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Abstract: The aim of this study is to develop a Mathematical model that best describe the behaviour of human 

respiratory system parameters, we studied lungs flowrate in relation to time for both normal and disease patient 

by developing mathematical models for both cases. The present work provides a methodology for auto regressive 

exogenous (ARX) modelling of human respiratory system. The proper model structure and model parameters are 

determine for the human respiratory system. Estimated model parameters will reflect the dynamic changes in 

respiratory system so the differences between normal and disease person can be detected using this model. The 

results are promising and models obtained for physiological system are able to describe the difference between 

the normal patient and disease patent by the diagnosis of change in the model parameters. 

 

Keywords: System identification; Mathematical models; curve fitting; ARX models; Respiratory system. 

  

 

 

 

Introduction 

 

During the last two decades, extensive research has been carried out on the modelling and analysis of dynamic changes 

in the respiratory mechanics, to assist in diagnosis and clinical studies. System identification techniques 
[1]

 have been 

extensively applied to model the dynamic respiratory mechanism and are broadly classified as: 

 

1. Parametric approaches (mainly based on time domain modelling and analysis)
 [2] [3] [4]

. 

2. Non-parametric approach (further classified as frequency domain and cross correlation analysis)
 [5] [6] [7]

. 

 

Non-parametric approaches provide important first insight about the system. However, they do not directly estimate any 

model parameters and provide limited information about the system. As a comparison between the above mentioned two 

approaches of modelling and analysis, parametric time domain approaches
[8][9]

 based on auto regressive exogenous 

(ARX) structure have been found particularly suitable for modelling dynamic respiratory system. The main advantages 

of ARX modelling are as follows: 

 

1. Shorter length of input and output data can be used to build the ARX model as Compared to frequency response 

modelling. 

2. The ARX model is less sensitive to the presence of noise in the data. 

 

Materials and methods 
 

ARX modelling involves two steps: 

 

1.  Model order determination 
[2] [10]

. 

2.  Estimation of parameters 
[9] [11] [12]

. 

 

The model order in most of the cases is determined by trial and error method which is called as black box modelling, to 

identify black-box models we estimate simple polynomial models for a range of orders and compare the performance of 

these models. In which various type of model having different stretchers and order are used to feed with the data 

available from the data variation curve so the proper model which represent the given variation in the data curve and 

which is having least order can be obtain, the model having least order is taken so that linear response can be obtain and 

to reduce the complexity of the system, the parameters variation of the best fitted model Obtain shows the difference in 

the response of the respiratory system for the normal and disease patient which provides Medical applications of 

computer modelling 
[13][14]

 . 

  

The various model used for estimation are given as: 
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ARX Models  

 

For a single-input/single-output system (SISO), the ARX model structure is:  

 

Y (t) + a1y (t-1) + ...... + anay (t-na) = b1u (t-nk) + ...... + bnbu (t-nk-nb+1) +e (t).  

 

Y (t) represents the output at time t, u (t) represents the input at time t, na is the number of poles, nb is the number of 

zeros plus 1, nk is the input delay. 

 

arxqs - Fourth-order autoregressive (ARX) model using the arx algorithm here na=nb=4, and nk is estimated from the 

step response model imp. 

 

IMP - Step response over a period of time using the impulse algorithm 

 

arx 692 - sisxth-order autoregressive (ARX) model using the arx algorithm here na=6, nb=9 and nk=2 . 

 

arx 223 - second-order autoregressive (ARX) model using the arx algorithm here na=nb=2, and nk =3. 

 

State-Space Models 

 

The general state-space model structure: 

 

X (t+1) =Ax (t) +Bu (t) +ke (t)  

Y (t) =Cx (t) +Du (t) +e (t)  

Y (t) = output at time t,  

u (t) = input at time t,  

X =state vector,  

e (t) = white-noise disturbance 

 

The System Identification Toolbox estimates the state-space matrices A, B, C, D, and K from the data. The state-space 

model structure is a good choice for quick estimation because it requires that you specify only two parameters to get 

started: n is the number of poles (the size of the A matrix) and nk is the delay.  

 

Type of state space model used: 

 

1. n4s2 having second order.  

2. n4s3 having third order.  

 

ARMAX Models  

 

For a single-input/single-output system (SISO), the ARMAX model structure is:  

Y (t) + a1y (t-1) + ...... + anay (t-na) = b1u (t-nk) + ...... + bnbu (t-nk-nb+1) +e (t) +c1e (t-1) ............cnce (t-nc). 

Y (t) represents the output at time t, u (t) represents the input at time t, na is the number of poles for the dynamic model, 

nb is the number of zeros plus 1, nc is the number of poles for the disturbance model, nk is the number of samples before 

the input affects output of the system (called the delay or dead time of the model), and e (t) is the white-noise 

disturbance.  

 

Types of armax model used  

 

amx2222 na=2 , nb=2 , nc=2 (is the number of poles for the disturbance model)  

nk=2;  

amx3322  

na=3 , nb=3, nc=2 (is the number of poles for the disturbance model)  

nk=2; 

 

Model structure and model parameter determination 

 

Model structure is defined by na = number of poles, nb = number of zeros plus1, nk = pure time delay (dead time).  
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The data curve taken for diagnosis is the flowrate variation curve which is shown in the Fig.1a for the normal patient and 

after feeding the data of the normal patient in system identification system the estimate of the best fit model is obtain 

which is shown in Fig.1b: 

 

        
                             Fig.1a                 Fig.1b 

 

The flowrate variation for the abnormal patient is show in Fig.2a and after feeding the data of the abnormal patient in 

system identification system the estimate of the best fit model is obtain which is shown in Fig.2b: 

 

         
                               Fig.2a                 Fig.2b 

 

Although in both cases the best fitted model according to model fitting plot is ARX 692 but since the lower order similar 

model ARX 223 gives the similar fitting hence used as best fit model for the given data curve. The coefficient variation 

of these models for the two cases will give the difference in the respiration process. 

Results and Discussion 
 

 
Fig.3: Flowrate variation comparison the blue line shows the response for the normal patient and  

the green line shows the response for the disease patient 
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According to the System identification Model Fitting plot the best fitted model for normal patient flowrate variation 

curve is ARX 223 with structure:  

 A (q) Y (t)=B (q) U (t) +E (t)   

ARX model with the transfer function as given in above equation has the coefficient B (q) given as: 

B (q)= 0.04115U (t-3) +.03353U (t-4);                         (a) 

According to the System identification Model Fitting plot the best fitted model for abnormal patient flowrate variation 

curve is also ARX 223 with structure: 

A (q) Y (t)=B (q) U (t) +E (t)   

B (q)= 0.07628U (t-3) +.05487U (t-4)                           (b)  

The difference in the variation in the flowrate curve for the normal and disease patient can be identified by the 

coefficient variation as shown by the equations a and b also can be verified by the fig.3. 

Step and impulse response analysis have been used by different research groups as standard methods to analyse the 

models. A faster speed of response and less settling time in step response shows normal activity of respiratory 

mechanism. The impulse response has also been estimated by different researchers for analysing the characteristics 

(behaviour) of the modelled system.  

Step response comparison of flowrate variation curves: 

 
 

Fig. 4 Step response comparison for flowrate variation curves the red line shows the step response for the normal patient and  

the green line shows the step response for the disease patient 

The step response comparison of the ARX model for the disease and the normal patient shows that the person having 

abnormality in its respiratory system is giving very slow response. it can be easily observe from the step response 

variation that the final settling value of the step response is obtain very slowly for the abnormal patient hence breathing 

period is longer than the normal. 

Impulse response comparison of flowrate curves: 

 
Fig.4: Impulse response comparison for flowrate variation curves the red line shows the    impulse response for the normal patient and 

the green line shows the step response for the disease patient 
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The ARX 223 model impulse response comparison for the two cases normal and disease are shown in the figure, now 

from the figure it can be seen that the impulse response for the disease patient has not reached the maximum amplitude 

as in the case of the normal patient as shown above in the form of the impulse response variation.  

 

Conclusion 

 

This study was focused on modelling the flowrate dynamics of breathing processes of human beings. Now from the 

comparison of the flowrate curves in both condition it can be seen that the flowrate of air during the expiration is not able 

to reach its maximum value and it is getting slower and the amount of air expire will get decrease for the person having 

abnormality in respiration this is identified by the change in the coefficients of the model and the step, impulse response 

comparison of the model generated for the parameter variation curve of the human respiratory system.  
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