

# On Nill-Pure Rings

Azhar M. Hajo<sup>1</sup>, Prof Dr. Raida D. Mahmood<sup>2</sup>

<sup>1</sup>Student. /College of Computers Sciences and Math.\ University of Mosul / Iraq <sup>2</sup>Professor. /College of Computers Sciences and Math.\ University of Mosul / Iraq

# **ABSTRACT**

Let R be a ring. The ring R is called right Nil-pure, if for any  $a \in R$ , r(a) is an aleft pure ideal of R. In this paper, we give some characterizations and properties of right Nil-pure rings, which is a proper generalization of every ideal of R is pure. And we study the regularity of right Nil-pure ring. For example:

- 1- Let R be a reversible and Nil-pure ring. Then R is n-regular ring
- 2- Let R be ZI-ring with every simple singular right R-module is almost nil -injective, then R is nil-pure ring

Keyword: Nill Pure Rings, Ring, Pure Ideal, right annihilater

### 1. INTRODUCTION

Throughout this paper, R will be associative ring with identity and M is aright R-module with S=End  $(M_R)$ . The center of a ring , the set of all nilpotent elements in R, the right singular of R and the Jacobson radical of R are denoted by C(R), N(R), Y(R), and J(R) respectively. We write for any  $a \in R$ , r(a) and l(a) the right annihilater of a and the left annihilater of a respectively.

Standard references like [1], [2], and [6] have motivated many authors for study pure ideals. An ideal I of a ring R is called right pure if for every  $a \in I$  there exists  $b \in I$  such that a = ab. It is known that a ring R is PF - ring if and only if for every  $a \in R$ , ann(a) is pure (R is comm-ring). See Al-Ezeh [1]

A cording to Cohn [3] a ring R is called reversible if ab=0 implies that ba=0 for  $a,b\in R$ . A ring R is called a ZI-ring if fora,  $b\in R$ , ab=0 implies aRb=0. Every reversible ring is ZI-ring and every idempotent is central. A ring R is called regular [5], if for every  $a\in R$  there exisits  $b\in R$  such that a=aba. A ring R is called n-regular if  $a\in aRa$  for all  $a\in N(R)$  [7]. clearly regular rings are n-regular rings, but the converse is not true by [7]. A ring R is called reduced if R contains no non-zero nilpotent elements. or equivalently,  $a^2=0$  implies a=0 in R for all  $a\in R$ . Clearly, are duced ring is n-regular

In this paper, we introduced the definition of right Nil-Pure rings, giving some characterizations and properties. Some important results which are known for every ideal of R is pure are hold for right Nil-pure rings and we study the relation between of n-regular rings and reduced rings in term of them.

# 2. CHARACTRRIZATION OF RIGHT NIL-PURE RINGS

**Definition. 2.1:** A ring R is called right Nil-pure ring, if for each  $a \in N(R)$ , r(a) is a left pure ideal

### **Example:**

1- Let  $Z_{12}$  be the ring of integers modulo 12.

 $r(6) = \{0, 2, 4, 6, 8, 10\}$  not pure ideal. there fore  $Z_{12}$  is not Nil - Pure ring. 2 - Let R be the ring of  $2 \times 2$  matrices

Where  $Z_2$  is the ring of integers modulo 2.



# International Journal of Enhanced Research in Science, Technology & Engineering ISSN: 2319-7463, Vol. 6 Issue 11, November-2017, Impact Factor: 4.059

Clearly  $r \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$  Is a left pure ideal. Then R is right Nil-pure ring

3- The ring Z of integers isNil-pure ring

### Theorem:-2.2

Let R be rightNil-pure ring and I is pure ideal of R. Then R/I is Nil-Pure ring

### **Proof:**

Assume that  $a+I \in N(R/I)$ . Since R isNil-Purering Thenr (a) is a left pure,  $a \in N(R)$ .

We shall show that r(a + I) is a eft pure in R/I.

Let  $x + I \in r(a + I)$ , then  $ax \in I$ . Since I is right pure ideal, then there exists  $y \in I$  such that ax = (ax)y Implies that a(x - xy) = 0 and  $x - xy \in r(a)$ . Since  $x \in r(a)$  is a left pure, then  $x \in r(a)$  for some  $x \in r(a)$ 

$$x - xy = zx - zxy$$
$$x - zx = xy - zxy$$

$$=(x-zx)y\in I$$

Therefore  $x - zx \in I$ .

Hence x + I = (z + I)(x + I)

So r(a + I) is a left pure. Consequently R/I is Nil-pure ring.

## Lemma: 2.3. [3]

Let R be a ZI-ring. Then r(a) = l(a), for every  $a \in R$ .

Let R be a ZI-ring. Then R is right Nil-Pure ring if and only if r(a) + r(b) = R for some  $a, b \in N(R)$  with ab = 0

## **Proof:**

Suppose that Ris Nil-Pure ring, then r(a) is a left pure  $(a \in N(R))$ . Assume that  $r(a)+r(b)\ne R$ . Then there exists a maximal right ideal M of R containing r(a)+r(b). Since ab=0 then  $b\in r(a)$  and b=cb for some  $c\in r(a)$ . Hence  $(1-ca)\in l(b)=r(b)\subseteq M$  [Lemma (2.2)] but  $c\in r(a)\subseteq M$ , yielding  $1\in M$ , which is a contradiction  $M\ne R$ .

Therefore r(a) + r(b) = R

**Conversly:** Assume that r(a) + r(b) = R for all  $a, b \in N(R)$  with ab = 0 In particular c + d = 1,  $c \in r(a)$ ,  $d \in r(b) = l(b)$  Hence cb + db = b. therefore cb = b So R is Nil - pure ring.

# 3. REGULARITY OF RIGHT NIL-PURE RINGS

# Proposition: 3.1.

Let R be aright Nil-Pure ring. Then C(R) contains no non zero nilpotent element.

### **Proof**:

Let  $x \in C(R)$  with  $x^n = 0$  and  $x^{n-1} \neq 0$  for some  $n \in Z^+$ Since R is Nil - Pure ring, then r(x) is a left pure and  $x^{n-1} \in r(x)$ ,  $yx^{n-1} = x^{n-1}$  for some  $y \in r(x)$ . Since xy = 0 and  $x \in C(R)$ , x = 0. So  $x^{n-1} = (yx)x^{n-2} = 0$  is a contradiction. Therefore C(R) contains no nonzero nilpotent element.

## Corollary: 3.2.

Let R be Nil-Pure ring . Then C(R) is reduced.

## Theorem: 3.3

Let R be a reversible and Nil-Pure ring. Then R is a reduced ring.

### Proof

let  $a \in R$  such that  $a^2 = 0$ , since R is Nil-Purering then r(a) a left pure and xa = a for some  $x \in r(a)$ . since R is reversible and ax = 0, then xa = 0. So a = xa = 0. Hence R is reduced.



# International Journal of Enhanced Research in Science, Technology & Engineering ISSN: 2319-7463, Vol. 6 Issue 11, November-2017, Impact Factor: 4.059

Lemma: 3.4 [9]

If Y(R) resp (Z(R)) is reduced, then Y(R) = 0 (resp(Z(R))).

By Theorem [3.3] and Lemma [3.4], we can easily obtain the following corollary:

Corollary: 3.5.

If R is a reversible, right Nil-Pure ring, Then R is a left and right non-singular.

## Remark:

Everyn-regular ring is Nil-pure ring but the converse is not true, [Example 2] **Explain:** from example clean that Nil-Pure ring but not n-regular because that

The following result contains a sufficient condition for n - regulr rings in terms of nil-pure rings.

Theorem: 3.6.

Let R be a reversible ring. Then R is Nil-Pure ring if and only if R is n-regular.

### **Proof:**

Assume that R isNil-Purering, then by [3.3] R is n-regular.

Conversely: It is clear

In[10], Zhao and Du first introduced and characterized aright almost nill-injectivering, and gave many properties. Let  $M_R$  be a module with  $S = End(M_R)$ . The module M is called right nil-injective, if for any  $k \in N(R)$ , there exists an S-submodule  $X_k$  of M such that  $l_M r_R(k) = Mk \oplus X_k$  as left S-module. If  $R_R$  is almost nil-injective, then we call R a right almost nil-injective ring

# Lemma: 3.7 [10]

Suppose M is a right R-module with S=End( $M_R$ ). If  $l_M r_R(a) = Ma \oplus X_a$ , Where  $X_a$  is a left S-submodule of  $M_R$ . set  $f: aR \to M$  a right R-homomorphism, then f(a) = ma + x with  $m \in M$ ,  $x \in X_a$ .

# Theorem:3.8

Let R be aZI-ring with every simple singular rightR-module is right almost nil-injective. Then R is right nil-pure ring . **Proof:** 

Let  $0 \neq a \in N(R)$  such that ab = 0 for some  $b \in N(R)$ . Suppose that  $r(a) + r(b) \neq R$ , then there exists a maximal right ideal M of R containing r(a) + r(b). If M is not essential in R then M = r(e),  $e^2 = e \in R$ . But ab = 0 gives  $b \in l(b) = r(b) \subseteq M \subseteq r(e)$ , where it follows that ea = 0, yielding  $e \in l(a) = r(a) \subseteq M \subseteq r(e)$ , which is a contradiction. Hence M is essential in R. Thus R/M is almost nil-injective and  $l_{R/M} r_R(a) = (R/M) a \oplus X_a$ ,  $X_a \leq R/M$ . Let  $f: aR \to R/M$  be defined by f(ar) = r + M. Note that f is a well-defined R-homomorphism. Then by [Lemma 3.7] 1 + M = f(a) = ca + M + x,  $c \in R$ ,  $x \in X_a$ ,  $1 - ca + M = x \in R/M \cap X_a = 0$ ,  $1 - ca \in M$ , Since R is ZIring,  $ca \in r(a)$ , then  $1 \in M$ , which is a contradiction. Therefore r(a) + r(b) = R, where ab = 0. Thus R is Nil-Pure ring (Proposition 2.4).

According to Lwei, wang and Li, [8], a right ideal L of R is called an N-ideal, if for every  $b \in N(R) \cap L$ ,  $bR \subseteq L$ , A ring R is called NZI if for any  $a \in R$ , r(a) is an N-idealof R. Clearly, ZI-rings are NZI, but the converse is not true, in general [8,Example 2.1]

## Proposition: 3.9.

The following conditions are equivalent for any reversible ring R.

- 1- R is reduced
- 2- R is Nil-Pure ring
- 3- R is an n-regular ring and ZI- ring
- 4- R is an n-regular ring and NZI- ring



# International Journal of Enhanced Research in Science, Technology & Engineering ISSN: 2319-7463, Vol. 6 Issue 11, November-2017, Impact Factor: 4.059

5- R is NZI- ring and Every simple right R-module is almost nil-injective ring.

### **Proof:**

$$1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$$
 is trivial

5 → 1: Let  $a \in R$  and  $a^2 = 0$ . If  $a \ne 0$ , then  $r(a) \ne R$ , so there exist a maximal right ideal M of R such that  $r(a) \subseteq M$ . Since R/M is simple right R-module, R/M is almost nil-injective and  $l_{R/M}r_R(a) = (R/M) \oplus X_a$ ,  $X_a \subseteq R/M$ .

Let  $f: aR \to R/M$  be defiend by f(ar)=r+M. Note that f is a well defiend R-homomorphism thus 1+M=f(a)=ca+M+x,  $c\in R, x\in X_a$  [Lemma 3.7]

Hence  $1 - ca + M = x \in R/M \cap X_a = 0$ ,  $1 - ca \in M$ 

Since R is NZI- ring  $ca \in r(a)$ , then  $1 \in M$ , which is a contradiction. Therefore a = 0 and R is reduced.

### REFERENCE

- [1]. AL-Ezeh H.(1988); "The pure spectrum of PF-ring", comm.Mathuniver.S.p. VOL .37, No.2, 179 18.
- [2]. AL-Ezeh H.(1989); "pure idealsin commutative reduced Gelf and rings with unity". Arch. Math. VOL. 53, 266 269.
- $\label{eq:cohn} \hbox{[3].} \qquad \hbox{Cohn , P.M. ; (1999) ; "Reversible ring" , Boll . London Math . Soc . 31 ,641-648.}$
- [4]. Kim ,N ,K.,Nam S.B.and Kim , J .Y.(1999) ;"on simplesingular GP-injective modules" . comm .in algebra , VOL.27 ,No–5,2087 2096 .
- [5]. Neuman ,J.V.(1936) "On regular rings" Princeton N.J.VOL .22 ,707 7013
- [6]. Mahmood, R.D.(2000), "On pure ideals and pure submodules", Ph.D., thesis, Mosul university.
- [7]. Wei ,J-,(2013) , "Almost abelian rings" , commun . in Math ., VOL 21,NO .1,15-30 .
- [8]. Wei, J., Wany, Li, L. (2012); "NZI-ring", proe.Nat. Sei. U.S.A., Vol., 22, p.p.7,7-713.
- [9]. Yin , Y.B., Wang , R . and Li , X . L ., (2011) , "the non singularity and regularity of GP V rings" , J . of Math . Rea . and Erposition , Vol . 31 , No 6 , 1003-1008 .
- [10]. Yue,  $\hat{Z}$  and Yianneng, D-(2011); "On almost nil injective rings", Int. Electron, J. of Algebra, Vol. 9, 103-113