Connected Domination on Linear and Double Hexagonal Chains

Dr. S. Velammal ${ }^{1}$, M. Uma Devi ${ }^{2}$
Department of Mathematics, Velammal College of Engineering and Technology, Viraganoor, Madurai

Abstract

Let G be connected graph with vertex set $V(G)$ and the edge set $E(G)$. A subset D of G is called a connected dominating set if every vertex $v \in V-D$ is adjacent to at least one vertex in D and the induced subgraph < D > is connected. The connected domination number $\gamma_{C}(G)$ is the minimum cardinality taken over all connected domination sets of \mathbf{G}.

Keywords: connected dominating set, linear hexagonal chain, double hexagonal chain.

1. Introduction

Let $\mathrm{G}=(\mathrm{V}(\mathrm{G}), \mathrm{E}(\mathrm{G}))$ be a simple, undirectedand nontrivial graph without isolated vertices. A set $\mathrm{D} \subseteq \mathrm{V}(\mathrm{G})$ is called a connected dominating set if every vertex $\mathrm{v} \epsilon \mathrm{V}-\mathrm{D}$ is adjacent to at least one vertex in D and the induced subgraph< $\mathrm{D}>$ is connected. The connected domination number $\gamma_{C}(G)$ is the minimum cardinality taken over all connected domination sets of G. Hexagonal systems are geometric objects obtained by arranging mutually congruent regular hexagons in the plane. They are of considerable importance in theoretical chemistry because they are natural graph representation of benzenoid hydrocarbons [1]. Each vertex in hexagonal system is either of degree two or of degree three. Vertex shared by three hexagons is called an internal vertex of the respective hexagonal system. We call hexagonal system catacondensed if it does not possess internal vertices, otherwise we call it pericondensed. A hexagonal chain is a catacondensed hexagonal system in which every hexagon is adjacent to at most two hexagons. Linear hexagonal chain is hexagonal chain which is a graph representation of linear polyacene. The linear hexagonal chain with h hexagons will be denoted by B_{h}. A double hexagonal chain consists of 2 condensed identical hexagonal chains. Since chemical structures are conveniently represented by graphs, where atoms correspond to vertices and chemical bounds correspond to edges, many physical and chemical properties of molecules are well correlated with graph theoretical invariants.In this paper we discuss the connected domination on linear hexagonal chain B_{h} that is illustrated in figure 1, and on double hexagonal chain $B_{2 h}$ which is represented in figure 2.

Figure 1

For isomorphic graphs the connected domination number is equal. Therefore, each hexagon will be represented with its isomorphic graph that is illustrated in figure 3.

Figure 3
Various isomorphic representations of B_{h} and $\mathrm{B}_{2 \mathrm{~h}}$ are illustrated in the following figures:

2. Connected Domination Number on Linear Hexagonal Chains

Let B_{h} be the linearhexagonal chain with h hexagons represented in figure 1 . The structure in figure 1 is isomorphic with the one illustrated in figure 4.

Figure 4

Theorem 2.1: Let B_{h} be the linear hexagonal chain with h hexagons. Then $\gamma_{C}\left(B_{h}\right)=\left\{\begin{array}{l}\frac{5 h+2}{2} \text { if } h \text { is even } \\ \frac{5 h+3}{2} \text { if } h \text { is odd }\end{array}\right.$
Proof: Let $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \ldots \ldots \mathrm{C}_{\mathrm{h}}$ be the cycles of B_{h} represented in figure 3. Let D be any minimum connected domination set of B_{h}.
For dominating the vertices of $\mathrm{C}_{1}, \mathrm{D}$ must contain at least 4 vertices in which two vertices are common with C_{2}. For dominating the vertices of $\mathrm{C}_{2}, \mathrm{D}$ must contain at least two more vertices of C_{2} in which one of the vertex lies on both C_{2} and C_{3}. For dominating the vertices of $\mathrm{C}_{3}, \mathrm{D}$ must contain at least three vertex in which two vertices are common to C_{3} and C_{4}. For dominating the vertices of $\mathrm{C}_{4}, \mathrm{D}$ must contain at least two more vertex in which one of the vertex lies on both C_{4} andC $_{5}$.

Proceeding like this, it is clear that D must contain at least 4 vertices of $\mathrm{C}_{1}, 2$ vertices of C_{2} not on $\mathrm{C}_{1}, 3$ vertices of C_{3} not on $\mathrm{C}_{2}, 2$ vertices of C_{4} not on $\mathrm{C}_{3}, 3$ vertices of C_{5} not on C_{4}

2 vertices of C_{h} not on $\mathrm{C}_{\mathrm{h}-1}$ if h is even.
Therefore, $|\mathrm{D}|=4+2\left(\frac{\mathrm{~h}}{2}\right)+3\left(\frac{\mathrm{~h}-2}{2}\right)=\frac{5 \mathrm{~h}+2}{2}$
If h is odd, from the last cycle of C_{h}, D must contain 3 vertices of C_{h} not on C_{h-1}, therefore

$$
|\mathrm{D}|=4+2\left(\frac{\mathrm{~h}-1}{2}\right)+3\left(\frac{\mathrm{~h}-1}{2}\right)=\frac{5 \mathrm{~h}+3}{2}
$$

The diagrammatic representation of $\gamma_{C}\left(B_{h}\right)$ is in figure 5 .

Figure 5
Therefore, $\gamma_{C}\left(B_{h}\right)=\left\{\begin{array}{l}\frac{5 h+2}{2} \text { if } h \text { is even } \\ \frac{5 h+3}{2} \text { if } h \text { is odd }\end{array}\right.$

3. Connected Domination Number on Double Hexagonal Chains

Let $B_{2 h}$ be the double hexagonal chain with h hexagons on each linear chain which is represented in figure 2 . The structure in figure 2 is isomorphic with the one illustrated in figure 6.

Figure 6

Theorem 3.1.Let $B_{2 h}$ be the double hexagonal chain. Then $\gamma_{C}\left(B_{2 h}\right)=\left\{\begin{array}{l}3 h+2 \text { if } h \text { is even } \\ 3 h+3 \text { if } h \text { is odd }\end{array}\right.$

Proof:

Let $C_{1}, C_{2}, C_{3}, \ldots \ldots, C_{h}$ be the cycles of the first layer and $C_{h+1}, C_{h+2}, \ldots \ldots, C_{2 h}$ be the cycles of the second layer. Let D be any minimum connected domination set of $\mathrm{B}_{2 \mathrm{~h}}$.

For dominating the vertices of C_{1}, D must contain at least 4 vertices in which two vertices are common with C_{2} and $\mathrm{C}_{\mathrm{h}+1}$. For dominating the vertices of $\mathrm{C}_{2}, \mathrm{D}$ must contain at least two more vertices of C_{2} in which one of the vertex lies on both C_{2} and $\mathrm{C}_{\mathrm{h}+1}$. For dominating the vertices of $\mathrm{C}_{\mathrm{h}+1}$, D must contain one more vertex which is common to $\mathrm{C}_{\mathrm{h}+1}$ and $\mathrm{C}_{\mathrm{h}+2}$. For dominating the vertices of $\mathrm{C}_{\mathrm{h}+2}$, D must contain one more vertex in $\mathrm{C}_{\mathrm{h}+2}$ which is common to C_{3}.

Proceeding like this, it is clear that for the first layer D must contain at least 4 vertices of $C_{1}, 2$ vertices of C_{2} not on $C_{1}, 2$ vertices of C_{3} not on $\mathrm{C}_{2}, 2$ vertices of C_{4} not on C_{3},
2 vertices of C_{h} not on $\mathrm{C}_{\mathrm{h}-1}$.
For the second layer of cycles, D must contain at least one vertex of each cycle if h is even. If h is odd, D must contain at least one vertex of each cycle except the last cycle $\mathrm{C}_{2 \mathrm{~h}}$. For dominating the vertices of $\mathrm{C}_{2 \mathrm{~h}}, \mathrm{D}$ must contain at least two vertices of $\mathrm{C}_{2 \mathrm{~h}}$.

Therefore, $|\mathrm{D}|=4+2(\mathrm{~h}-1)+\mathrm{h}=3 \mathrm{~h}+2$ if h is even and $|\mathrm{D}|=4+2(\mathrm{~h}-1)+\mathrm{h}-1+2=3 \mathrm{~h}+3$ if h is odd The diagrammatic representation of $\gamma_{\mathrm{C}}\left(\mathrm{B}_{2 \mathrm{~h}}\right)$ is in figure 7 .

Figure 7
Therefore, $\gamma_{C}\left(B_{2 h}\right)=\left\{\begin{array}{ll}3 h+2 & \text { if } h \text { is even } \\ 3 h+3 & \text { if } h \text { is odd }\end{array}\right.$.

References

[1]. H.Wiener: Structural Determination of Paraffin Boiling Points, J. Amer. Chem. Soc.69, (1947), 17 - 20.
[2]. S.Majstorovic, A.Klobucar, Upper bound for total domination number on linear and double hexagonal chain, Int. J. Chem. Model. 2009.
[3]. MajstorovicSnjezana, K- Domination sets on double linear hexagonal chains, Journal of Applied Mathematics, Volume III (2010), number III.

