
 International Journal of Enhanced Research in Management & Computer Applications

ISSN: 2319-7471, Vol. 6 Issue 7, July-2017, Impact Factor: 3.578

Page | 29

Comparative Parameter Estimation of Cocomo II

Using Tabu Search and Simulated Annealing

Techniques

Dimpi Saini
1
, Kamna Solanki

2

1Research Scholar, University Institute of Engineering &Technology, MDU, Rohtak

2Assistant Professor, University Institute of Engineering &Technology, MDU, Rohtak

ABSTRACT

Effective cost estimation is one of the major activity in the field of software engineering and invites a lot of research.

Cost estimation process involves a series of systematic steps that provide estimate with acceptable risk. The

COCOMO 2 models predicts software development effort in Person Months (PM) and project duration in months.

Using simulated annealing and Taboo Search techniques, the parameters of COCOMO 2 model will be estimated.

We compare the results of simulated annealing over this scenario with Taboo Search technique. The Simulated

Annealing algorithm is used to handle these models and will show potential advantages in solving the problem. This

technique will minimize functions of various variables. This technique will be applied to arbitrary combinatorial

problems. Taboo search is based on introducing flexible memory structures in conjunction with strategic

restrictions and aspiration levels as a means for exploiting search spaces. Meta-heuristic that guides a local heuristic

search procedure to explore the solution space beyond local optimum by use of a Taboo list. The proposed model

will compare the efficiency of both these algorithms and tend to reduce the uncertainty of COCOMO II post

architecture model coefficients i.e. a, b, c and d.

Index Terms: COCOMO, COCOMO II, Simulated annealing, PM, TDEV

1. INTRODUCTION

With the growing advancement of technology, the importance of software has increased which leads to a prominent issue of

software cost estimation. The cost of any software product is the most difficult task which is critical for its customers,

developers and users. This will in turn affect the total software project management process including scheduling, resource
allocation and project planning. The objective of software cost estimation method is to estimating the cost and effort

required for software production. Effort cost includes overhead costs where they take the total cost of running the

organisation and divide this by the number of productive staff. The Taboo search begins by leading to a local minima. To

avoid retracing the steps used, the method records recent moves in one or more Taboo lists. The Taboo lists are historical in

nature and form the Taboo search memory. The role of the memory can change as the algorithm proceeds. At initialization

the goal is make a coarse examination of the solution space known as diversification. In many cases the differences

between the various implementations of the Taboo method have to do with the size, variability and adaptability of the

Taboo memory to a particular problem domain. The Taboo search has traditionally been used on combinatorial

optimization problems. The technique is straightforwardly applied to continuous functions by choosing a discrete encoding

of the problem. Many of the applications in the literature involve integer programming problems, scheduling, routing,

travelling salesman and related problems. There are three parameters involved in computing the total cost of a software
development project:

 Hardware and software costs including maintenance

 Travel and training costs

 Effort costs (the costs of paying software engineers).

 International Journal of Enhanced Research in Management & Computer Applications

ISSN: 2319-7471, Vol. 6 Issue 7, July-2017, Impact Factor: 3.578

Page | 30

Software cost estimation is process of predicting the effort required to develop a software engineering project. This process

becomes one of the biggest challenges and most expensive component in the field of software. While the software cost

estimation may be simple in concept, it is difficult and complex in reality. The accurate software estimation can provide

good support for decision-making process like accurate assessment of costs can help the organization to better analyse the

project and effectively manage software development process. Software development projects are disreputable for being

completed delayed and over budget and for often failing to satisfy user needs. A myriad of value estimation models are
projected to predict development costs early within the lifecycle with the hope of managing the project well within time and

budget. However, studies have reported rather high error rates of prediction even within the case of the well-established and

wide acknowledged models.

This study focuses on the improvement and fine-tuning of the COCOMO eighty one model. Though this model is primarily

based on code development practices that were prevailing within the 80s, its wide use in trade and world, the easy kind of

the constant equations and also the accessibility of the info in an internet repository build it attractive as a test-bed for

further analysis in code development value estimation. During this study, we show how the recently developed

Computational Intelligence techniques will effectively improve the prediction power of existing models. In explicit, we

specialize in the difference of the Multi-Objective Particle Swarm Optimization (MOPSO) formula in at the same time

minimizing 2 objective functions – prediction error rate and model quality. This provides the project manager with a chance

to decide on from a group of best solutions drawn in an exceedingly trade-off relationship on the economist front. Ancient
search algorithms use data of the terrain and knowledgeable heuristics to guide the search; such uses build them problem-

specific and domain-dependent. The MOPSO meta-heuristic approach depends neither on the data of the problem nor on

the experts’ heuristics, creating its application wide and in depth.

Introduction to COCOMO model

Cost Constructive Model is the most widely used software estimation model in the world. This is the first methods to

estimate software effort automatically, where in its simplest form effort is expressed as a function of anticipated size as [3]:

E = aSb (1)

Where E is the effort required, S is the anticipated size, a and b are domain specific parameters to estimate the number of

Person-Months required developing a project. Most of the other COCOMO results including the estimates for

Requirements and Maintenance are derived from this quantity.

COCOMO is defined in terms of three different models:

 The Basic Model:- The basic COCOMO model computes software development effort and cost as a function of

program size expressed in estimated lines of code (LOC).The Basic Model estimates the required effort [4].

SM = a * (KLOC)b (2)

TDEV= c * (SM)d (3)

Where Staff-Months is SM, Time of Develop is TDEV

 The Intermediate Model:- The intermediate model computes software development effort as a function of

program size and set of cost drivers that include subjective assessments of product, hardware, personnel and

project attributes [4].

SM = EAF * a * (KLOC)b (4)

 The detailed Model: - This model incorporates all characteristics of the intermediate version with an assessment

of the cost driver’s impact on each step i.e. Analysis and design of the software engineering process.

SCALE FACTORS

The application size exponent is aggregated of five scale factors (SF) that describe relative economies or diseconomies of

scale that are encountered for the software projects of dissimilar magnitude.

 International Journal of Enhanced Research in Management & Computer Applications

ISSN: 2319-7471, Vol. 6 Issue 7, July-2017, Impact Factor: 3.578

Page | 31

Five Scale factors are [13]:

 Precedentedness (PREC) - Reflects the previous experience of the Organization.

 Development Flexibility (FLEX) - Reflects degree of flexibility in Development process.

 Risk Resolution (RESL) - Reflects the extent of risk analysis carried out.

 Team Cohesion (TEAM) - Reflects how well development team knows each other and work together.

 Process Maturity (PMAT) - Reflects the process maturity of the organization.

Table 1: Rating of scale factors

2. LITERATURE SURVEY

Astha Dhiman [1] described that COCOMO II was the most commonly used model because of its simplicity for estimating

the effort in person-month for a project at the different stages. Today’s effort estimation models were based on soft

computing techniques as neural network, genetic algorithm, the fuzzy logic modelling etc. for finding the accurate

predictive software development effort and time estimation. As there were no clear guideline for designing neural networks

approach and also fuzzy approach is hard to use. Genetic Algorithm can offer some significant improvements in accuracy

and has the potential to be a valid additional tool for software effort estimation. This work aims to propose a genetic

algorithm for optimizing current coefficients of COCOMO II model to achieve more accuracy in estimation of software

development effort.

Praveen Ranjan Srivastava [2] suggested that when to stop testing and release the developed software is the one of the

most important questions faced by the software industry today. Software testing is a crucial part of the Software

Development Life Cycle. The number of faults found and fixed during the testing phase can considerably improve the

quality of a software product thereby increasing its probability of success in the market. Deciding the time of allocation for
testing phase is an important activity of quality assurance. Extending or reducing this testing time depending on the errors

uncovered in the software components can profoundly affect the overall project success. Since testing software incurs

considerable project cost over-testing the project can lead to higher expenditure while inadequate testing can leave major

bugs undetected thereby risking the project quality. Hence prioritizing the components for testing is essential to achieve the

optimal testing performance in the allotted test time. This paper presents a Test Point Analysis based Module Priority

approach to determine the optimal time to stop testing and release the software.

N´estor R. Barraza [3] suggested that the parameter estimation for the Compound Poisson Software Reliability Model is

analyzed. The biased characteristic is considered in order to get better performance. A comparison with the well-known

Non Homogeneous Software Reliability Models is presented. Several experimental data are used in order to analyze the

goodness of fit of both models. The main disadvantage of this model is it cannot be used for a long time prediction, the

failure rate needs to be updated time to time.

Mr. Karambir [4] suggested that the reliability of web applications is more difficult to measure and improve because the

large system has highly distributed nature. Hardware faults can be easily predicted rather than the software faults. The

customer required more security and accuracy in web applications. So the reliability of web applications is important to

consider over different kind of network. The reliability of web applications is more complex rather than the other software

systems. In this paper the author will use the Goel Okumoto SRGM to detect the number of faults in a specified time and

estimate its reliability in regard of web applications. The rate of change is calculated by executing the test cases for actual

Scaling

Factors

Very

low

Low Nominal High Very high Extra high

PREC 6.20 4.96 3.72 2.48 1.24 0.00

FLEX 5.07 4.05 3.04 2.03 1.01 0.00

RESL 7.07 5.65 4.24 2.83 1.41 0.00

TEAM 5.48 4.38 3.29 2.19 1.10 0.00

PMAT 7.80 6.24 4.68 3.12 1.56 0.00

 International Journal of Enhanced Research in Management & Computer Applications

ISSN: 2319-7471, Vol. 6 Issue 7, July-2017, Impact Factor: 3.578

Page | 32

defects per day. The Goel-Okumoto uses exponential distribution to predict the number of faults in web applications. The

author will assess the software reliability of web applications by using SRGM. This work do not predict the reliability of

web applications which is a limitation to this proposed work.

Lilly Florence [5] described that in common parlance the traditional software reliability estimation methods often rely on

assumptions like statistical distributions that are often dubious and unrealistic. The ability to predict the number of faults
during development phase and a proper testing process helps in specifying timely release of software and efficient

management of project resources. In the Present Study Enhancement and Comparison of Ant Colony Optimization Methods

for Software Reliability Models are studied and the estimation accuracy was calculated. The Enhanced method shows

significant advantages in finding the goodness of fit for software reliability model such as finite and infinite failure Poisson

model and binomial models.

S. Aloka et. al. [6] described that test effort estimation is an important activity in software development because on the

basis of effort cost and time required for testing can be calculated. Various models are available for estimating effort but to

some extent all models result in erroneous effort estimation. So there is a need to optimize the effort estimated. Meta

heuristic techniques can be used for this purpose, to optimize a problem by iteratively trying to improve a solution, using

some computational methods. Particle Swarm Optimization is one such technique which have been incorporated in this

work to get good test effort estimates.

Iman Attarzadeh [7] proposed a novel Constructive Cost Model (COCOMO) based on soft computing approach for

software cost estimation. This model carried some of the desirable features of neural networks approach, such as learning

ability and good interpretability, while maintaining the merits of the COCOMO model. The proposed model could be

interpreted and validated by experts and has good generalization capability. The model deals effectively with imprecise and

uncertain input and enhanced the reliability of software cost estimates.

Ma Junhai and MU Lingling[8] reviewed the Cost estimation methods and Constructive Cost Model (COCOMO) was

further discussed. Considering the variations and uncertainty to calculate LOC (Lines of Code) in Constructive Cost Model

we used Function Point (FP) estimation to make up this deficiency which can improve the model accuracy. Finally through

comparing and analysing these estimation methods by a case study the feasibility of the improved method was proved.

3. IMPLEMENTATION MODEL AND RESULT ANALYSIS

Proposed Model for Taboo Search

To use the concept of Taboo search algorithm to optimize the COCOMO II model coefficients to achieve accurate software

effort estimation. The proposed model will tend to reduce the uncertainty of COCOMO II post architecture model

coefficients i.e. a, b, c and d using genetic algorithm. This will also evaluate the predicted effort value as accurate to the

given real effort value. Taboo search will increase the efficiency of output values of parameters of COCOMO II model

rather than genetic algorithm. The dataset required for proposed model is collected from Turkish Software Industry project

data and the Industry dataset. Each record contains information about the completed software project and the record will be

described with two attributes i.e. Size (LOC, KLOC) and the actual development effort (Person Month/Man Month). The
actual effort and predicted effort using COCOMO II model will be given in dataset.

Execution Model for Taboo Search

In the Taboo Search method in order to improve the efficiency of the exploration process, some historical information

related to the evolution of the search is kept basically the itinerary through the solutions visited. Such an information will

be used to guide the search from one solution to the next one avoiding cycling. This is one of the most important features of

this algorithm. Given an instance x, the algorithm starts from an initial solution typically a random one. At any iteration it

has to find a new solution by making local movements over the current solution. The next solution is the best among all

possible solutions in the neighborhood. To carry out the exploration process, recently visited solutions should be avoided.

To this aim a Taboo list is maintained. Therefore once a solution is visited the movement from which it was obtained is
considered Taboo. In a certain case there is a dynamic neighborhood present as compared to the previous local search

algorithms. Typically there are two kinds of Taboo lists, a long term memory maintaining the history through all the

exploration process as a whole and a short term memory to keep the most recently visited Taboo movements. A movement

with a Taboo status (Taboo movement) is avoided to be applied, unless it satisfies certain aspiration criteria. This aims to

avoid falling into local optima. Some typical stopping conditions are as follows: when neighbourhood solution is empty, the

 International Journal of Enhanced Research in Management & Computer Applications

ISSN: 2319-7471, Vol. 6 Issue 7, July-2017, Impact Factor: 3.578

Page | 33

maximum number of solutions to be explored is fixed, the number of iterations since the last improvement is larger than a

specified number the total number of iterations of the TS algorithm is fixed.

Execution Model for Simulated Annealing

Consider one chromosome. Choose a best fitness value initially. If the value of fitness function is low that will be
considered as the best optimum solution i.e. user is more near to actual value. Consider a specific chromosome and

calculate the fitness of that chromosome and get it checked with the maximum fitness if new result is better than accept

otherwise this is a worst solution and check the temp. Anneal function is created to perform this function.

If the temperature is high probability of accepting worst solution is high. Worst sol can be accepted. Max probability of

accepting worst sol. 0.3 i.e. 30%. When the temperature is at peak value. Temperature decrease in each iteration and

probability also reduces. If the temp reaches 0 probability also reaches to level 0. This is performed in each iteration. GA

always deny to accept worst sol. But in this technique the worst sol also have the possibility to be accepted. After many

iterations we get the best result. This technique is better than previous as this technique also accepts worst sol. Which will

in turn responsible for the best solution.

Fig. 1: Flowchart for Simulated Annealing Algorithm

Tools Used and Techniques

Net Beans

The Net Beans IDE is open source and is written in the Java programming language. It provides the services common to

creating desktop applications - such as window and menu management, settings storage -and is also the first IDE to fully

 International Journal of Enhanced Research in Management & Computer Applications

ISSN: 2319-7471, Vol. 6 Issue 7, July-2017, Impact Factor: 3.578

Page | 34

support JDK 5.0 features. The Net Beans platform and IDE are free for commercial and non- commercial use, and they are

supported by Sun Microsystems.

Using Net Beans

To be able to successfully build programs it is recommended to follow the intended procedure, described here. First it’s

important to create a new project. Various project types are available however in this case the intended type will be Java

Application.

Figure 2: Choosing a Project type

The Net Beans IDE is written in Java and can run on Windows, OS X, Linux, Solaris and other platforms supporting a

compatible JVM. The Net Beans Platform allows applications to be developed from a set of modular software components

called modules. Applications based on the Net Beans Platform including the Net Beans IDE itself which can be extended
by third party developers. The Net Beans IDE bundle for Java SE contains what is needed to start developing Net Beans

plugging and Net Beans Platform based applications; no additional SDK is required. Applications can install modules

dynamically.

Fig 3: Net Beans IDE 6.9

 International Journal of Enhanced Research in Management & Computer Applications

ISSN: 2319-7471, Vol. 6 Issue 7, July-2017, Impact Factor: 3.578

Page | 35

Any application can include the Update Center module to allow users of the application to download digitally signed

upgrades and new features directly into the running application. Reinstalling an upgrade or a new release does not force

users to download the entire application again. The platform offers reusable services common to desktop applications

allowing developers to focus on the logic specific to their application. Among the features of the platform are:

 User interface management (e.g. menus and toolbars)

 User settings management

 Storage management

 Window management

 Wizard framework

 Net Beans Visual Library

 Integrated development tools

Net Beans IDE is a free, open-source, cross-platform IDE with built-in-support for Java Programming Language. Net

Beans IDE supports development of all Java application types Java SE including Java FX, Java ME, web, EJB and mobile

applications out of the box. Among other features are an Ant-based project system, Maven support, refactoring, and version

control supporting CVS, Subversion, Mercurial and Clear case.

All the functions of the IDE are provided by modules. Each module provides a well defined function such as support for the

Java language, editing, or support for the CVS versioning system, and SVN. Net Beans contains all the modules needed for

Java development in a single download allowing the user to start working immediately. Modules also allow Net Beans to be

extended. New features such as support for other programming languages can be added by installing additional modules.

CONCLUSION

To use the concept of particle swarm optimization to optimize the COCOMO II model coefficients is to achieve accurate

software effort estimation. To reduce the uncertainty of COCOMO II post architecture model coefficients i.e. a, b, c and d

using Particle Swarm Optimization and evaluate the predicted effort value as accurate to the given real effort value.
Computational Effort of SA is better than simple Genetic algorithm. SA performs the GA with a larger differential in

computational efficiency when used to solve unconstrained nonlinear problems with continuous design variables and less

efficiency differential when applied to constrained nonlinear problems with continuous or discrete design variables.

REFERENCES

[1]. Jyoti Mahajan and Simmi Dutta “COREAN: A proposed Model for Predicting Effort Estimation having Reuse”

IJSCE ISSN: 2231-2307, Volume-2, Issue-6, January 2013

[2]. Divya Kashyap and A. K. Mishra “Software Cost Estimation Using Particle Swarm Optimization In The Light Of

Quality Function Deployment Technique”, in proceedings of International Conference on Computer Communication

and Informatics, IEEE, pp. 1-8, 2013

[3]. Srinivasa Rao T., Hari CH.V.M.K. and Prasad Reddy “Predictive and Stochastic Approach for Software Effort
Estimation”, in International Journal of Software Engineering, IJSE, pp. 86-115, 2013

[4]. D. Manikavelan and Dr. R. Ponnusamy, “To find the accurate software cost estimation using Differential Evaluation

algorithm”, in proceedings of the IEEE International Conference on Computational Intelligence and Computing

Research, IEEE, pp. 1-4, 2013

[5]. Astha Dhiman and Chander Diwaker “ Optimization of COCOMO II Effort Estimation using Genetic Algorithm”

AIJRSTEM 13-278; 2013

[6]. Praveen Ranjan Srivastava, Subrahmanyan Sankaran, Pushkar Pandey, “Optimal Software Release Policy Approach

Using Test Point Analysis and Module Prioritization” MIS Review Vol. 18, No. 2, March 2013

[7]. N´estor R. Barraza “Parameter Estimation for the Compound Poisson Software Reliability Model” International

Journal of Software Engineering and Its Applications V o l. 7, No. 1, January, 2013

[8]. Mr. Karambir and Jyoti Tamak “Use of Software Reliability Growth model to Estimate the Reliability of Web
Applications” International Journal of Advanced Research in Computer Science and Software Engineering Volume 3,

Issue 6, June 2013

[9]. Lilly Florence andLatha Shanmugam “Enhancement And Comparison Of Ant Colony Optimization For Software

Reliability Models” Journal of Computer Science 9 (9): 1232-1240, 2013

[10]. Iman Attarzadeh and Siew Hock Ow “Improving Estimation Accuracy of the COCOMO II Using an Adaptive Fuzzy

Logic Model”, in proceedings of the IEEE International Conference on Fuzzy Systems, IEEE, pp. 2458-2464, 2011

 International Journal of Enhanced Research in Management & Computer Applications

ISSN: 2319-7471, Vol. 6 Issue 7, July-2017, Impact Factor: 3.578

Page | 36

[11]. Tirimula Rao Benala, Satchidananda Dehuri, Suresh Chandra Satapathy and Ch. SudhaRaghavi “Genetic Algorithm

for Optimizing Neural Network Based Software Cost Estimation”, Lecture Notes in Computer Science Volume

7076, 2011

[12]. Ekrem Kocaeli and Tim Menzies described in the research “How to Find Relevant Data for Effort Estimation?”, in

proceedings of the International Symposium on Empirical Software Engineering and Measurement, ESEM, pp. 255-

264, 2011
[13]. Alejandra Yepez Lopez and Nan Niu the research work “Multiple Criteria Decision Support for Software Reuse: A

Case Study”, in proceedings of the International Conference on IRI, IEEE, pp. 200-205, 2011

[14]. S. Aloka, Peenu Singh, Geetanjali Rakshit, and Praveen Ranjan Srivastava “Test Effort Estimation-Particle Swarm

Optimization Based Approach” Springer-Verlag Berlin Heidelberg, pp. 463–474, 2011

[15]. Iman Attarzadeh, Siew Hock Ow “A Novel Soft Computing Model to Increase the Accuracy of Software

Development Cost Estimation” IEEE, volume 3, pp – 603-607, 2010

[16]. Ma Junhai and M.U. Lingling “Comparison Study on methods of software cost Estimation” in proceedings of the

International Conference on EBISS,IEEE, pp. 1-4, 2010

[17]. Tad Gonsalves , Kei Yamagishi , Ryo Kawabata and Kiyoshi Itoh “Optimizing software development cost estimates

using Multi objective Particle Swarm Optimization” in International Publisher of Progressive Academic Research

Books and Journals, IGI, pp. 45-47, 2010

[18]. Taeho Lee, Donoh Choi and Jongmoon Baik, “Empirical Study on Enhancing the Accuracy of Software Cost
Estimation Model for Defense Software Development Project Applications” ICACT, ISBN 978-89-5519-146-2, pp.

1117-1119, 2010

[19]. Maged A. Yahya, Rodina Ahmad and Sai Peck Lee “Effects of Software Process Maturity on COCOMO II’s Effort

Estimation from CMMI Perspective”, in IEEE Transaction on Software Engineering, IEEE, pp. 255-262, 2008

[20]. Shih-Wei Lina,b , Zne-Jung Lee b, Shih-Chieh Chenc and Tsung-Yuan Tseng “Parameter determination of support

vector machine and feature selection using simulated annealing approach” Applied Soft Computing, 2008, pp: 1505–

1512,

http://link.springer.com/search?facet-author=%22Tirimula+Rao+Benala%22
http://link.springer.com/search?facet-author=%22Satchidananda+Dehuri%22
http://link.springer.com/search?facet-author=%22Suresh+Chandra+Satapathy%22
http://link.springer.com/search?facet-author=%22Ch.+Sudha+Raghavi%22
http://link.springer.com/bookseries/558

