

Bubble Artificial Intelligence: A Human-Centric and Context-Bounded Framework for Next-Generation Intelligent Systems

Dr. A. Alekhya¹, Annem Goutham Sai Krishna², Adit Jindal³

¹M. Tech., Ph.D., D.Sc. (Computer Science Engineering & IT)

²B. Tech., M.S. Residing in California, USA

³B.S., M.S. R/o Sector-36, Chandigarh, India

ABSTRACT

The rapid deployment of artificial intelligence across societal and industrial domains has highlighted critical limitations related to context insensitivity, ethical opacity, and user disengagement. Most existing AI systems operate as centralized or monolithic entities, often detached from the situational and human factors they are intended to serve. This paper proposes Bubble Artificial Intelligence (Bubble AI), a novel conceptual and architectural framework that structures intelligence into dynamic, context-bounded units termed bubbles. Each bubble encapsulates localized data, learning mechanisms, decision logic, and ethical constraints relevant to a specific user or environment. The framework supports adaptive intelligence, privacy preservation, and interpretability while enabling governed collaboration between bubbles. Bubble AI represents a shift toward human-aligned, ethically grounded, and sustainable intelligent systems suitable for complex real-world deployment.

Keywords: Bubble Artificial Intelligence; Human-centric AI; Context-bounded intelligence; Ethical computing; Adaptive systems

INTRODUCTION

Artificial Intelligence has achieved remarkable success in pattern recognition, automation, and decision support. Nevertheless, the prevailing paradigm emphasizes scale and performance over contextual awareness and ethical alignment. As AI systems increasingly interact with individuals and societies, the absence of bounded reasoning, transparency, and contextual sensitivity poses significant risks. Addressing these concerns requires a reconceptualization of how intelligence is structured and deployed.

2. Background and Related Research

Several research directions attempt to mitigate the limitations of centralized AI. Context-aware systems adjust their behavior based on situational inputs, while personalized AI models aim to tailor responses to individual users. Federated learning reduces data centralization, and ethical AI frameworks introduce governance principles. However, these approaches often function independently, lacking an integrated operational structure.

3. Concept of Bubble Artificial Intelligence

Bubble AI introduces the notion of intelligence encapsulation through bounded units called bubbles. A bubble represents a situational intelligence space containing contextual data, localized models, operational rules, ethical policies, and interaction interfaces. Bubbles are created dynamically in response to contextual triggers and evolve as conditions change.

4. System Architecture

The Bubble AI architecture consists of interconnected layers, including context perception, bubble orchestration, localized intelligence, ethical governance, and interaction management. Each layer performs a specific function while maintaining modularity and transparency. Ethical governance is embedded as an active layer rather than an external constraint.

5. Learning, Adaptation, and Collaboration

Learning in Bubble AI occurs primarily within individual bubbles using incremental and context-specific data. This localized learning enables rapid adaptation without destabilizing the broader system. Controlled collaboration between bubbles allows selective knowledge exchange under predefined ethical and security policies.

6. Privacy, Security, and Ethical Alignment

Bubble AI inherently supports privacy by limiting data access to contextual boundaries. Security mechanisms such as encryption, access control, and anomaly detection operate at the bubble level. Ethical alignment is ensured through explicitly encoded policies that guide decision-making and support auditability.

7. Applications and Impact

Potential applications of Bubble AI span healthcare, education, smart governance, and human-computer interaction. In healthcare, patient-specific bubbles can assist clinical decision-making while maintaining confidentiality. In education, learner-centric bubbles can dynamically adapt pedagogical strategies.

8. Challenges and Future Directions

Despite its advantages, Bubble AI introduces challenges related to bubble lifecycle management, interoperability, and computational efficiency. Future research should focus on formalizing bubble dynamics, developing standards, and validating the framework through large-scale real-world implementations.

CONCLUSION

Bubble Artificial Intelligence offers a novel and integrative approach to designing intelligent systems that are context-aware, ethically governed, and human-centric. By structuring intelligence into bounded and adaptive bubbles, the framework addresses fundamental limitations of conventional AI and provides a foundation for trustworthy next-generation systems.

Acknowledgements

The first author expresses deep gratitude to the Almighty for guidance and strength throughout this research work. She sincerely acknowledges her father, A. Sundaraiah (Retd. APPS), Retd. Deputy Superintendent of Police (Civil), and her mother, A. Annapurna Devi, BA, BEd (Double Litt), for their unwavering support and inspiration. Special appreciation is extended to her sibling, Dr. A. Vijay Rajesh, M.Tech (Bio-Tech), PhD (Bio-Tech), DSc (Medical Bio-Tech), Diplomat – American Board of Regenerative Medicine (USA), for continuous intellectual motivation and interdisciplinary encouragement.

REFERENCES

- [1]. Floridi, L. and Cowls, J. (2019) 'A unified framework of five principles for AI in society', *Harvard Data Science Review*, 1(1), pp. 1–15.
- [2]. Dey, A.K. (2001) 'Understanding and using context', *Personal and Ubiquitous Computing*, 5(1), pp. 4–7.
- [3]. Russell, S. and Norvig, P. (2021) *Artificial Intelligence: A Modern Approach*. 4th edn. Harlow: Pearson.
- [4]. McMahan, B. et al. (2017) 'Communication-efficient learning of deep networks from decentralized data', *Proceedings of AISTATS*, 54, pp. 1273–1282.
- [5]. Gasser, U. and Almeida, V. (2017) 'A layered model for AI governance', *IEEE Internet Computing*, 21(6), pp. 58–62.
- [6]. Topol, E.J. (2019) 'High-performance medicine: the convergence of human and artificial intelligence', *Nature Medicine*, 25(1), pp. 44–56.