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Abstract:  Ant colonies, and more generally social insect societies, are distributed systems that, in spite of the 

simplicity of their individuals, present a highly structured social organization. As a result of this organization, ant 

colonies can accomplish complex tasks that in some cases far exceed the individual capabilities of a single ant. The 

field of ‘‘ant algorithms’’ studies models derived from the observation of real ants’ behaviour, and uses these models 

as a source of inspiration for the design of novel algorithms for the solution of optimization and distributed control 

problems. The main idea is that the self-organizing principles which allow the highly coordinated behaviour of real 

ants can be exploited to coordinate populations of artificial agents that collaborate to solve computational problems. 

Several different aspects of the behaviour of ant colonies have inspired different kinds of ant algorithms. Examples 

are foraging, division of labour, brood sorting, and cooperative transport. In all these examples, ants coordinate 

their activities via stigmergy, a form of indirect communication mediated by modifications of the environment. For 

example, a foraging ant deposits a chemical on the ground which increases the probability that other ants will follow 

the same path. Biologists have shown that many colony-level behaviours observed in social insects can be explained 

via rather simple models in which only stigmergic communication is present. In other words, biologists have shown 

that it is often sufficient to consider stigmergic, indirect communication to explain how social insects can achieve 

self-organization. The idea behind ant algorithms is then to use a form of artificial stigmergy to coordinate societies 

of artificial agents. One of the most successful examples of ant algorithms is known as ‘‘ant colony optimization,’’ or 

ACO, and is the subject of this work. ACO is inspired by the foraging behaviour of ant colonies, and targets discrete 

optimization problems. This work describes how real ants have inspired the definition of artificial ants that can 

solve discrete optimization problems. 
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1 INTRODUCTION 

 

The visual perceptive faculty of many ant species is only rudimentarily developed and there are ant species that are 

completely blind. In fact, an important insight of early research on ants’ behavior was that most of the communication 

among individuals, or between individuals and the environment, is based on the use of chemicals produced by the ants. 
These chemicals are called pheromones. This is different from, for example, what happens in humans and in other higher 

species, whose most important senses are visual or acoustic. Particularly important for the social life of some ant species is 

the trail pheromone. Trail pheromone is a specific type of pheromone that some ant species, such as Lasius niger or the 

Argentine ant Iridomyrmex humilis (Goss, Aron, Deneubourg, & Pasteels, 1989), use for marking paths on the ground, for 

example, paths from food sources to the nest. By sensing pheromone trails foragers can follow the path to food discovered 

by other ants. This collective trail-laying and trail-following behavior whereby an ant is influenced by a chemical trail left 

by other ants is the inspiring source of ACO. This chapter presents an overview of ant colony optimization (ACO) {a 

metaheuristic inspired by the behavior of real ants. ACO was proposed by Dorigo and colleagues as a method for solving 

hard combinatorial optimization problems. ACO algorithms may be considered to be part of swarm intelligence, that is, the 

research field that studies algorithms inspired by the observation of the behavior of swarms. Swarm intelligence algorithms 

are made up of simple individuals that cooperate through self-organization, that is, without any form of central control over 
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the swarm members. A detailed overview of the self-organization principles exploited by these algorithms, as well as 
examples from biology. Many swarm intelligence algorithms have been proposed in the literature 

 

II.    ANT COLONY OPTIMIZATION 

 

Some of the combinatorial optimization problems are difficult to solve optimally in polynomial computational time. 

Metaheuristic is an alternative to solve this kind of problems by using approximate methods that try to improve a candidate 

solution with problem-specific heuristic. Metaheuristics give a reasonably good solution in a short time, although they do 

not guarantee an optimal solution is ever found. Many metaheuristic implement some stochastic optimization. For example, 

greedy heuristic can be used to build the solution, which is constructed by taking the best action that improves the partial 

solution under construction. However, these heuristic methods produce a very limited variety of solutions, and they can 

easily get trapped in local optima. There are metaheuristic methods proposed to solve these problems; e.g. simulate 

annealing that guides local search heuristic to escape local optima (Dorigo & Stützle, 2004). A metaheuristic is a general 
framework that guides a problem specific heuristic. 

  

In the Ant Colony Optimization, ants use heuristic information, which is available in many problems, and pheromone that 

they deposit along paths which guides them towards the most promising solutions. The most important feature of the ACO 

metaheuristic is that the ants search experience can be used by the colony as the collective experience in the form of 

pheromone trails on the paths, and a better solution will emerge as a result of cooperation. 

 

The basic principle of the ACO algorithm is graphically shown in Figure 1. The principle works as follows: first, a finite set 

of solution components has to be derived to construct solutions to the combinatorial optimization (CO) problem. Secondly, 

the pheromone model, which is a set of pheromone values, has to be defined. This set of values is used to parameterize the 

probabilistic model. The pheromone values ∈ are usually associated with solution components. The ACO approach solves 
iteratively the optimization problems in two steps: 

 

• candidate solutions are constructed using probability distribution from a pheromone model;  

• the candidate solutions are used to bias the sampling by modifying the pheromone value in order to obtain high-quality 

solutions.  

 

 
   

 

Figure 1:    Basic principle of AC 
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III     ARTIFICIAL ANT 
 

Construction Phase 
 

Artificial ants construct solutions from a sequence of solution components taken from a finite set of available solution 

components = c= { c1, c2, … , cn  }. A solution construction starts with an empty partial solution sp= ∅. Then, at each 

construction step, the current partial solution is extended by adding a feasible solution component from the set (  )∈  \  , 

which is defined by the solution construction mechanism. The process of constructing graph =    = ( , ) the set of 

solution C components may be associated either with the set V of vertices of the graph   , or with the set   of its edges. 

The allowed paths    are implicitly defined by a solution construction mechanism that defines the set (  ) with respect to a 

partial solution. The choice of solution component from (  ) is done probabilistically at each construction step. The exact 

rules for probabilistic choice of solution components vary across different variants of ACO. 

                 

In the example of Ant System (AS) applied to TSP the solution construction mechanism restricted the set of traversable 

edges to the ones that connected the ants’ current node to unvisited nodes. The choice of solution component from ( ) is at 

each construction step performed probabilistically with respect to the pheromone model. In most ACO algorithms the 

respective probabilities – also called transition probabilities. 

 

IV      ROUTING 

            
Routing in ACO is achieved by transmitting ants rather than routing tables or by flooding LSPs. Even though it is noted that 

the size of an ant may vary in different systems/implementations, depending on their functions and applications, in general, 

the size of ants is relatively small, in the order of 6 bytes i. This is because ants are generally very simple agents. The 

following table summarizes the differences between ACO and traditional routing algorithms. In OSPF, routing is achieved 

by having each node transmit a link-state packet (LSP) to every other node in a network through a flooding processing. 

Although an LSP, which carries information about the costs to all the neighbours of a node, is generally smaller than a 

routing table, the flooding process ensures that every node receives a copy of the LSP. Since an LSP from a node can be 

disseminated via different paths to other nodes, multiple identical copies of the same LSP may be transmitted to the same 

node.  

 

V      RESULTS 
 

ACO algorithms are complex systems whose behavior is determined by the interaction of many components such as 

parameters, macroscopic algorithm components (e.g., the form of the probabilistic rule used by ants to build solutions, or 

the type of pheromone update rule used), and problem characteristics. Because of this, it is very difficult to predict their 

performance when they are applied to the solution of a novel problem. Recently, researchers have started to try to 

understand ACO algorithm behavior by two typical approaches of science:  

 

1. the study of the complex system under consideration in controlled and simplified experimental conditions, and  

2.  The study of the conditions under which the performance of the studied system degrades. Contributions along 

these two lines of research are briefly discussed in the following. 

 Study of ACO in Controlled and Simplified Experimental Conditions 

 The analysis of ACO algorithm behavior on simple problems is interesting because the behavior of the algorithm 

is not obscured by factors due to the complexity of the problem itself.  

 

A first such analysis was presented in chapter 1 (see also Dorigo & Stufftzle, 2001), where Simple-ACO was applied to the 

problem of finding the shortest path in a graph. The experimental results show that many algorithm components, which are 

essential to more advanced ACO models applied to challenging tasks, are also important for efficiently finding shortest 

paths. In a similar vein, Merkle & Middendorf (2003b) apply ACO to the linear assignment problem, a permutation 

problem that is solvable in polynomial time (Papadimitriou & Steiglitz, 1982). By varying the cost matrix, they are able to 

generate classes of instances that dier in the number and structure of the optimal solutions. 
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Fig. 2: Optimum path Searching by ANT in Netlogo Simulator 

 

Fig. 3:  Optimum path searching by ANT for food in NetLogo 
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A  Application based ACO in shortest path searching in RIP (Routing Information Protocol) in Matlab 

Tour Path solved by ACO N=48 

 

Figure 4: 48 Node tour Path 

 

 

Figure 5: Best Tour Length vs Iteration Time 
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Figure 6 : Tour Length Standard vs Iteration time 

 

 
Figure 7 : Iteration Best Cost Vs Iteration Time 

 

 
 

Figure 8: Average Node Branching Vs Iteration time 
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 CONCLUSION 

 
I hope this report gave you a good understanding of the ACO and therefore, entire satisfaction. Implementing prospect 

theory in the ACO for tackling continuous constrained problems can be a challenge. Also, the use of prospect theory could 

be investigated in the real time application of ACO in the mobile robot path planning where the robot interacts with the 

environment. When algorithms inspired by the behaviour of ants to solve the optimization problems were first introduced in 

the early 90s it seemed questionable. Since many results from ACO research have shown successful applications the 

perspective has changed and now they are considered one of the most promising approaches (Dorigo, Birattari & Stützle, 

2006). The use of human behaviour in ACO was also questionable, so a better understanding of the theoretical properties is 

certainly another research direction that will be pursued in the future in order to obtain more fundamental properties of 

ACO-PT algorithms. 

1.  Ant foraging with Antsim is not the only social insect behavior that has inspired computer scientists and 

roboticists. 

2. This project tried to cover the state-of-the-art studies about Ant Colony Optimisation (ACO) algorithm and its 

application to routing protocols. It covers recent thesis reports and introduces the latest developed protocols 
based on ACO. 

REFERENCES 

[1].  Grassé P-P, sur la biologie des termites champignonnistes, Ann. Sc. Zool. Animal, 1944. 

[2]. R. Beckers, J.L. Deneubourg, and S. Goss, “Trails and U-turns in the selection of the shortest path by the ant Lasius Niger,” 
Journal of Theoretical Biology, vol. 159, pp. 397–415, 1992. 

[3]. Afshar, M. H., Ketabchi, H., & Rasa, E. (2006). Elitist continuous ant colony optimization algorithm: application to 
reservoir operation problems. Int J Civil Eng, 4(3), 274-285. 

[4]. Ahmed, H., & Glasgow, J. (2012). Swarm Intelligence: Concepts, Models and Applications. Technical Report, 2012-
585: Queen's University, Kingston, Ontario, Canada K7L3N6. 

[5]. Al‐Nowaihi, A., & Dhami, S. (2010). Probability weighting functions. Wiley Encyclopedia of Operations Research and 

Management Science. 

[6]. Andriotti, G. K. (2009). Non-Rational Discrete Choice Based On Q-Learning And The Prospect Theory. 

[7]. Baker, A., Bittner, T., Makrigeorgis, C., Johnson, G., & Haefner, J. (2010). Teaching Prospect Theory with the Deal or 
No Deal Game Show. Teaching Statistics,, 32(3), 81-87. 

[8]. Bernoulli, D. (1954). Exposition of a new theory on the measurement of risk. Econometrica: Journal of the Econometric 
Society, 23-36. 

[9]. Birattari, M., Pellegrini, P., & Dorigo, M. (2007). On the invariance of ant colony optimization.  


