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Abstract: This paper presents a robust Hinfinity control with parameter dependent performance of a highly 

nonlinear multi-input multi-output and strongly coupled dynamics system which is the twin rotor system for the 

purpose to stabilize the system in elevation and azimuth angles, improve tracking performance, disturbance 

rejection and handles the coupling problem. Simulation results showed that the controllers exhibit good 

performance. 
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Nomenclature 

 

/ is the azimuth/pitch angle of beam horizontal/vertical pl n: )( a eh v

/ is the rotational velocity of the tail/main ro r: to .h v
 

/ is the input voltage of the tail/main mo or: t .h vu

/ the moment of inertia in motor  tail/main 

propeller subsystem.

: istr mrJ

/ / is the torque constant of the tail/main motor: .ah v h vk 

is the moment of inertia about the horizontal s.: axivJ

:are the radius of the main and tail shield.,ms tsr r
 

/ is the angular velocity around the vertical/horizontal a s: xi .h v

:are the masses of the main and the tail parts of the beam.,m tm m

:represent the mass of the counter-weight and the distance 

between the counter-weight and the joint.

,cb cbm l

DC-:are the masses of the main and the tail motor 

with main and tail rotor.

,mr trm m

:are the mass and the length of the counter-weight beam.,b bm l

:are the masses of the main and tail shields.,ms tsm m
 

 

 

Introduction 
 

The prime control objective in this work is to balance the twin rotor system in coupled condition and to make the beam to 
follow the desired trajectory to achieve desired positions in 2DOF accurately and quickly. Many theoretical techniques 
were already proposed to solve these problems. The article [1] presents the techniques of the modal control, and in[2],[3] 
and [4], we find the Gaussian quadratic linear LQG/LTR control, the control by fuzzy logic and a non linear H∞ approach 
for handling the coupling taken as a disturbance that should be rejected. In [7], it is considered a sliding mode control by 
defining a sliding surface that allows dealing with cross-coupling inherent in the twin rotor dynamics. The concept of 
system linear with variable parameters in time (LPV) was introduced for the first time into [8], [9]. This kind of systems 
constitutes a class of model make it possible to describe processes which can be represented by linear models, but whose 
dynamic characteristics change according to the operating conditions [15]. In recent years the interest for gain scheduling 
methods has increased. Gain scheduling is a collection of methods that try to tackle the challenging problem of nonlinear 
control in a divide and conquer manner. This control design methodology allows designing an H∞ gain-scheduling 
controller that is able to adapt the control gains with the operating point using a scheduling function and scheduling 
variables [10]. This article is arranged as follows. In section 2 we present the formulation of the polytopic LPV model of 
the Twin rotor system. In section 3, a synthesis of the LPV/H∞ controller is detailed. Section 4, details the results obtained 
when applying the presented controller to the system to prove its effectiveness and performance. Finally, we will close the 
paper with some concluding remarks. 

 
Twin Rotor MIMO System Model 

 
An accurate dynamic model of the system, that take into account the high non-linearity and cross-coupling between its two 
axes, an accurate dynamic model of the system is thus required to achieve control objectives satisfactorily. Several work 
was realized of which the goal to develop and identify the Twin rotor system fig. 1 model [2], [11], and [12]. 
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A. Derivation of the Nonlinear Model 

  
To develop the dynamic model we used a direct method based on the calculation of the forces acting on the body of the 
simulator [14]. 

The non-linear model results in a set of six non-linear differential equations [13]. 
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                                                                                                                                                        (6) 

The nonlinear functions if  into account the frictions and coupling effects between horizontal/vertical dynamics, are 

defined as follows: 

 

    2
1 h h th hf sign k                                                                  (7.1) 
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 
2

5
2

0

0

fvp v v

v

fvn v v

k if
f

k if

 


 

 
 

 

                                                               (7.5) 

 
 

 

2
0 0

6 2
0 0

cvp v v v v

v

cvn v v v v

k if
f

k if

   


   


 

 
  


                                                              (7.6) 

 



International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 
Vol. 3 Issue 11, November-2014, pp: (257-267), Impact Factor: 1.252, Available online at: www.erpublications.com 

 

Page | 259  

 

Where the input vector is ,
T

h vu u u    and state vector is , , , , ,
T

h h h v v vx          

The constants of the non-linear model are defined as: 

1 t l
2

t
tr ts

m
l m m

 
   
 

                                                                                                                                       (8.1) 
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m
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 

                                                                                                                                (8.2) 
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2

b
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m
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                                                                                                                                        (8.3) 

2 2b
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3
l                                                                                                                                                  (8.4) 
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                                                                                             (8.5) 

2 2ts
 6 ms ms ts

m
m r r

2
l                                                                                                                                                (8.6) 

2 2
7

m
l

2

b
t m b cb cbl Al Bl m l                                                                                                                                (8.7) 

 

B. Derivation of the LPV Model  

 

 For the purpose to define the linear time varying model whose state-space matrices are fixed functions of some vector 

of varying parameters t  . [13,16] 

They can be described by time state-space equations of the form: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

t t

t t

x t A x t B u t

y t C x t D u t

 

 

 

 


                                                                                          (9) 

Where ( ) xn
x t   : The state vector. ( ) um

u t   : The control inputs  

( ) yn
y t   : The sensor outputs.    , , , : , , ,N n n n m p n p mA B C D           

Matrices scheduled by t  of varying parameters : 

 

11 21 22 23 24 25 51 52 54 55 56 22t a a a a a a a a a a a b     

 

The model can be expressed in an LPV form by introducing the following set of time varying parameters 

As follows: 
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t
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Where: 
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The scheduling variables in the model (10) are 

T

t h v h h v vp                                                                                                      (12) 

An LPV model for the system can be obtained by means of state transformation from (10) by considering: 
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By defining new states and inputs, a new LPV model of the twin rotor simulator can be obtained: 
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  To design a controller for an LPV system (9) is to approximate it by a polytopic LPV system corresponds to those 
whose parameter vector varies within a polytope. The state space matrices range in a polytope of matrices defined as the 
convex hull of a finite number of matrices N. Each polytope vertex corresponds to a particular value of scheduling 
variable: 
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With 
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N j

kkj
 


                  

Where j each model is called a vertex system, this type of LPV systems is polytopic. 

The polytopic approximation consider on the limitation of every parameter LPV by an interval “bounding box approach” 
and its conduct to an interval LPV model, the convex hull that contains them is obtained using the quick hull algorithm. 
[17]. 
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The polytopic LPV system (22) can be expressed as follows: 
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Controller Design 
 

In this section, we seek to find a parameter dependent controller that in a closed loop with the LPV system (14) attains 
the norm bound for all possible trajectories of the scheduling variable specified by the bounds of the vertices.  

A. LMI Constraints 

 
Parameterized LMIs are convex, but of infinite dimension as they may be represented by a range of LMIs in the 
parameters.Therefore, a scheme for reducing the infinite to a finite problem is necessary for treatable computation of the 
parameterized LMIs. [15,13]. As in LTI H∞ design is also used in H∞ LPV synthesis. This will result in system (9), 

 

Figure 1.  closed loop design 

The LPV system (9) has a quadratic H∞ performance γ if and only if: 
 
The system is quadratically stable on Θ, and the L2 gain of the input/output is bounded by γ.  

That is: 
2 2

y u  Along all possible parameter trajectories  t  in Θ. 

 

For all  t ò  , there exists a single symmetric positive definite matrix X solution of the Linear Matrix Inequality (LMI): 

( ) ( ) ( ) ( )

( ) ( ) 0

( ) ( )

T T

T T

A X XA XB C

B X I D

C D I

   

  

  

 
 
  
 

 
 

                                                            (26) 

specifying that if  θ is frozen, the quadratic H∞ performance γ is reduced to the standard H∞ norm, secondly if the plant 
has polytopic representation becomes for all i=1,2,...,N there exists a single symmetric positive definite matrix X solution 
of the Linear Matrix Inequality 

( )

0

T T
i i i

T T
i i

i i

A X XA XB C

B X I D

C D I







 
 
  
 

 
 

                                                                           (27) 
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The LMI must holds at each summit of the convex polytope. 

B. Controller formulas 

 
The simplest form to find an LPV controller guarantees robust stability of the closed loop system which, over all 

trajectories  t    

 Stabilizes quadratically the closed loop system depends on the parameter Tzw. 

 Minimizes the H∞ quadratic performance γ 

 Places the closed loop poles in the left half plane Re(s) < -α (α>0). 

The polytopic structure for controller is: 
 

   
1 1

( ) ; 0; ( ) 1
i N i N

i i i i i

i i

K K      
 

 

   
                                                                  

(28)

 
With 

                    
0

ci ci
i

ci

A B
K

C

 
  
 

 

 
The closed loop system is: 

 

       
     

:
e e

e
e

X t A X t B w

Z t C X t

 



  





S

                                                                                      

(29) 

 
With 

 

2

2

( ) ( ) ( )
( )

( ) ( ) ( )

c
e

c c

A B C
A

B C A

  


  

 
  
                                                                                                (30.1) 

 

1

21

( )
( )

( ) ( )
e

c

B
B

B D




 

 
  
                                                                                                                     (30.2) 

 1 12( ) ( ) ( ) ( )e cC C D C   
                                                                                                        (30.3)   

 
To perform the quadratic approach linearity is necessary, two options are available. 

The first is to limit the class of LPV systems assuming that the matrices of input and output are invariant: [1], [18]:  

 

2 2 2 2( ) , ( )B B C C  

                                                                       

(31)

  
 The second is looking for a controller with a linear time varying dynamic matrix and input and output constant 
matrices. [16] 

Following a theorem that gives a sufficient condition of quadratic stabilizability with H∞ performance γ when   is time 

varying: 

If exist a symmetric positive definite matrices , n nX Y   and matrices ,m nL  , n qF   and 1,2,...i N   
n n

iM   solutions of the matrix inequalities:

                                                                                               

 

                      (32) 

 
 

 

 
(33) 
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2 2

2 2

2 2

T T T
i i i i i i

T T T
i i i i i

T T T T T
i i i i i

H A Y Y A B L L B

G XA A X FC C F

Z A Y A X L B X Y C F

   

   

   

 

   stands for the symmetric transpose 

 

Then the system (14) is quadratically stabilizable in the form (28) and:
 zw s

T  

     

 The closed loop system is stable and 
 zw s

T 

  if and only if there exists a positive definite symmetric matrix 

2 2n n
eX  such that: 

 

2 1 0 0

0 1
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T T
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ei
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 eX and
1

eX 
 partitioned depending on : 
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This results the first inequality (33). To prove (33) the regular matrix Te can be set as follows: 

1 0 0

0 0 0

0 0 1 0

0 0 0 1

T

e
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V
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 
 
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(35)

 
 

We can obtain (33) by pre and post multiplying (34) by eT and 
T
eT  respectively and doing the variable changes 

, ,

1,2.....

T T T
C C i ciL C V F UB M VA U

i N

  

 
 

 
  

It is evident that (33) is bilinear in terms of (Y,X,L,F). In order to obtain linear matrix inequality LMI, we can do the 

variable change ˆ
i i iM Z M  this result to the following convex problem with linear constraints: 
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After the matrices X, Y, L, F and Mi were found, the controller realization matrices (Aci, Bc, Cc) relative to the ith summit 
can be easily derived from the expression of L, F and Mi.  

 
 The controller transfer function is: 

       

 

1
1 1 1

1 11 1T T T
i c ci c i
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L sUV M F


  

  
    

 

 

                  

(38) 

 

With 1TXY UV  it becomes:     1
T

i iH s L s XY M F    

This corresponds to the state space realization 

 
c ci c c
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u C x
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
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
                                                                                           (39) 

   
1 1

1 ; 1 ;
T

ci i c cA XY M B XY F C L
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    
 

 
 Gain scheduling provides a reasonable compromise between performance and robustness, yet at the expense of higher 
complexity and delicate stability in the switching zone.  

 The system (9) is quadratically stabilizable by output feedback and the poles of the system lies in the left half plane  

   Re 0s         

 If there a symmetric definite positive matrix Xe such that: 

2 0T
e e e e eA X X A X    

By pre and post multiplying by adequate matrices as done with (34), we obtain the new constraint expressed in the LMI 
form: [16,19] 

   
2 0

1

i

T T
i i i

H Y

XM Z G


   
                                                                    

(40) 

 
  Simulation Results 

 

 The H∞ Linear Parameters Variant (HLPV) is applied to the LPV model of the Twin rotor platform obtained as 
shown in section 2, to control the elevation and azimuth trajectory. 

 By using the LMI Toolbox (MATLAB), we get the controller as in (38), the designed control should be robust and 
handles the coupling very efficiently, the H∞ performance obtained is γ = 2.6650. 

The following results obtained by delivering a step of 0.45rad for elevation, for azimuth we applied a step of  0.6rad. 

 

Figure 2.  Step elevation and Azimuth simulations of closed loop performance, (a) elevation response (b) Azimuth response initial 
values θh(0) = 0 and θv(0) = -0.48  and a disturbance to the control input u(t) at t = 50s. 

 Fig. (2 a, b) show the elevation and azimuth behavior with the above mentioned controller, respectively. It is easy to 
see that the closed-loop nonlinear system is stable and has zero steady-state error even in the presence of disturbance with 
the proposed robust LPV/H∞ controller also improves the transient behavior. 
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Figure 3.  Sinusoidal simulations of closed loop performance(a) elevation response (b) Azimuth response. initial values θh(0) = 0 
and θv(0) = -0.48. 

 

Figure 4.   Square elevation and Azimuth simulations of closed loop performance, (a) elevation (b) Azimuth. initial values θh(0) = 
0 and θv(0) = -0.48. 

  

It should be noted that the controller presented here stabilize the system to a change of reference fig. 4, improves the 

performance for tracking signals in elevation and azimuth fig. 3, and improve system performance and robustness in the presence 
of the disturbance and time-varying uncertainty fig.2.The system output performance has been significantly improved. 

LPV Gain Scheduling techniques, such as the one used here, offers a guarantee of the closed loop performance. However, 
in comparison with more traditional methods, the LPV methods are less intuitive to design and most often result in a more 
complex controller structure. 

 
Conclusion 

 
 In this paper an Hinfinity gain scheduled has been applied to design the control of a non-linear model of the twin rotor 
MIMO system transformed into an LPV system and approximated in a polytopic way, the stability of the system is based 
on the resolution of an LMI problem under structural constraints. Simulation results not only confirmed the effectiveness 
of the proposed control but also showed that it has strong robustness, fast convergence, and good flexibility and can more 
effectively deal with disturbances, nonlinearity, and uncertainties of dynamics. 
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