technique for Optimization Non Linear Restrained Systems", Op.Res,  pp 

.169-184, (1961). 

[16]. Toint ,ph.L and Ncholas L.M. " A note On The Second Order Convergence of Optimization Algorithm by Using Barrier 

Function" A current survey , Report au/1, IBMJ.J. Waston Research Center, U.S.A. , (1997). 

[17]. Frich, K.R. , "The logarithmic Potential Method of Convex Programming Memorandum ", University Institute of 

Economics Oslo, (1955). 

[18]. Fletcher R. , 1987,  "Practical Method Of Optimization", John Wiley and Sons , Chichester , New York , Britain , Toronto 

and singapure, (1987). 

[19]. Rao , S.S. ,  "Optimization Theory and Applications", Wiley Eastern Limited, (1994). 

[20]. D.  Kavalie  and  J.  Moe.  Automated  design  of  frame  structures.  J.  Struct.  Die.  ASCE  97(STI),  33-62, (1971). 

[21]. Cassis, J. H., and Schmit , L. A., '' On Implementation of the Extended Interior Penalty Function'' , Int. J. Num. Meth. 

Engin. Vol. 10, No. 1, pp. 3 – 23, (1976).  


