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ABSTRACT 
 

A nonlinear control has been developed and applied to realize a globally stable movement of a permanent 

magnet synchronous motor (PMSM). Physical constraints imposed by the PMSM manufacturer such as the 

current, power and speed are simultaneously imposed on the PMSM dynamics. In order to preserve global 

stability of the non linear control in presence of the physical constraints, an artificial intelligence algorithm is 

developed.  Based on the supervision of the machine state, this algorithm selects the non linear control so no 

violation of the physical constraints is an allowed. Simulation results of the PMSM dynamics equipped with the 

non linear control shows the effectiveness of the proposed algorithm. 

Keywords: Permanent magnet Synchronous machine (PMSM); constraint; nonlinear control; current 

limitation; stability study. 

 

  

 

1. INTRODUCTION 

 

There have been several improvements in the field of machine control and their internal architecture, particularly for 

the passage from servomotors of DC machines to servomotors of PMSM [7]. The technology used in the autopilot 

motor is based on PMSM with position, speed and torque control. Many authors consider the DC motor model in order 

to simplify the PMSM dynamic model [10], [12]. The MSPM technology is widely used in systems to carry out very 

fast and precise tasks as Cartesian robots and articulated robots, which also request offline control [11]. Such control 

system, as it minimize the time laps of the robot task, pushes the motors to their maximum physical constraints leading 

to undesired behavior. For the PMSM control certain authors [1], [5], [10] based their studies on stator current control, 

to reach the desired position. Others authors [15] use the intelligence methods such as artificial neural network for their 

control strategies.  

In this paper, the synthesis of an optimal nonlinear control system for PMSM is proposed. This control strategy 
guaranties the global stability of the PMSM movement. Since manufacturer physical constraints are imposed on the 

PMSM,   stability can be altered. In order to maintain global stability of the PMSM even in presence physical 

constraints, an artificial intelligence algorithm is developed. The proposed non linear control is capable to realize 

movement in minimal time period [13], [16].  

 

2. NONLINEAR MODELLING OF A PMSM 

 

The model of PMSM’s can be written in state equation as follows [2], [4], [6] : 
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where sR denotes the stator’s resistance,    the angular position,   the angular velocity, f  the friction’s coefficient, 

J  the rotor’s inertia, f  the rotor’s magnets flow, p  the number of pole’s pairs, di  the stator current along the axis 

d , qi  the stator current along the axis q , dU  the stator voltage along the axis d , qU  the stator voltage along the axis 

q , dL  the stator inductance along the axis d , qL  the stator inductance along the axis q , rC  the resistive charge 

torque and eC  the electromotive torque. 

The model is composed by two subsystems. The first is an electrical subsystem driven by the only input U : the stator’s 

voltage. The second is a mechanical subsystem driven by the electrical part. We propose the following state vector of 

the PMSM :         
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: State of the electrical subsystem; 2  x




 
  
 

: State of the mechanical subsystem; 

The PMSM model can be written in a state equation, as follows: 

 

 
1 1 1

2 2

x f x g
x U

x f x

    
       

           

                    (3) 

Where:  

 1     

qs
d q

d d

fs d
q d

q q q

LR
i p i

L L
f x

R L
i p i p

L L L




 

 
  

 

 
   
  

;  
 

2

d q f r
d q q

L L Cf
p i i p if x J J J J






 
      
 
 

;
1

1
0

 
1

0

d

q

L
g

L

 
 
 
 
 
 

;  

The PMSM input is the voltage applied to the stator 
T

d qU U U    ;

  

 

We can write the mechanical subsystem state equation as follow: 

   2 2 2 1x f x Ax F x C                          (4) 
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We notice that the mechanical subsystem is not driven by a direct input. 

The torque provided by the electrical motor can be defined as: 

 e d q d q f qC p L L i i p i  
          

 (5) 

 

3. NONLINEAR CONTROL OF A PMSM WITHOUT PHYSICAL CONSTRAINTS 

 

A non linear control of the PMSM is developed in this section. Since from modeling the PMSM system, it is clear that 

the input U  affects only the electrical subsystem. The mechanical subsystem 2x  is driven by the state of electrical 

subsystem 1x . Our strategy, to derive the non linear control, is first by selecting a reference mechanical position 2refx

which is used to define the electrical current reference 1refx [3], [7], [8], [9]. The control system chain is chosen as in 

figure 1. 
  
 

     

 

Figure 1.  Control’s chain of the PMSM. 

Where the desired electric state is 1

T
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A. Electrical subsystem control 

 

Consider the following model reference for computing the control of the electrical subsystem :  
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                    (6) 

This model is globally stable since 1k   is positive. The final state of the reference model is 1refx . 

 By substituting (6) and (3), the control of the subsystem is: 

     1
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              (7) 

Note that 1refx
 
will be chosen based on the final desired state of the mechanical subsystem

 2refx . 

B. Mechanical subsystem control  
 

We consider the following reference model  for the mecanical subsystem: 

 21 22 23 0refk k k        
                  

(8) 

ref  is the final stationary position of the reference model when it is stable.  

When the differentiel equation (8) has triple pole, it can be writen as:  

 2 33 3 0ref          
 
                  (9) 

When the triple pole  is real and negative, the reference model is globally stable and   is always be inferior to ref .  

In state form equation (9) may be writen as follow : 

 2 1 2 2 2 2 0refx x x x   
                   

(10) 

Here, the definited matrices 1  and 2   are given by the equation (11) : 
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The time derivative of the mechanical equation (4) is: 

   2 2 1 2 2 1,x f x x Ax F x C                       (12) 

When the load   rC  is constant, (13) becomes : 
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From (4), (6), (10) and (13), we can write : 
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This implies the following equation: 
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The reference current solutions ( ,drefi qrefi ) of equation (15) bring the system to the reference position ref . We chose 

to set 0drefi 
 
for simplicity of implementation [1]. We note that 0drefi 

 
 is not the optimal value for energy 

consumption [1], [16]. In practice di  
is always oscillating around drefi [1], thus approaching the PMSM behavior to a 

DC motor. 

 

The block diagram of the resulting nonlinear control of a PMSM scheme is shown in figure 2. 
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Figure 2.  Nonlinear control with physical de constraints of a PMSM 

 

 

Two simulations were realized for the PMSM equipped with the non linear control of equation (7). The selected triple 

pole is set at 0 10   . The reference desired position 2refx
 
is set respectively at the following positions: 
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Figure 3.   PMSM CSCL control with a reference position of 1rad and 100rad with a load of 4Nm 

 

 

The results of the two simulations show that the control law stabilizes the system at the desired reference values with 

the same time response. Only during the second simulation the current, power and speed motor were beyond the 

physical limits. This is due to the difference in setting   
1
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T
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and

  
2
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T

refx Rad  for the first and second simulation.  

In fact since the time response is equal for the two simulations, the energy requested in the second simulation is much 

important then the first simulation, therefore demanding more current, power and speed.  

 

Similar observation can be made if the same position reference were used in the two simulations but with different 

value of the triple pole ( 0 10  
 
and 0 100   ). 

 

 

4. CONSTRAINT NONLINEAR CONTROL 

 

In this section, a non linear control is developed not only to reach the position control 2 2ref  with minimum time 

response but also not violate the physicals constraints.  The constraints defined by the PMSM manufacturer are 

generally composed by three maximums limits: 

 

- Current constraint 

- Power constraint 

- Speed constraint 

 

Figure 4 represents the manufacturer constraints diagram where the limit’s of the three constraints are defined (     ). 
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Figure 4.  Manufacturer constraints diagram 

 

Where qi  is the stator current reference along the axis q ,  maxI  is the maximum current, axPmI
 
is the current for 

maximum power and
 axVmI is the current for maximum speed. 

A. Current constraint   
 

The high thermal of the PMSM’s conductor's wires insulations is the cause of the stator current’s constraint. In order to 

not exceed the maximum current max  I  allowed by the manufacturer, the reference stator current qrefi  must be always 

less or equal to maxI : 
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Referring to the model reference equation (6), the current will be always less or equal to maxI
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situation, qrefi  is superior to maxI , we therefore set
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From equation (17), we can write the third order polynomial : 
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In section 5, we prove that this polynomial always accept a negative root c . Therefore the triple pole is set equal to 

c ensuring the global stability for equation (9). 

Asymptotic behavior 

In the case of current constraint this behavior consider that 0di  , rC  constant and maxqI I  . We obtain the 

position Laplace transformation of  : 
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 Equation (7) gives the asymptotic control behavior which is linear to the speed of the system.  
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This linear asymptotic behavior will appear in our simulation results (figure 6).  
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B. Power constraint   

 

The origin of the power constraint is due to the thyristors and MOSFETs: the main inverters components. This is 

necessary for the sinusoidal voltages’ generation, called pulse width modulation. Knowing that the power is 

proportional to the voltage: 

  3absorbé active erte jouleP UI P P                (22) 

The power’s constraint appears in the following form, neglecting Joule losses: 

active eP P C                               (23) 

When the power requested by the current control exceeds the maximum power tolerated by the manufacturer, the 

PMSM may reach power saturation. In order to avoid the power saturation, we impose the following dynamic on  the 

power of the PMSM: 

  0refP k P P                  (24) 

k is any positive real value, and from (23)and  (24) we obtain : 
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When refP  is inferior to maxP , the current law qrefi  (15) ensure that maximum power will not be reached.  When refP  

is equal or superior to maxP , refP  is set equal  to maxP . Deduced from (26), the reference current is: 
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According to equation (15) and (27), the following equation third degree with the triple pole variable  is given by: 
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In section 5, we prove that this polynomial always accept a negative root P . Therefore the triple pole is set equal to 

P ensuring the global stability for equation (9). 

Asymptotic behavior 

In order to understand the asymptotic behaviors of the whole system in the case of power constraint, we supposed that
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The model of PMSM becomes: 
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3c is a constant depending on the load and in the initial position of the penetration power phase. 
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C. Speed constraint 

 

The motor bearings are the cause of the speed limit.  the speed constraint defined by the manufacturer imposes that the 

MSPM speed must be always less that a maximum value max :  

max                    (31) 

As the system is moving towards ref , we are interested on the instantaneous references speed s  satisfying the 

following equation :  
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s  is the speed where the system converges. 

When s  is inferior to max , the current law qrefi  (15) ensure that maximum speed will not be reached.  In such 

situation s  is equal or superior to max , therefore s  is set equal  to max . Deduced from (33), the reference 

current is: 

 
 

  
max

2
1 1

max
1 1

max 2
1

21
qref V q d q dres f d q

f d q d

f

l J

Jl
i g I i L L i i i

pk lL L i
 




 


  
           
    

    
   

        (34) 

According to equation (17) and (34), the following third degrees equation with the triple pole variable  : 

   3 2 2
ma

2
x1 12

1

13 3 2 0ref

f
P l l l

J

f

l
        

 
       

 
   



   
   

                    (35) 

In section 5, we prove that this polynomial always accept a negative root  . Therefore the triple pole is set equal to 

 ensuring the global stability for equation (9). 

Asymptotic behavior 

In order to understand the asymptotic behaviors of the whole system in the case of power constraint, we supposed that 

0di   and constantrC  , what wants to say that according to the model : 

max

max

max

 

max

         

              

               

cons

 

t n

 

a t

 

r
q

f

s q f q

q q d

f C
i

p

R i p U

pL i U

d

dt







 
 


   

  


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(36) 

 with :   max 0  t t     and constantU  . This linear asymptotic behavior will appear in our simulation results 

(figure 6).  When current saturation is reached, the state variable increases proportionally with time and in a linear way. 

Moreover, speed tends towards a constant value, acceleration and Jerk tend towards a value zero. 

 

5.  STABILITY STUDY 
 

The global stability of the PMSM equipped with the nonlinear control in (7), is ensured if the following polynomial has 

at least one stable root   

  3 2( ) 3 3 0refP           
          

(37)
 

Our case of study is concerning a constant reference position task: the PMSM always initials its angular position at 

zero. According to a study of third degree equation (9) with variable   and depending on the sign of the coefficient 

equation (position  , speed  , acceleration   and jerk  ), there are three poles cases control: 

- Control without limitation then the pole 0   ( 0 10   ). 

- Control with saturation (for the three saturation cases) and ref    then the pole is real and negative with 
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ref




 



. 

- Control with saturation (for the three saturation cases) and ref    then the pole is real and negative with 

 2
ref

ref

    


 

   



. 

These results are computed according to the Cardan method [17]. We clearly see that the pole is always negative even 

forward and backward movements; this study is verified by the exact values of poles illustrated in figure 8.  

 

6. CONTROL STRATEGY : ARTIFICIAL INTELLIGENCE ALGORITHME 

 
We propose the following strategies consisting of an acceleration phase, a constant speed phase and a deceleration 

phase: 

- Phase 1 : maximum current followed by maximum power.  

- Phase 2 : constant speed. 

- Phase 3 : minimum power followed by minimum current . 

During the PMSM simulation movement, a current calculation of 0qrefi
 
, maxPI and maxVI  is carried out at each 

iteration. If qrefi
 
 exceeds maxI

 
or  maxPI  or maxVI , qrefi

 
is selected in order to verify the three constraints. 

The following algorithm provides how the selection of the reference current qrefi is performed and the corresponding 

non linear control. 

// 

Step1 : initialization value 

max
0;PI 

max
0VI   ; 

 e d q d q f qC p L L i i p i                 : Eq (5) 

eP C                           : Eq (23) 

Step2 :  computed current reference value 

0 ( 10)qref fi                  : Eq (15)     //current reference without limitation 

If 0P   then   
max

1
maxPI P        : Eq (27)   // current limit for the maximum positive power 

Else  
max

1
maxPI P 

                 
: Eq (27) // current limit for the maximum negative power 

End if 

If 0   then   
max

1
maxVI g 

                
: Eq (34) // current limit for the maximum positive speed 

Else  
max

1
maxVI g 

           
: Eq (34) // current limit for the maximum negative speed 

End if 

Step3:  chose current reference 

0qref qrefi i
           

// current without limitation 

     // power limitation 

If maxrefP P & 0  & maxqref Pi I  then maxqref Pi I      //chose a current limit for maximum power  

Elseif   maxrefP P & 0  & maxqref Pi I  then maxqref Pi I //chose a current limit for maximum power rotation in 

the opposite direction 

Elseif   maxrefP P  then maxqref Pi I
     

// chose a current limit for maximum power deceleration phase 

End if 

    //speed limitation 

If   maxs 
 then  maxqref Vi I      //chose a current limit for maximum speed 

Elseif  maxs  
 then  maxqref Vi I     //chose a current limit for maximum speed 

End if 

 //current limitation 

If   mIqref axi 
 then  maxqrefi I      //chose a current limit for maximum current 

Elseif  mIqref axi  
 then   maxqrefi I    //chose a current limit for maximum current 

End if 
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Step4:  Control system 

     1
1 1 1 1 1 1,

T

d q ref refU U U l x x g f x k x x                 
: Eq  (7) 

Return step1 

 

7. SIMULATION AND DISCUTION 

 

The simulation were realized with the same pole placement (triple pole 0 10   ) and   0

2 10001
x

ref Radsimulation

 
  
      

 
 

Figure 5.  PMSM’s behavior under the NCL: (a) Angular position (b) Angular speed 

(c) Resistive and electromotive torque’s (d) Active power 

 

Figure 5 presents the position, speed, power, and torque of the PMSM during the simulation movement. This movement 

is divided into 7 parts. In parts 1 and 6, there is a current constraint, parts 2 and 5 there is a power constraint, part 3 is a 
speed constraint and in parts 4 and 7 there is a control without constraint. 

The simulation result presented in figure 5, shows that the PMSM reaches its desired final position. The three 

constraints are continuously not violated by the non linear proposed control proving its effectiveness. 

Figure 6 represent the non linear control of the PMSM. The asymptotic behavior previously exposed (equation (20), 

(21), (29), (30) and (36)) is apparent in figure 5 and 6 during all phases.     

Figure 7 represents the reference constraint current qrefi  during the PMSM movement. The different values of qrefi
 
are 

selected based on the proposed algorithm of section 6. 

 

 
Figure 6.  Control law 

 

Figure 7.  Different Reference current 

constraint 
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Figure 8.  Triple pole’s value variation 

 

Figure 8 represents the computed triple pole (9) trought MATLAB during the simulation movement of the PMSM. We 

note that the pole value is continously mainained negative. this is in accordance to the stability analysis priviously 

presented in (37). 

 

8. CONCLUSION 
 

In this article, a nonlinear control of a PMSM has been developed as the machine is pushed to it maximum current, 

power and speed saturation limits. This is done in order reach a final desired position with a minimum time response. 

Simulation results proves the effectiveness of the proposed non linear control since the PMSM realizes its desired 

movement without exceeding the saturation levels of current, power and speed. 

The simulation results were in accordance with the asymptotic behavior analysis provided for each of the saturation 

phases. A stability analysis is also presented in this paper. It was proven with the proposed non linear control that the 

PMSM maintains its stability at all phases of the movement. In fact, the stability analyses of PMSM demonstrate that 
the triple pole is maintained negative during these phases.  

An important element in our algorithm is the setting value of the triple pole. This values set a 0 10   in this paper. 

This values has an important impact on time response especially in the presence of saturation.  

 

APPENDIX 

 

Their values for the studied motor are as follows: 

 

0.6sR    is the stator’s resistance, 0.0014dL H is the stator inductance along the axis d , 0.0028Lq H is the 

stator inductance along the axis q , 0.001f   is the friction’s coefficient,  0.008 ²J Kgm  is the rotor’s inertia,

0.12f Wb 
 
is the rotor’s magnets flow, 4p  is the number of pole’s pairs. 

The value of saturation defined by the manufacturers, max 30I A is the current saturation, max 4500P W is the power 

saturation, max 600 /rad s  is the speed saturation,  
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