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ABSTRACT 

 

Hybrid observer design is addressed for a class of discrete-time linear switched systems whose switching 
mechanism is unknown. The hybrid observation problem consists in determining the estimation of the current 
mode and the continuous observer for continuous behavior from a finite set of input-output data. First, the 
current mode is estimated using a classification algorithm that associates the current data to its appropriate 
submodel. Second, the continuous observer is determined by the resolution of linear matrix inequalities. A 
comparative study of the proposed approach with the k-means method was achieved in simulation. A numerical 
example was reported to evaluated the proposed method. 

 

Keywords: Clustering algorithm, Discrete state, Hybrid dynamic systems, Hybrid observer estimation, Switched 
linear system. 

 

  

 

1. INTRODUCTION 

 

Hybrid systems are dynamic systems that explicitly and simultaneously involve behaviors or models of continuous 
and event dynamic type. Continuous behavior is the result of the natural evolution of the physical process, while event or 
discrete behavior may be due to the presence of switching, operating phases, transitions, computer program codes, etc. 

The method of interaction between these two behaviors define three main classes according to (19), namely, the 
discrete approach, the mixed approach and the continuous approach. In fact, the first approach consists in approximating 
the continuous dynamics to be lead as a discrete event system. While the second method considers both continuous and 
discrete behaviors in the same structure as the hybrid Petri network (22) and the hybrid automate (23). However, the third 
approach is to approximate the discrete dynamics of the hybrid system by differential equations to model the occurrence 
of discrete events in order to use the continuous systems theory. This approach can be modeled by the piecewise affine 
(PWA) model (25), the switched linear model, the Markov jump linear (MJL) model (24).... etc. The hybrid dynamic 
systems (SDH), with their three configurations, have received great attention in the last years since they are very useful 
for automatic control applications such as chemical process, embedded systems, telecommunication networks and so on. 
In fact, several approaches have been proposed in the literature for hybrid system presentations, analysis, modeling, 
observations and control. This paper deals with the problem of hybrid systems observation.  The hybrid observer design 

for hybrid dynamic systems (SDH) is composed of two variables, the first is the discrete state  q k  uses to model the 

event part, while the second is the continuous state  x k relating to the continuous part. Though, the hybrid state 

estimation involves both the estimation of the discrete state and the continuous state  q̂ k ,  x̂ k . For the observer design 

problem of hybrid systems, many methods were proposed. The previous approaches, for the reasons of simplicity, 
assume that the discrete state is available a priori and then used a Luenberger observer or a high order sliding-mode 
observer to estimate the continuous state (5, 6). Another method, presented in (3), consists in designing an observer for 
the switched systems. Its stability is guaranteed by polytopic Lyapunov functions. Furthermore, the approach presented 
in (1) consists in developing a method for an active mode observability that may randomly switched between the 
different modes taken from a finite set. The purpose of this method is to determine the control sequences (discerning 
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control sequences) that prove the reconstruction the switching sequence on the basis of observations. The observer design 
presented in (2) consists of two stages. First, the discrete state estimation is assumed as a maximum value of a likelihood 
criterion. Second, the estimated discrete state is embedded in a Kalman filtering framework to estimate the continuous 
state. A recent result for a class of Markovian Jump Linear Systems (MJLSs) in the presence of bounded polyhedral 
disturbances was developed in (4). this method is called a set-membership estimation algorithm. In fact, it allows to find 
the smallest consistent set of all possible states, which is shown to be expressed by a union of multiple polytopes. 
Previous works on state estimation for hybrid systems were dedicated to the class of piecewise affine systems (PWA) 
(7,11). In (7), the proposed method is shown in a hybrid observation schema which corresponds to the combination of the 
commutation law construction and the linear piecewise observer. In (20), a recursive state estimation is developed for 
hybrid systems described by the state-space model in the form of the conditional probability (density) functions. This 
method is based on the factorized form of Bayesian filtering. For the linear switching systems, in (21), the authors deal 
with the joint problem of state estimation and event under irregular sampling. The solution is established extending 
Shannon's sampling theorem. However, for hybrid systems modeled by differentials Petri Nets, a method was proposed 
in (9). The synthesis of an observer is based on an observation schema combining the observer of Petri Net and a 
Luenberger continuous observer. The discrete observer returns the discrete mode by estimating the discrete marking and 
provide the active mode to the continuous observer.   

In this paper, a new method is presented for observer design of switched linear systems defined in discrete-time. Our 
aim is to develop a hybrid state estimation from a finite set of the system input-output. In the first time, the proposed 
method estimates the current mode under evolution based on a classification algorithm. It consists in selecting  the 
representative points of classes (submodels). These points are considered as class centers. Once the first component of 
the class centers called decision variables are selected, one proceeds to estimate the discrete state. Indeed, the discrete 

state  q k is determined by the minimum value of  s  criterion which involves the difference between the system output 

and the decision variable of the appropriate class. Finally, we present the continuous observer which is based on the 
switched observer approach.  

The paper has the following structure. Section II deals with the problem statement. Section III studies the 
observability of switching system. The proposed method is developed in section IV. In section V, we present the 
simulations in order to illustrate the effectiveness of the proposed method.  

 

2. PROBLEM STATEMENT 

 

 
We consider a class of hybrid dynamics systems described by the following state space model :

     

   

1 i i

i

x k A x k B u k

y k C x k

  




 (1) 

where iS={1, ...,s} is the discrete state of the system,  s is the number of submodels, x(k)  R
n
, y(k)  R and u(k)  R 

are respectively the continuous state, the output and the input of the system, Ai, Bi and Ci are the parameter matrices 
associated with the submodel indexed by i. In the method to be presented, no constraint is imposed on the switching 
mechanism. In fact, the switches can be exogenous, deterministic, state-driven, event-driven, time-driven or totally 
random. However, we assume that the order n and the number of submodels s are known a priori. 

 

Given data     
1

,
N

k
y k u k



 

generated by a switched linear model of the form as in (1), we are interested in 

estimating a hybrid state. This observer gives the evolution of the current mode   q̂ k and the estimation of the state 

vector  x̂ k According to figure 1, the discrete observer uses a classification procedure and a decision mechanism. The 

classification procedure provides the class centers  * * *

1 2, , , sy y y  which will be exploited by the decision 

mechanism in order to identify the discrete state  q̂ k . Then, the state vector estimation  x̂ k  is expressed by a 

switched observer. The stability analysis of the switched linear observer involves a Poly-Quadratic stability principle 

(16). This concept allows to check the asymptotic stability of the state vector estimation  x̂ k  by means of polytopic 

quadratic Lyapunov functions. 
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Fig. 1:  The proposed observer structure 

 

3. OBSERVABILITY OF THE SWITCHED SYSTEMS 

  

The observability  notion of switched linear systems needs to take into account several different problems related to 
observed variables of the system, namely, the state and the mode. In fact, the mode sequence can be observable or 
unobservable, and in the second case, another problem arises in the ability to recover the mode with the state. Thus, many 
observability concepts are defined in (17). The necessary and sufficient conditions for observability expressed by the 
authors are only a transposition of the conditions already established to characterize the decidability. To explain this 
result it is necessary to introduce some definitions. 

Let a path  defined as a finite modes sequence 
11 2 N    with 1N  is the path length, and N the set of all 

path of length  N. We pose by  ,i j
 the infix of  between i and j   ( i.e.   1, i i ji j

   ), we use  to denote the 

concatenation of    with ' , and we pose  
11N

A A  called the transition matrix of a path .  By convention, 

we let  , 1i i
 


  ( is empty word) and   I  . Let  O  an observability matrix of a path   and a matrix  
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 
 
 
 
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  
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 
 
 
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Which ultimately allows us to define : 

     , ,Y x U O x U     

Where    11
T

U u u N    is a control vector and      1, , 1
T T

Y x U y y N  
 

is an output 

vector in 
 1 1N 

and  1x x is the initial state. In order to characterize the switched system observability, we must 

introduce a few definitions. Namely  M is the subspace spanned by the rows of the matrix M. 

Definition (17) (Controlled-Discernibility (CD)) 

Two different paths   and    of length 
1N  are controlled-discernible (CD) if 

       0I P       

where P is the matrix of any projection on     O O     .  

The result of (17) on the observability of SLS systems is as follows: 

Theorem (17) So that the SLS (1) to be strongly mode observable at 
1N   requires that the following items be 

reciprocal: 

1) There exists an integer 
1N   and a vector U such that for all 

nx and all 
1 1N N




  

     
1

1
1, 1,

, , , , n

N N
Y x U Y x U x   

 
  

           

2) Two different paths  and    of length 1N  are forward controlled-discernible (FCD) if there exists an integer 

1N   such that   and     are controlled discernible for any pair of paths  and  of length 
1N  . The smallest 

such integer is the index of FCD. 

 

4. THE PROPOSED METHOD 

 

Several existing methods estimate the active discrete state using a set of data defined on an observation horizon. This set 
is assumed to be pure i.e his elements are generated by the same submodel. Though, this assumption is not always true in 
practice because these elements may be generated by more submodels. To resolve  this problem, they introduce the dwell 
time to ensure that the data belongs to the same submodel. 

In this paper, we propose a novel approach which consists in associating the current output  y k  to its appropriate 

submodel. This assignment is insured thanks to a clustering algorithm. 

A. The discrete state estimation 

The discrete state is estimated as the index of the submodel that generated the pair of data     ,u k y k  in the sense 

of a certain decision criterion  iJ k  designed by : 

        
1, ,

ˆ arg min i
i s

q k J k


                                                        (2) 

The criterion  iJ k  can be chosen in many different ways. Since no model has been specified for the discrete state 

dynamics in switching linear system (1),  iJ k  is taken here as a function of a square error between the system output 

 y k  and the decision variable associated to the 
thi  class 

*

iy  : 

        
2

*

i iJ k y k y                  (3) 
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Criterion (3) can be interpreted as the distances from the data  y k  to the decision variable 
*

iy  of 
thi  class. Before 

summarizing the state estimation algorithm, we must take the following assumption. 

 

Assumption 1. At each instant index k and  for any couple  ,i j  of discrete states indexes,    

        i jJ k J k i j                                    (4) 

The objective of assumption 1 is obviously to remove any ambiguity in the inference of  the discrete state if the true 
submodel, is exactly known. We suggest the use of the Chiu's clustering algorithm (10,12), also called the method of 
mountains (13,14). In this work, we extended this method to classify a set of regression’s vectors (15, 26)

          1 1 , 1, ,
T

k k y k y k u k k N         which consists in associating to each  k  a potential 

kP  defined by : 

       
   

2

2
1

4
exp

N

k

l a
l k

k l
P

r

 




  
 
 
 

      (5) 

Where ar   is a positive coefficient that controls the decay of the potential. Indeed, the potential decreases exponentially 

when  l  moves away to   k . Otherwise, the coefficient ar  defines the radius of a class. The first class center, 

denoted 
*

1  is the data whose potential 
*

1P , expressed by equation (6), is the maximum. The potential of the neighboring 

points of the center while gradually decreasing away from the latter. To avoid selecting the data in the neighborhood of 

the center 
*

1  as other centers of classes, the classification procedure changes the value of each potential given by the 

following formula: 

    
 

2
*

1*

1 2

4
expk k

b

k
P P P

r

   
  
 
 

     (6) 

The parameter br  ( 0br  ) must be strictly greater than ar  to promote the operation on the selection of other distinctly 

different classes of first and its close. The center of second class is selected as the data having the maximum modified 

potential given by relation (7). Let 
*

2  the second center and 
*

2P  the associate modified potential. Similarly, we selected 

the 
thc  center 

*

c  having 
*

cP  as a potential and the potentials are modified by the following formula:   

    
 

2
*

1*

1 2

4
exp

c

k k c

b

k
P P P

r

  



  
  
 
 

    (7) 

Chiu introduced two positive parameters 1  and 2  
 1 2   for conditioning the choice of centers. Indeed, at each 

instant, the selection procedure of each class center obeyed the following inequalities: 

 If  
* *

1 1cP P   selection authorized. 

 If  
* *

2 1cP P   selection achieved. 

 If  
* * *

2 1 1 1cP P P    and  if : 
 * * * * * *

*
1 2 1

*

1

, , ,
1

c c c c
c

a

Min P

r P

        
   

where 
*

c  is the current center and  
* * *

1 2 1, , , c     are the already selected centers. The retained center has, in these 

conditions, the highest potential after the rejection of the old potential 
*

1cP   (the value of 
*

1cP   was set to zero). 
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B. Continuous Observer 

 
The purpose is to design a switched observer for the switched linear system. In fact, we consider the following observer 

defined by :  

    
          

   

ˆ ˆ ˆ1

ˆ ˆ

i i i

i

x k A x k B u k L y k y k

y k C x k

     




   (8) 

The gain matrices , 1, ,iL i s   have to be computed such that the estimation state  x̂ k   is asymptotically 

converged to the system state  x k  whatever the initial conditions, i.e : 

        0 lim 0n

k
k 


        (9) 

Where      ˆk x k x k    is the estimation error and its dynamic behaviors defined by :  

          1 i i ik A LC k                     (10) 

The switched observer design is reduced to the computation of the gain matrices  , 1, ,iL i s  which ensure the 

asymptotic stability for the switched system (10). To solve this problem, we use the concept of Poly-Quadratic stability 

(16). In fact, the stability is checked by means of particular quadratic Lyapunov functions taking into account the 
switching nature of system (1). To recall this concept, the estimation error dynamic becomes : 

 

             1 kk A k                                   (11) 

The structure of dynamical matrix A  is assumed to depend in polytopic way on the parameter k  : 

                                                          
1

s
i

k k i

i

A A 


                  (12) 

Where i i i iA A LC  . The components of the parameter vector 
k

i appear as indicator functions given 

by (3) :  

 

                     

1 when the switched system

     is described by matrix 

0    otherwise

i

k iA




 



                                           (13) 

 

with  1, ,i s and 
1, , s

k k k      .  To check asymptotic stability of system (11), Poly-quadratic stability uses 

Lyapunov function with a polytopic structure similar to that of the system description : 

 

 

             
1

, , with
s

T i

k k k k i

i

V k k P k P P      


                  (14) 

where ,  1, ,iP i s , are symmetric positive definite constant matrices of appropriate dimensions. Using this fact, the 

following theorem gives sufficient condition to build such a switched observer. 

 

Theorem(3)  If there exist symmetric matrices iS , matrices iF  and iG  solutions of: 

 
 

               (15) 

 

then a switched observer (8) for system (1) exists and the resulting gains iL are given by 
1

i i iL G F   with 
1

i iP S  . 

   
2

0 , 1, ,
i i j i i i i

i i i i i

G G S G A F C
i j s

A G C F S

     
    
   
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In summary, the proposed approach consists of two steps : one is offline procedure which allows to determine the class 

centers using the Chui's algorithm; and two is an online operations which consists in estimating the discrete state and the 

continuous state based on the results of the first step. 

 

 

Algorithm 1 

Offline part 

Calculate the potential 
kP   as in (5) for 1, ,k N  

Select the first decision variable 
*

1y   (the vector center's first component) 

Repeat 

Calculate the modified potential as in (6) 

 Select the 
thc center 

Until   * * *

2 1 1 1 1P P P    and 
 * * * * * *

*
1 2 1

*

1

, , ,
1

c c c c
c

a

Min P

r P

      
   
  
 
 

 

Online part  

For 1, ,k N  

 Compute criteria  iJ k as in (3) for 1, ,i s  

Estimate the discrete state  q̂ k such as 
   ˆ

1, ,
min iq k
i s

J J k


  

End for  

According to  q̂ k update  x̂ k as in (8) 

 
 

5. SIMULATION : A DOUBLE CART WITH ELASTIC COUPLING 

In this section, we give a switched linear example in order to illustrate our method. Let us consider the mechanical 
system (18) described in figure (fig2). 

 

Fig. 1 The A double cart with elastic coupling. 

 

 

The linear switching model described in continuous time of the plant under investigation is : 

 for  2 0z t  : 

   

   

1 1 1 1 2 2 1 1 2 1

2 2 2 2 1 1 2 1

 andm z z z z z z u

m z z z z z

  

 

     

    
      (16) 

 

 for  2 0z t  : 

   

   

1 1 1 1 2 2 1 1 2 1

2 2 2 2 1 1 2 1 2 2

 andm z z z z z z u

m z z z z z z

  

  

      

     
     (17) 
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Let    1 2 3 4 1 1 2 2, , , , , ,Tx x x x x z z z z  . Then,  the continuous time state representation of (17) and (18) become : 

 

     

       

1 2 1 2 1

1 1 1 1

2 1 2 1

2 2 2 2

3

0 1 0 0

0

1

0 0 0 1 0

0

1 0 0 0             if 0

m m m m
x t x t u t

m m m m

y t x t x t

    

   

 
 

      
 

   
 

 
 

     
 

 
     (18)

 

 

     

       

1 2 1 2 1

1 1 1 1

2 1 2 1 2

2 2 2 2

3

0 1 0 0

0

1

0 0 0 1 0

0

1 0 0 0             if 0

m m m m
x t x t u t

m m m m

y t x t x t

    

    

 
 

      
 

   
 

 
 

     
 

 
     (19)

 

 

We will consider these two configurations : 

[1]. The system without damper 1, i.e  1 0  . 

[2]. The system with damper 1, i.e  1 0  . 

Let 1 2 1m m kg  , 
1

1 2 1 Nm    ,
1

2 1 Nsm   

 

Case 1: 

 

The parameters matrices are given in the sampling phase, for a sampling period 0.5eT s  , by : 

 

1

1 1

0.7627 0.4596 0.1174 0.02006

0.8992 0.7627 0.4396 0.1174

0.1174 0.02006 0.8801 0.4797

0.4396 0.1174 0.4596 0.8801

0.1199

0.4596
, 1 0 0 0

0.00254

0.01778

A

B C

 
 

 
 
 

 

 
 
  
 
 
 
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 

2

2 2

0.7625 0.4596 0.1176 0.01778

0.9014 0.7625 0.4418 0.09981

0.09981 0.01778 0.8979 0.3776

0.342 0.09981 0.3598 0.5203

0.1199

0.4596
, 1 0 0 0

0.002305

0.01778

A

B C

 
 

 
 
 

 

 
 
  
 
 
 

 

 

 

For the simulation, we applied a sinusoidal control. Figure (3) shows the evolution of the real mode, the Chiu's and K-
means estimated of discrete state. We can notice that the chiu's estimated of discrete state gives a better estimate than 
the k-means estimated. The vectors of regression class's center obtained with two algorithms are given in table 1. 

 

Table 1: The centers regression vectors 

 

 Chiu K-means  

*

1  

1.1448

1.1448

0.7705

 
 

 
  

 

0.8446

0.8449

0.7528

 
 

 
  

 

*

2  

0.7283

0.7283

0.4818

 
 
 
  

 

0.5497

0.5447

0.4998

 
 
 
  

 

 

 

 

Fig. 3: The evolution of the real Mode, the Chiu estimated mode  

and the K-means estimated mode 

 

The LMI (12) is feasible. The continuous observer's gains are given as follow : 
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1 2

1.0788 1.1797

0.2894 0.3073
,

0.0024 0.04999

0.0772 0.0442

L L

   
   
 
    
   
   
   

 

 

The estimation errors of the components of the state vector are illustrated in figure (5). We found the asymptotic 
convergence of the estimation errors for the components of the state vector. The trace of the state vector's variables and 
their estimated, shown in figure (4), prove their convergence. 

 

Fig. 4 The evolution of state vector's components and their Chiu  

and K-means estimated 

 

Fig. 5 The Chiu's algorithm 

estimation error of state vector 

 

 

The Mean Square Error MSE and the Variance-Accounted-For VAF are calculated by the following formulas for 
evaluating the accuracy of the hybrid state estimation. 
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    
2

1

1
ˆ

N

k

MSE y k y k
N 

   

    
  

ˆvar
max 1 ,0 100%

ˆvar

y k y k
VAF

y k

  
   

  

 

Table 2 gives the performance indexes computed by the Chiu's and k-means's methods. We can note that the chui 
classification method ensures best estimate of the system total state. 

 

Table 2: Performance Index 

 

 Chiu K-means  

MSE
 69.760810

 0.0166  

VAF
 

99.9987%  97.4658%  

 
 
 

Case 2: 

The parameters matrices are given in the sampling phase, for a sampling period 1eT s  , by : 

 

1

1 1

0.4311 0.5546 0.2238 0.3183

0.791 0.1947 0.2363 0.4602

0.1294 0.3183 0.7493 0.649

0.0125 0.4602 0.3308 0.4186

0.3451

0.5546
, 1 0 0 0

0.1213

0.3183

A

B C

 
 

 
 
 

 

 
 
  
 
 
 

 

 

 

2

2 2

0.418 0.5335 0.2417 0.2417

0.8253 0.1262 0.2918 0.2918

0.08957 0.2417 0.8118 0.4439

0.03943 0.2918 0.2023 0.1656

0.3403

0.5335
, 1 0 0 0

0.09861

0.2417

A

B C

 
 


 
 
 
  

 
 
  
 
 
 

 

 

For the same control input used, figure (6) shows the evolutions of the real and estimated switching signal. we note that 
the estimated discrete state  by Chiu algorithm provides a better estimate than that given by the K-means algorithm. In 
table 3, we give the vectors of regression class's center given by chui and K-means algorithms. 
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Table 3: The centers regression vectors 

 Chiu K-means  

*

1  

1.2640

1.0093

0.9823

 
 

 
  

 

0.8273

0.7963

0.7469

 
 

 
  

 

*

2  

0.7110

0.8724

0.5878

 
 
 
  

 

0.5610

0.5392

0.4938

 
 
 
  

 

 

 
Fig. 6 The evolution of the real mode, the Chiu estimated mode 

 and the Kmeans estimated mode 
 

The LMI (12) is feasible. The continuous observer's gains are given as follow : 

1 2

0.1821 0.4173

0.0481 0.4889
,

0.7242 0.2515

0.3326 0.1463

L L

    
   
 
    
   
   

   

 

 
The estimation errors of the components of the state vector, are illustrated in figure (8). We found the asymptotic 
convergence of the estimation errors for the components of the state vector. The trace of the state vector's variables and 
their estimated, shown in figure (7), prove their convergence. 
 

 
Fig. 7 The evolution of state vector's components and their Chiu and K-means estimated 



International Journal of Enhanced Research in Science, Technology & Engineering 

ISSN: 2319-7463, Vol. 4 Issue 9, September-2015 

Page | 118  

 

 
Fig. 8   The Chiu's algorithm estimation error of state vector 

In table 4, the performance indexes are computed for Chui and k-means algorithms. Where it is clear to notice that, in 
this case too, the chui algorithm provides better estimation for hybrid state. 

 

Table 4: Performance Index 

 

 Chiu K-means  

MSE
 

0.0015  0.1419  

VAF
 

99.87%  81.7529%  

 

6. CONCLUSION 

In this paper, the joint estimation problem of the discrete state and the continuous state for a class of switching discrete-

time linear systems was developed. Using an approach based on the clustering algorithm to associate the current output 

to its appropriate submodel. Then, for estimating the continuous observer, we used the LMI approach. Eventually , an 
experimental validation with a mechanical system "double cart with elastic coupling" are presented. Simulation results 

showed that our proposed method has proved a better estimate of the hybrid state than that used with the K-means 

algorithm. 
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