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Abstract: In this paper, we present  extension forms of Dai, Yuan (DY), Fletcher, Reveres (FR) and Conjugate 
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compared with the original  FR algorithm showing considerable improvements over all these comparisons. 
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Introduction 

 

The nonlinear conjugate gradient (CG) method is designed to solve  the following unconstrained optimization problem 

                      nRxxf )(min  )1(..........  

where RRf n :  is a continuously differentiable nonlinear function whose gradient is denoted by g . Due to its 

simplicity and its very low memory requirement, the CG method has played a special role for solving large scale 

nonlinear optimization problems. The iterative formula of the CG method is given by  

                      kkkk dxx 1  )2(..........  

where 0k  is a step length which is computed by carrying out a line search and satisfies the standard Wolfe (SW ) 

conditions : 
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with 10 21   , and 1kd  is the search direction defined by  
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where kd  is a descent direction. Different conjugate gradient algorithms correspond to different choices for the scalar 

parameter k see [7]. The well-known formula of  k  are given by  
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which are called Fletcher and Reeves (FR) [4], Conjugate Descent (CD) [3]  and  Dai and Yuan (DY) [2]  , 

respectively.  In fact, utilizing )5( , 
DY

k  can be rewritten as : 
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k
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dg 11  . )8(.......... b  

 In [6] modified conjugate gradient methods are given by the rule  
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where k  is one of the values in )6(  or )7(  or )8( . 

Zhang  and Wang [8] proposed a general form of conjugate gradient methods are given by the rule 
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where k  is one of the values in )6(  or )7(  or )8( . 

The paper is organized as follows. In section (1) is the introduction. In section (2)  we present the extended  spectral 

method and algorithm. Section (3) show that the search direction generated by this proposed algorithm at each iteration 

satisfies the sufficient descent condition and establishes the global convergence analysis. Section (4) establishes some 

numerical results to show the effectiveness of the proposed CG-method and Section (5) gives a brief conclusions . 

 

Extended spectral conjugate gradient method and algorithm  

 

In this paper we suggest a new type of spectral conjugate gradient methods for solution of the )(min xf . In [5] we 

consider a condition that a descent search direction is generated, and we extend the DY method. We make such a 

direction inductively. Suppose that the current search direction kd  is a descent direction, namely, 0k

T

k dg  at the 

thk iteration. Now we need to find a k  that produces a descent search direction 1kd . This requires that  
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T
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Letting 1k  be a positive parameter, we define  
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Equation )11(  is equivalent to  

k

T

kk dg 11   . )13(..........  

Taking the positively of 1k  in to consideration, we have  

 0,max 11 k

T

kk dg   . )14(..........  

Therefore if condition )14(  is satisfied for all ,k  the conjugate gradient method with )12(  produces a descent search  

direction at  every iteration. From  )12(  we can get various  kinds of  conjugate gradient  method  by choosing  various 

1k .  

Hideaki and Yasushi proposed a new conjugate gradient method which was obtained by modifying the DY method and 

called  MDY method. A nice property of the MDY method is that it generates sufficient descent directions. The 

parameter k  in MDY method is given by  
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The definition of search direction and Formula )15( ensure that  
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and hence, 
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performs more effective More details can be found in [5]. 

Let  us try to derive a new type method we need the next direction  1kd   to  be  descent.  Assume that  0k . By  

this,  we  have  for  any ]1,0( , and from )13(  the following inequality holds :  
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i.e. , 

011

2

1   k

T

kkkkk dgg  . )20(..........  

Now we can rewrite the above inequality as 
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Hence, we obtain our new directions as follows : 
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Then we can rewrite )22(  as 
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where  
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This method includes the Zhang and Wang (ZW) method as a special case. By setting ,1 k

T

kk dy direction )22(  

reduces to the Zhang and Wang (ZW) method  which defined in )10( . 

 

Now we can obtain the a new conjugate gradient algorithms, as follows :  

The  New Algorithm (2.1) 

 Step 1. Initialization : Select 
nRx 1  and the parameters 10 21   . Compute )( 1xf  and 1g . Consider 

             11 gd    and set the initial  guess 11 /1 g . 

Step 2. Test for continuation of iterations. If 
6

1 10

 kg , then stop. else step3. 

Step 3. Line search : Compute 01 k  satisfying  the Wolfe  line  search condition  (6) and update the 

           variables kkkk dxx 1 . 

Step 4. Conjugate  gradient  parameter  which  defined  in )6( or )7(  or )8( . 

Step 5.  Direction  computation  1kd  which  defined  in )22( .If  the  restart  criterion of  Powell  

             
2

11 2.0   kk

T

k ggg , is satisfied, then set 11   kk gd    otherwise define ddk 1 .  

 

Global Convergence  

 

In this section, we establish convergence of the proposed method, the following assumptions for the objective function 

are needed. 

Assumption (3.1) 

      i-  The level set  )()( 0xfxfRxL n   is bounded. 

      ii- In some neighborhood U  of )(, xfL  is continuously  differentiable  and  its  gradient is  Lipschitz  

           continuous, namely, there  exists a constant  0  such that 
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Assumption 3.1  imply  that there  exists a positive constant   such that  

 

.,1 Uxgk      )26(..........  

 

Here we have to present sufficient descent property.   

 

Theorem 1  

Let  1kx  and  1kd  be generated by )2( and ),22( where k  satisfies Wolfe line search conditions, then holds 

of the sufficient descent property 
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Proof : 

  Then conclusion can be proved by induction. When ,0k  we have 0
2

000  gdg T
. 

Suppose that 
2

kk

T

k gcdg  . From )13( and )22(   we have  

 

k

T

kkk

T

kkk

k

T

kkkkk

kkk

k

k

k

T

kk

T

k

dgdgg

dgg

dg
g

gdg

11

2

1

11

2

1

12

1

1

111
























































 

)28(..........  

.
2

1

2

111   kkk

T

k gcgdg   )29(..........  

 

where c . Thus the theorem is proved.  

 

The following Lemma [9] is the result for general iterative methods : 

Lemma 1   

Suppose that Assumption 2.2 is satisfied and consider any method with  Eq. ),2(  where k  satisfies Eqs. )11(  and 

)12( . Then, 
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From the previous analysis, we can get the following global convergence result for new Algorithm. 

 

Theorem 2  

Suppose that Assumption (3.1) holds, and  these methods have the satisfies sufficient descent condition with c . 

Then these method are globally convergent,  one has 

0inflim 1 
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Proof : 

Now we will prove global convergence. We suppose that the theorem is not true. Suppose by contradiction that there 

exists 01   such that 

              00 gd      and   11 kg      )32(..........  

By squaring the two sides of
)22(

 and transferring and trimming, we get : 
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Dividing the previous in equation by 

2

11 )(  k

T

k gd
, we get :  

















































2

1

1

11

2

11

2

1

2

2

1

1

2

11

22

2

11

2

1

)(

2

)()()(

k

k
k

k

T

k

k

T

k

k

k

k
k

k

T

k

kk

k

T

k

k

ggd

gd

g

ggd

d

gd

d









 )34(..........  

2

1

2

1

2

1

1

11

2

11

2

1

2

2

1

1

2

11

22

2

11

2

1

11

)(

2

)()()(


















































kkk

k
k

k

T

k

k

T

k

k

k

k
k

k

T

k

kk

k

T

k

k

ggggd

gd

g

ggd

d

gd

d









 )35(..........  

 

2

1

2

1

2

1

1

11

2

11

22

2

11

2

1 11

)(

1

)()(







































kkk

k
k

k

T

kk

T

k

kk

k

T

k

k

ggggdgd

d

gd

d 




 )36(..........  

 

2

1

2

11

22

2

11

2

1 1

)()(





kk

T

k

kk

k

T

k

k

ggd

d

gd

d 
 )37(..........  

a. When 
DY

kk   .  Then  by )8( b  

k

T

k

k

T

kDY

k
dg

dg 11   )38(..........  

and applying )37( , we have  

2

1

2

2

2

11

2

1 1

)()(





kk

T

k

k

k

T

k

k

ggd

d

gd

d

 )39(..........  

Noting that  

,
1

)(
2

1

2

11

2

1

ggd

d
T

  )40(..........  

With this, from )32( we have  

2

1

1

1
2

1

2

11

2

1 1

)( 

k

ggd

d k

i ik

T

k

k
 



 


. )41(..........  

Then we get  

kd

gd

k

k

T

k

2

1

2

1

2

11 )( 





. )42(..........  

Which indicates  



International Journal of Enhanced Research in Science Technology & Engineering, ISSN: 2319-7463 
Vol. 3 Issue 4, April-2014, pp: (179-186), Impact Factor: 1.252, Available online at: www.erpublications.com 

Page | 184  

 

 






 



1

2

1

1
2

1

2

11 )(

kk k

k

T

k

kd

gd 
. )43(..........  

This is a contradiction to the )30( . 
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we also have  
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we also have  
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which contradicts Lemma 1. Therefore, we get this theorem. 

 

Numerical Results  

 

In this section, we will report the numerical performance of Algorithm (2.1). We test  Algorithm (2.1) by solving the 15 

benchmark problems from [1] and compare its numerical performance with that of the other similar method, which 

include the standard FR conjugate gradient method in [3]. All codes of the computer procedures are written in Fortran.  

The parameters are chosen as follows : 

9.0,001.0,5.0,10 21

6   
 

    

   In Tables 1 and 2, we use the following denotations : 

 

                          n    :   the dimension of the objective function. 

                       NOI  :  the number of iterations. 

                       NOF :  the  number of function evaluations. 

                       FR    :  the standard FR conjugate gradient method in [3]. 

                       SFR  :  the new spectral FR method presented in this paper. 

                       SDY  :  the new spectral DY method presented in this paper. 

                       SCD  :  the new spectral CD method presented in this paper 

                         F     :  If  NOF or NOI exceeded 2000 then denote F. 
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Table (4.1) Comparison of the algorithms for 100n  

 

Test 

problems 

FR SFR SDY SCD 

NOI           NOF NOI           NOF NOI          NOF NOI      NOF 

Trigonometric 22 40 20 36 21 39 21 39 

Extended Rosenbrock 49 98 53 104 56 113 58 115 

Extended White & Holst 69 125 45 90 64 127 69 132 

Penalty 47 1001 13 33 12 30 13 32 

Generalized Tridiagonal 1 61 904 25 44 26 44 28 48 

ExtendedThreeExpo Terms 34 313 14 21 22 34 19 30 

Generalized Tridiagonal 2 105 194 44 69 46 73 52 75 

Diagonal 4 33 51 17 32 24 48 24 48 

Extended Himmelblau 16 31 15 28 13 24 15 28 

Broyden Tridiagonal 45 72 31 51 35 56 35 53 

DENSCHNA (CUTE) 12 23 25 41 23 36 23 35 

DENSCHNF (CUTE) 22 39 23 40 19 33 22 38 

Extended Block-Diagonal 28 44 13 24 23 46 23 46 

Generalized quartic GQ1 10 22 9 20 9 20 9 20 

Generalized quartic GQ2 50 81 39 69 48 76 54 86 

Total 603 3038 386 702 441 799 465 825 

 

 

Table (4.2) Comparison of the algorithms for 1000n  

 

Test 

problems 

FR SFR SDY SCD 

NOI           NOF NOI           NOF NOI          NOF NOI      NOF 

Trigonometric 42 67 33 58 32 57 41 70 

Extended Rosenbrock   60 113 65 126 61 122 

Extended White & Holst 237 299 58 115 71 136 47 92 

Penalty 26 209 16 43 12 30 13 37 

Generalized Tridiagonal 1 43 390 30 57 58 993 39 376 

ExtendedThreeExpo Terms   12 21 38 583 49 809 

Generalized Tridiagonal 2 121 231 72 119 78 126 51 79 

Diagonal 4 32 50 17 32 27 54 27 54 

Extended Himmelblau 21 37 16 30 14 26 12 23 

Broyden Tridiagonal 47 78 42 69 41 68 40 67 

DENSCHNA (CUTE) 58 110 18 30 19 31 17 29 

DENSCHNF (CUTE) 24 41 22 39 18 31 19 34 

Extended Block-Diagonal 31 50 25 48 23 46 23 46 

Generalized quartic GQ1 8 20 8 20 8 20 8 20 

Generalized quartic GQ2 52 83 39 63 46 75 50 82 

Total 742     1665 396 731 447 1247  387 1009 

 

From the above numerical experiments, it is shown that the new algorithms in this paper is promising. 

 

  Conclusions and Discussions 

 

In this paper, a new spectral conjugate gradient algorithm has been developed for solving unconstrained minimization 

problems. Under some mild conditions, the global convergence has been proved. Compared with the other similar 

algorithm, the  numerical performance of the developed algorithm is promising. 

 

Table (5.1) gives a comparison between the new-algorithm (2.1) and the Fletcher and Reeves (FR)-algorithm for 

convex optimization , this table indicates that the new algorithm (2.1) saves )%6658(   NOI and )%4330(    

 

NOF, overall against the standard Fletcher and Reeves (FR)-algorithm, especially for our selected test problems. 

Relative Efficiency of the Different Methods Discussed in the Paper. 
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                Tools     NOI                  NOF 

FR- algorithm               100   %                 100  % 

SFR- algorithm   41.85  %                69.53  % 

SDY- algorithm   33.97  %                43.50  % 

SCD- algorithm   36.65  %                61.00  % 
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