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ABSTRACT 

 

Quantum tunneling across multiple barriers as yet is an unsolved problem for barrier numbers greater than five. The 

complexity of the mathematical analysis even for a small number of barriers push it into the realms of Numerical Analysis. 
This work is aimed at providing a rigorously correct solution to the general N barrier problem, where N can be any positive 

integer. An exact algebraic solution has been presented which overcomes the complexity of the WKB integrals that are 

traditionally employed and matches the earlier results reported for a small number of barriers. The solution has been 

explored to considerable depth and many startling consequences have been pointed out for 500 and 1000 barriers. These are 

quite revealing in themselves and open up new avenues for engineering applications and further research.   
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INTRODUCTION 

 

Tunneling of particles across classically forbidden regions is one of the novel implications of Quantum Mechanics. It 

surfaced in the work of Friedrich Hund[1] in 1927 and since then has been accepted as a very general phenomenon of 

Nature. Quantum Tunneling has a multitude of applications, an interesting account of which is given in the Nobel Lecture 
of Leo Esaki.[2] In the recent times, electron tunneling has been the central theme of several models in Molecular 

Biology[3][4] and is at the heart of modern electronic devices.[5][6] Calculation of tunneling probabilities for a rectangular 

barrier is a standard illustration in undergraduate texts in Quantum Mechanics.[7][8] The popularity of this problem has led to 

the adoption of a uniform set of notation in almost all publications. Extensions for double and triple rectangular barriers 

were carried out in 1970 to investigate humped potentials in Nuclear Fission by Ray Nix and have been a subject of 

exhaustive study even today.[9][10] However studies for barrier numbers larger than  have seldom been reported.[5][11] This 

is perhaps attributed to the mathematical difficulties encountered in solving tunneling problems using the conventional 

approach which is analyzed in Section II. In this work we present a rigorously correct solution to the -Barrier Problem. 

The multibarrier problem springs up repeatedly in the literature especially in the analysis of a finite super lattice. [5][12] In the 

next section an overview of the mathematical methods employed in solving barrier problems is given and the setting for the 

current problem is gradually developed. The notation is explained in juxtaposition. The complete solution is traced in 
Section III and a discussion of results is provided in Section IV. One observes strange phenomena accompanying, very 

large barrier numbers like  or  (and even more). Some concluding remarks are provided in Section V and the 

approach is generalized for an arbitrary multibarrier problem. Areas for further study are also noted here.  

 

PROBLEM FORMULATION AND OVERVIEW 

 

In one dimensional Tunneling problems where the potential is piecewise constant, the wave function φ(x) is obtained by 

solving the time independent Schrödinger Equation (TISE) in every region. The individual 'pieces' of φ have a contribution 

from plane wave solutions propagating in either direction and a matching is achieved by requiring that the pieces and their 

derivatives be equal at the discontinuities of V(x). For single and double barriers this can be done with minimal algebra, 
but the process gets more involved for higher barrier numbers, as the number of regions grows and more boundary 

constraints  have to be met. For a N barrier problem (NBP) one gets 2N + 1 regions and 4N boundary 

conditions(equations). In every region φ is determined up to two complex coefficients (Section III) which gives 2 2N +
1 = 4N + 2 coefficients. These are the probability amplitudes for the forward and backward travelling wave components 

that make up φ in a particular region. At infinity there is no discontinuity to offer a reflection, thus the wave function in the 

final region has only a forward travelling component. This sets the probability amplitude for the backward propagating 
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wave component to zero in this region. So it reduces to effectively pinning down 4N + 1 amplitudes. The boundary 

condition equations are linear and one can at best expect to get 4N of these in terms of one of the amplitudes (provided the 

equations are independent). This naturally invites matrix methods, [5][13] but leads to complications, as it requires the 

multiplication of long sequence of matrices (2N in this case), which limit the computations to small barrier numbers. 
Tunneling problems are also attempted using approximations (famously the WKB method) and other numerical techniques

 

[9], even so the solutions can only be realized for small barrier numbers.  

 

V x  for the problem at hand is a symmetric rectangular potential array (Fig.1) which is defined to be zero for x < 0 

and x > Nδ + (N − 1). Each region is labeled by an integral index (roman numerals). In the subsequent discussion  

denotes a general even number (zero included) and   a general odd number. The n indexed regions correspond to wells of 

width τ where V x = 0 and the m regions correspond to barriers of width δ and height Vo. For a NBP: 0 ≤ n ≤ 2N and 

1≤ m ≤ 2N − 1.  
 

Because of the complexities involved in typing out mathematical equations in text format, the equations have been done on 

HostMath (http://www.hostmath.com/) and reproduced here.  

  

  
  

Fig.1   𝐕 𝐱  for a symmetric 𝐍 Barrier Problem(NBP). Barrier height 𝐕𝐨, barrier width 𝛅, well width 𝛕.  

   

SOLUTION 

 

From Fig.1   

  

The TISE in the  and  regions takes the form,  

  

  

 
 

respectively, where μ is the mass of the particle. The general solutions for equations ,  is written as  

  

  

 

Define ket  and where  is a function of  over a specified domain. With this notation 

equations  and  can be written as :  
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It must be understood that the inner products are computed point wise. s and s ( ) are complex coefficients 

that have to be determined by imposing boundary conditions. The boundary conditions relate  and  and can be  

written as  
 

  

  

 

 

Equations ,  translate into the following.  

 

  

  

where:  

 

 

 

 

 

Alternatively one could relate  and  by evaluating  and   and  

 

, respectively for . These however are equivalent to the above equations. Equations  and  

classify the many boundary conditions into two sets that suffice to solve a second order ODE. The  and  dependence in 

the matrices is compacted in  and . Equations  and  are recognized as 'evolution' equations that carry the ket 

 to the next |Vj+1 > (or the other way) via transfer matrices  and (or their inverses). All transfer matrices are 

nonsingular with a determinant (to be called ) 

 

   
  

 

 is a fundamental parameter of the problem. It becomes zero at   .   
 

As discussed in Section II, (since ) and  is the amplitude for the forward travelling wave 

component in the last region. Kets  can be determined in terms of  using equations  and 

 iteratively.   

For instance,  
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A similar relation can be obtained for . It remains to obtain a compact formula for these long sequence matrix 

products, which is derived next.  
 

In tunneling problems the canonical variables of interest are the transmission coefficient ( ) and the reflection coefficient (

) that satisfy the identity ,[14] which follows from the continuity equation for the probability current density.[15] 

For a NBP, T + R = 1 and  are defined as :   

 

  

 

To derive expressions for  and  one needs to relate  with . From equation ,  

 

  

 

setting   from equation . These operator products can be simplified by using Pauli 

Matrices. A compact expression (equation ) can be obtained by using the algebraic properties of these matrices. Most 

of these properties are expounded in the Feynman Lectures on Physics.[16] The three Pauli Matrices along with the  

identity matrix span  . They are noted here in the traditional form.  

 

  

 

The collection  is the Pauli Basis, with which a transfer matrix  (  or ) can be represented as   

  

In this form  is identified as a Pauli Vector. In all the summations that follow the index runs over  0 1 2 3 unless 

otherwise stated. The subscript  in the coefficient  denotes the order of the transfer matrix while the superscript is 

identified with the index of the basis element it is multiplied with. Table-1 collects the coefficients for  and .  

 

Table-1   Pauli coefficients of  and     
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 for an arbitrary  matrix can also be found (equation ). It can be shown that the product of two transfer 

matrices  and    

 

 

 

   

 

Equation  results from expanding the bracketed pair and injecting the product identities of the Pauli matrices.  is 

the Levi-Civita Symbol (or Permutation symbol) which along with  preserves the non-commutativity of matrix 

multiplication. Equation  expresses  in the form of equation . This is a distinctive advantage of equation 

 as it readily allows for matrix products to be expressed as a sum of simple matrices. This equation is used iteratively 

to obtain a Pauli Vector representation for the long matrix product sequence appearing in equation . In the following 

discussion the summation indices (of equation ) will be augmented with an additional subscript. This will be self-

explanatory to a large extent and is adopted for the sake of clarity. One begins with a single transfer matrix  and obtains 

higher products as follows.  

 

       

 

 

setting  and noting that  the general formula can be written as,  

 

  

 

But for the outer most summation, the inner multiple summation is a scalar. This inductive construction will be of great use 

in section V when the product of  transfer matrices is need for the generalized NBP. For the problem at hand, equation 

 can be mapped as   , ,  

 ...  to obtain the required representation. To avoid the long formula this product is denoted as  

  

where the s can be readily obtained using the above prescription.   
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The standard orthogonal vectors listed in equation  display interesting algebraic relations upon multiplication by the 
Pauli Matrices.[16]  

 

  

From equations  and  it follows   
 

 

  

 

< +|Vo >   and  < −|Vo >  can be calculated using equation   

 

  

 

Substituting equation  and in equation    

 

  

 

Equation  collects the expressions for the transmission and reflection coefficients. Note that these are independent of 

 For  ,  goes to zero, hence  and   as given in  are indeterminate (Ref. Equation (15)). 

 

This ambiguity can be resolved by explicitly solving the TISE for . In that case equation  leads to solutions of the 

form  . Using these in equation  gives the correct transfer matrices and the subsequent procedure is 

exactly identical.  

 

DISCUSSION OF RESULTS 
 

 turns out to be exceedingly complex for large barrier numbers. Thus it can best be expressed in an implicit form. To 

discuss effectively about the nature of  (as a function of ),  is identified as a natural variable in tunneling problems. In 

the units of  equals . Closed form expressions for  and  for a rectangular barrier and potential step (no barrier) 

are well known.[14] These trivial cases are illustrated using this method.  

 

The potential step as per the indexing convention(Ref. Fig.1) has only two regions(  and ). Thus  

 

 
  

 

For the case of no barriers,   and  as defined in [14] are obtained as.  
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As a consistency check, . For a rectangular barrier correspondingly, there are three  

regions and . From equation  

 

  

  

 for  and from Table-1, , , ,  

. Substituting these coefficients gives  

 

  

From equation   
 

  

 

 

 

 

 

 

 

These expressions are arrived 
at more economically than 

with the standard approach. 

Equation (25) leads to much 

faster computation and plots 

for very large number of 

barriers that can be easily 

obtained. The trends that set 

in as the barrier number is 

progressively increased are 

discussed next. All the plots 

were obtained using 
MATLAB® 7.10.0.499. In 

Fig.2, several plots for NBPs 

over an energy range of 81 

units are given. They 

correspond to increasing 

values of Ν. The 

specifications are δ=τ=1 and 

Vo=40. These values were 

chosen for comparing with the 

results given by Rao et al.[13] 

In Fig.2a, the case for Ν=1 

and Ν=2 is plotted using 
equation (25) and an exact 

reproduction of Fig.2 of their 
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paper is obtained. The value of Ν is given in the figures. 

 

 
Fig.2b 

 

 
 

  

  

  

  

  

  

  

  

  

  

  

  

  

  
Fig.2c 
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The transmission characteristics of a NBP can be analyzed by contrasting it with the classical solution where  vs   takes 

the form of a step function:   

  

 

The threshold value  is denoted as . For the given plots Clearly the transmission probability  

decreases for  with increasing , however asymptotes closer to  (always staying below unity) for . In fact 

when  is large enough such that the overall width of the barrier:  is comparable to (say) an average 

classical length, it is conceivable that  approaches the classical characteristics of .  

The features that are striking are the resonant spikes for . These spikes generally correspond to the bound states of 

the interlocked wells: ) while this is not strictly obeyed(especially for large  or higher bound 

energies) due to coupling effects; many extraneous spikes also appear. All spikes naturally extend to unity. For  the 

resonant spikes are relatively insensitive to variations in barrier width  and stay fixed for a given choice of barrier 

parameters for different values of . All the curves predominantly stay disjoint in the region  except at the resonant 

points, where spikes arise and touch unity, while the curves cross each other at many points for  and this region is 

marked by small oscillatory excursions below unity(Fig.2c,Fig.2d). Some spikes split into two or three individual spikes. 
These are so narrow that one faces the problem of resolving them, given the constraints of under-sampling by the plotting 

software. Two triple spikes are shown as insets in Fig.2b. The transmission characteristics for 500 and 1000 barriers are 

depicted in Fig.3. The barrier specifications are same as those of Fig.2. One can observe a behavior of varying complexity 

with smooth depressions of  for   (not shown in figure) and regions with resonant spikes that occur 

in groups. Thus resonant energy states group into bands separated by forbidden gaps (wells).   

  

  

  

  

  

  

  

  

  

  
Fig. 2d   
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Keeping  fixed if one increases , the curves again approach the classical characteristics, which is reconcilable as the 
barrier height progressively takes values of significance in classical energy scaleseven then the quantum corrections do not 

disappear altogether and persistent depressions develop for . Fig.4 illustrates this for the case of  barriers (Fig.4a) 

and  barriers (Fig.4b) at decade changes in . Corresponding s are also shown in the figure by means of broken 

vertical lines.  

   

Fig.4a 
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Fig.4b 
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An interesting feature that manifests for large  is the appearance of predominant 'probability wells' in the region . 
Some of the oscillations of  develop into predominant depressions, flattening and deepening(towards zero) with 

increasing . Approaching zero these 'flat' regions attain a finite width. Until this point the walls of these 'probability wells' 

remain smooth and unperturbed. Further increase in barrier number gives rise to spikes along the walls(Fig.5). These spikes 

develop by the impregnation of shallower local minimas at the brim of a well that narrow down and deepen, rendering their 

interspersed maxima into very thin spikes. The situation is fairly symmetric on either side of a well. The spikes, lining a 

well further grow in number with increasing barrier number ( , , for instance). And the wells shift 

position with changing barrier height . To be able to appreciate this effect it is instructive to plot  (not ) against -as 

the spikes become more predominant. However this gives the impression that the wells touch zero sufficiently fast in , 

due to the rounding off schemes employed in the plotting software. So the convention of plotting  is retained in the 

accompanying figures. 
 
Fig 5: Probability wells for , . Number of barriers  is noted in the legend.  

                These are forbidden bands of energy where the tunneling probability falls strongly with increasing barrier number.  
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These plots open up a whole new set of possibilities both for the theoretician as well as for the application minded 

researcher. Given the prowess of Integrated Circuit fabrication techniques, realization of barrier structures with suitable 

choice of parameters is not difficult to imagine. This presentation may trigger novel innovations in electronic technology 

and many other areas. The analytic investigation of these curves using the given formula amounts to a treatise on its own as 

interesting patterns emerge upon deeper investigation (although it poses a formidable mathematical challenge). These may 

be taken up in a future paper. Hence further observations are not provided. The main aim of this work was to provide the 
solution methodology and point out some immediate consequences for large .  

 

A NOTE ON GENERALIZATION AND CONCLUSION:  

 

  
  

Fig.6:   for an arbitrary piecewise constant N Barrier Problem.  

  

  

This section is presented for the sake of completeness. Here the problem is extended to a general piece wise-constant 

potential barrier. A generic NBP can be defined by specifying two sequences,  and .  must be necessarily 

positive and monotonically increasing. These sequences derive their meaning from Fig.6. Most of the considerations of 

Section III hold good. In this case a single continuity condition suffices that can be applied for a general point . And 

similar transfer matrix equations are obtained:  

  

           where  

  

Now can be written in the form of equation where the generalized coefficients are given by   

  

The remaining computations are analogous. The derivation for the general transfer matrix product was given in Section III.   

From this generalization an approximation scheme for estimating T and R for more realistic barrier potentials that are 

continuous (or smooth) can be formulated. The given  can be sampled at many points by taking a partition on . Thus 
obtaining a step approximation to the potential and reducing the problem to that of a piecewise constant potential NBP. 

Following which the general approach can be used to calculate the transmission coefficient. The accuracy can be made 

arbitrarily good by refining the partition on .   

A possible extension would be for multidimensional tunneling, i.e. one in which a potential field, like  is 

considered. Again if  is well behaved in the region of interest, the use of variable separable method for solving the TISE 

will lead to similar one dimensional NBPs for every direction and the methods described here can be adopted. Though in 

this case  has to be defined more precisely. A consistent discussion of one dimensional tunneling across  rectangular 
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Barriers is provided in this paper. Some of the topics that have not been touched are tunneling time and tunneling length. 

These are interesting parameters to look at for a NBP. Time evolution of the wave function is another aspect that requires 

further insight. Certainly the analysis of these problems rests directly on the discussion provided in this paper. Also, long 

sequence matrix products of the form presented here, call for optimal computational algorithms that reduce code and time 

complexities.   
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