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Abstract: There are four main indicators to determine bearing condition; oil or particle analysis, temperature, 

mechanical vibration and acoustic vibration. Condition monitoring of machines is essential for maintenance 

management in any industry which generally involves five distinct phases: detection of fault, diagnosis of fault, 

prognosis of fault progression, prescription for treatment of a problem and effective maintenance program for 

treatment of problems. 
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 Introduction 

 
Condition monitoring of rotary machinery is associated to the mechanical condition of the rotary machine such as 
vibration, bearing temperature, oil pressure, oil debris, and performance which makes it possible to decide whether the 
machinery is in good or bad mechanical condition. Condition monitoring makes it possible to determine the cause of the 
problem [1].  

Bearing fault diagnosis is important in condition monitoring of any rotating machine [2]. There are several reasons of 
bearing damage. It is not always easy to conclude the exact cause of bearing failures. 

 

Oil Analysis 

 
Oil analysis can give an indication of microscopic wear particles present in the lubricant, which can be deemed as 
bearing wear and analyses can periodically be performed to trend bearing conditions. The oil analysis technique can be 
classified in following sub categories: 

A. Spectrographic oil analysis 

Spectrographic oil analysis tests the chemical composition of the oil can be used to predict failure modes. Very small 
concentrations of metallic wear products (1 to 2 ppm) suspended in used lubricating oil can be identified by 
spectrographic analysis [3]. For example high silicon content indicates contamination of grit etc., and high iron levels 
indicate wearing components. Detection of trace elements can give information about the part where wear is taking 
place. 

B. Magnetic chip detector 

The template is used to format your paper and style the text. All margins, column widths, line spaces, and text fonts are 
prescribed; please do not alter them. You may note peculiarities. For example, the head margin in this template measures 
proportionately more than is customary. This measurement and others are deliberate, using specifications that anticipate 
your paper as one part of the entire proceedings, and not as an independent document. Please do not revise any of the 
current designations. 

C. Ferrography 
Ferrography is a technique developed to separate wear debris from the lubricant and spread it according to size on a 
transparent substrate for examination in an optical or scanning electron microscope [5]. The analyzer consists of a pump 
to deliver a diluted oil sample at low rate, a magnet to provide a high-gradient magnetic field near its poles, and an 
inclined transparent substrate (Ferrogram slide) on which the particles are deposited. The quantity of wear particles and 
their size distribution can be determined by optical density measurement. 

D. Radioactive tracer methods 
The use of radioisotopes, artificially produced by neutron irradiation, offers a convenient method for following the 
movement of material during deformation, transfer, or the formation of wear debris [6]. In recent years, a great reduction 
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has been obtained in background radiation by implanting radioactive ions instead of activating the sample. A thin-layer 
activation technique enables differentiation between the wear of different parts of moving machine elements. 

 

Thermography 

 
Bearing makers have long been conscious of the relationship of heat to bearing life and have developed formulas to 
accurately calculate safe operating temperatures [7]. The results show a temperature band in which both bearings and 
lubricants will work at peak performance with the least stress. Once outside the ideal temperature range, they will 
diminish at an accelerated rate. This technique can be used for recognizing the effect of fault on the bearing system but is 
not more suitable for bearing condition monitoring [8].  

 

Vibration  analysis 

 
In this analysis, the healths of the machine based on collected data are analyzed [9]. This allows the changes within the 
machine to be determined precisely and appropriate corrective action can be initiated [10]. Although there are several 
methods of condition monitoring, vibration analysis was chosen for several reasons.  

 

Table 1.1: Comparisons among vibration analysis, thermography and oil analysis technique 

 
Process/Function  

 

Vibration  analysis Thermography 

 

Oil analysis 

Time efficient 

 

  

Cost-effective   

Damaged rolling element bearings fault 

detection 

  

Damaged rolling element bearings fault 

isolation 

  

Weak fault diagnosis of bearing   

 
The measurement of vibration is still a very effective tool to determine machine condition, especially since it can detect 
abnormal operating conditions long before there is any permanent damage to the machine. This feature is often not 
possible when other more traditional techniques are used [11]. 

1. Time domain Techniques 

Vibration signals are initially obtained as a series of digital values representing proximity, velocity, or acceleration in the 
time domain. The time waveforms can be processed to achieve diagnostic objectives. Certain features such as statistical 
parameters can be signified using time domain vibration analysis techniques [12]. The Measurement of signal energy 
can be a good indicator of a bearing's health. This method has been applied with limited success for the detection of 
localized defects [13]. In time domain techniques, vibration signal is represented in amplitude versus time plot [14]. A 
typical time domain plot is shown in Figure 1. Although this technique fails when the vibration/acoustic signature may 
combine several other signals with different frequencies, amplitudes and phases, it results in opacity in identifying 
defect.  

 

 

Figure 1: A time domain signal for defective bearing 

         

1.1Statistical parameters  

It includes mainly Root mean square (RMS), Mean, Variance, Skewness, Kurtosis, Peak level detection and Crest factor 
statistics is an area, which can provide many ideas for vibration analysis in fault diagnosis of bearing. Statistical analyses 
of vibration signals have proved to be useful in detecting rolling elements bearing faults. 
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a) The root mean square (RMS) 

The root mean square value of a vibration signal is a time analysis feature, which is the measure of the power content in 
the vibration signature [15]. This feature is good for tracking the overall noise level, but it will not provide any 
information on which component is failing. It can be very effective in detecting a major out of balance in rotating 
systems. RMS can be defined by mathematical expression is as follows [16]: 
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Where, kx is the amplitude of signal and n  is the number of data points taken of the signal. 

The greatest limitation of this approach is the lack of sensitivity and information available in the data. Unless a problem 
is severe, the overall level measurements may not change significantly. Unfortunately the machine monitoring 
community has relied too heavily in the past on these measurements alone, resulting in unanticipated machine failure 
[17]. The RMS level is calculated over a time period analysis that should be set in the configuration window. RMS level 
should be calculated over different time periods to separate the various faults components. Figure 2 show the RMS value 
of a healthy bearing and faulty bearing. 

 

Figure 2: Scatter plot of RMS value for healthy and faulty bearing 

b) Kurtosis  

Kurtosis is defined as the fourth moment of the distribution and measures the relative peakedness or flatness of a 
distribution as compared to a normal distribution. Kurtosis provides a measure of the size of the tails of distribution and 
is used as an indicator of major peaks in a set of data [18]. Mathematically kurtosis factor Ku is expressed as below: 
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Where, 1x , 2x ……. nx  are the population data of the signal, x  is the mean of x , and n is the number of samples. 

A bearing in good condition has a Gaussian distribution function and the Kurtosis value of its signal is equal to three, but 
a damaged bearing has a Kurtosis value which will be greater than three [19] 

The kurtosis technique has the major advantage that the calculated value is independent of load or speed variations. The 
kurtosis analysis is a good parameter for faults and transient effect detection, but it does not give any indication of the 
diagnosis of the problem [20]. 

c) Crest factor 

 The ratio of the peak level to the root mean square level of the signal is called the crest factor [17]. The crest 
factor behaves as an indicator of bearing condition [21]. The crest factor limits are as follows: 2 to 4 indicates a normal 
bearing, 4to 8 indicate fault initiation and 8 to 10 indicates fault growth. Figure 3 show the Crest factor value of a 
healthy bearing and defective bearing. 
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Figure 3: Scatter plot of Crest factor value for healthy and defective bearing 

 

d) Peak level detection 

The peak level indicator is the maximum value of amplitude present in the amplitude-time waveform of the signal 
[22].This is particularly useful for monitoring the change in the amount of impulsiveness, possibly due to increased 
bearing damage. However, on its own this method is not reliable, as other effects can also increase the peak level of a 
signal, but in conjunction with RMS level measurements it is a useful technique to identify bearing faults. 

 

     1.2 Time synchronous averaging analysis 

Time synchronous averaging analysis (TSA) signals are the signals obtained by time synchronous averaging of the initial 
data and reducing redundant noise. The repetitive signals after TSA can indicate the information related to the faults, 
which need to be diagnosed. The TSA including FM0 and Comblet [23] requires knowing the repetitive frequency of the 
desired signal such as defect frequencies of rolling bearings. Synchronous averaged signals were utilized to diagnose 
faults in rolling bearings and gears successfully.  

 

Filter based methods  

Filters are widely used in feature extraction techniques for removing noise and isolating signals. Filter based methods 
include demodulation, prony model, and adaptive noise cancelling (ANC).  

 

a) Demodulation model  

Demodulation including phase and amplitude demodulation is an important signal processing technique. The amplitude 
demodulation was also known as envelope, or resonance demodulation, or high frequency resonance demodulation 
techniques [24]. The amplitude demodulation separates low-level, low-frequency signals from background noise, 
enabling them to be easily measured. Generally the demodulation procedure starts with using conventional Infinite 
Impulse Response (IIR) Filters such as Butterworth, Chebyshev, Bessel, and Elliptic in pass band or band stop.  

 

b) Prony's model  

Prony's model was used as an algorithm for finding an IIR filter with a prescribed time domain impulse response. A 
Prony model based method [25] was applied to bearing faults diagnosis. The method shows potential for analyzing 
transient vibration signals created from faulty low speed rolling element bearings. Spectral plots can be generated by 
applying the procedure to very short data samples, as well as trending parameters based on these spectral estimations and 
Prony parameters. It is shown that application of the Prony model based method has the potential to be an effective as 
well as efficient machine condition monitoring and diagnostic tool where short duration transient vibration signals are 
being generated. 

 

c) Adaptive noise cancelling (ANC) 

Adaptive noise cancelling is an approach to reduce noise based on reference signals. In conventional adaptive noise 
cancelling systems, the primary input signal is a combined signal and noise and the reference signal is a noise signal. 
Asynchronous adaptive noise cancelling technology was employed to detect self-aligning roller bearing faults 
successfully [26]. 
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1.3 Stochastic methods and other advanced methods 

Advanced methods such as stochastic parameters have been used to analyze vibrations in the time domain. Chaos, whose 
computation parameters are known as the correlation dimension, is used to characterize several induced faults of varying 
severity in a rolling element bearing [27].  

Statistical methods have been combined with artificial intelligence techniques such as Neural Networks in order to 
diagnose faults more efficiently [28]. An artificial Neural Network has been used successfully for on-line monitoring of 
ball bearing conditions. Peak amplitude in the frequency domain, peak RMS, and the power spectrum of vibration 
signals have been used as inputs of the Neural Network while the outputs indicate the bearing states. 

 

2. Frequency domain techniques 

In this technique data is presented in terms of frequency and its magnitude. Frequency domain techniques are used when 
information of frequency in signal is important to identify cause of periodicity [19]. This technique is quite useful for 
analyzing stationary signals whose frequency components do not change over time. In other words, this technique is 
very accurate if the rpm of the shaft does not change over time or does not change at least during each updated duration 
of time analysis [12]. Some of the frequency domain techniques for analysis of vibration/acoustic signal are discussed 
below. 

 

a) Spectrum analysis 

The common technique for spectrum analysis is the Fourier transform (FT). FT split the signal into its sinusoidal 
components. The FT contains ability to convert a time domain signal into its frequency contents [29].  A change in the 
spectrum is related to the nature of the faults. The source of some spikes can not be explained in the spectrum due to the 
some micro-structural components in the machine [30]. 

 For a continuous-time signal, x(t), the Fourier transform, X(f) can be expressed as: 






 dtetxfX fti 2).()(                1.3 

Here, f represents global frequency and t denotes the time. The signal can then be analyzed for its frequency content 
because the value of the transformed function represents the contribution of sine and cosine function at each frequency. 
The x(t) can be obtained from its Fourier transform in the following way: 
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FFT plot of a defective bearing is shown in Figure 4  

 

Figure 4: FFT for defective bearing signal 

b) Cepstrum analysis 

The cepstrum is the spectrum of the logarithm of the power spectrum, it is used to highlight periodicities in the 
vibrations spectrum, in the same way that the spectrum is used to highlight periodicities in the time waveform [31]. 
Thus, harmonics and sidebands in the spectrum are summed into one peak in the cepstrum (called rahmonic), allowing 
simplified identification and trending of specific fault frequencies. Cepstrum of a defective bearing is shown in Figure 5.  
It can be explain mathematically as: 
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Where, Gxx(f) is frequency dependent correlation function.   

 

 

Figure 5: Cepstrum of the defective bearing 

 

The cepstrum is very good indicator for bearing and gearbox faults, is used for both faults detection and diagnostic [32]. 
For fault detection point of view, the data of harmonics and sidebands are reduced to one line and is not subjected to 
amplitude and frequency modulation.  

c) Waterfall plot 

Waterfall analysis is a tool that is often used to evaluate the acoustic and/or vibratory performance of rotating element 
bearing.  The process involves calculating spectra using fast fourier transform (FFT) methods at incremental steps in rpm 
(revolutions per minute) as the rotational speed changes either increasing (run up) or decreasing (coast down).  Because 
it takes time to sample enough data to fill a time block for a single FFT calculation (the actual calculation time is 
minimal), the rotational speed of the machine being tested will have changed from the beginning of the time block to the 
end of the time block. The changing of the rpm during the time required to capture each time block produces a 
phenomenon known as smearing of the data. 

    This method is used to examine sub synchronous and super-synchronous components of a machine [33].  

 

 

Figure 6: Water fall of the defective bearing 

 

3. Time- Frequency domain techniques 

When the rotating speed of the shaft is changing over time due to variances in load or commences of fault in the shaft 
then frequency changes over time and the FFT will not give accurate results [34]. Till FT contains a capacity to capture 
signal’s frequency content as long as is composed of little stationary components. Though, any sudden change in time 
for non-stationary signal is extent over the whole frequency axis. Hence the time-domain signal sampled with Dirac-
delta function is localized in time however spills over entire frequency band and vice versa. The drawback of FT is that 
it cannot offer both time and frequency localization of a signal at the same time.  Therefore, instead of distinct 
observation of the time from the frequency characteristics of a signal, it is prefer to use a joint time-frequency technique. 

Time-frequency (TF) analysis results are presented in a spectrogram or scalogram, which shows the energy distribution 
of a signal in the time-frequency domain. A spectrogram/ scalogram are an intensity graph contains time in abscissa and 
frequency in ordinate. Intensity of color explains the power of the signal at the corresponding time and frequency. In this 
transform, sine wave basis functions are modified which are more concentrated in time but less concentrated in 
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frequency.  It uses an arbitrary but fixed-length window function “w” for analysis, over which the actual non-stationary 
signal is assumed to be approximately stationary. TF analysis decomposes such a non-stationary signal into a two 
dimensional time-frequency representation S(t, f) of the signal x(t)  using that sliding window at different times.  

The Short-time Fourier transform (STFT) is defined as: 

dtetwtxfs ftiw

x 




  2*)( )].().([),(            1.6 

Where x(t) is the signal itself, w(t) is the window function, and “*” stands for its complex conjugate. For every   and  f, 

a new STFT coefficient is computed to obtain a true time- frequency representation of the signal. Limitation of STFT is 
that it is only suitable for non-stationary signals [35]. Once a window has been chosen for STFT, the time-frequency 
resolution is fixed over the entire time-frequency plane since the same window is used at all frequencies. There is always 
a tradeoff between time resolution and frequency resolution in STFT. To overcome the boundaries of the standard STFT, 
Wavelet Transform (WT) was introduced in the field of signal processing. WT in its continuous form delivers a flexible 
time-frequency window, which narrows when detecting high frequency phenomena and widens when examining low 
frequency behavior. Thus time resolution becomes arbitrarily good at high frequencies, although the frequency 
resolution becomes arbitrarily good at low frequencies. Therefore WT is highly preferable tool to fulfill both time and 
frequency resolution requirements more accurately. 

The wavelet transform can be imagine  as an extension of the classic Fourier transform while excepting that instead of 
working on single scale, it works on a multi-scale basis. The wavelet transform can be categorized as continuous or 
discrete. [39] 

The main advantage of the continuous wavelet transformation (CWT) is its ability to deliver information simultaneously 
in time and scale with adaptive windows [36]. Using CWT, Calculating wavelet coefficients at every feasible scale is a 
large quantity of work, and produces a disagreeable lot of data [37].  

To overcome such a problem an analytical wavelet transformation based on the Morlet wavelet was introduced by Lin 
[38]. 
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