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ABSTRACT 

 

This paper given a new spectral gradient coefficient is obtained using a convex combination of two different 

gradient coefficients for solving unconstrained optimization. The new method always generates a sufficient 

descent direction independent of the line search employed. We establish the global convergence of method .The 

numerical results show that the given method is competitive to the other conjugate gradient methods for the test 

problems.  
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INTRODUCTION 
 

The nonlinear conjugate gradient methods (CG) are useful in finding the minimum value of function for unconstrained 

optimization. When applied to solve the unconstrained optimization problem )(min xfn
Rx

,  CG method usually 

generates a sequence  
k

x  by : 

0,1,....,k     ,
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dxx    )1(..........  

where 
k

x  is the kth iterative point, 
k

  is called the step-size determined by some line search. In 
k

d),2(  is the search 

direction defined by: 
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where 
k

  is a scalar and its gradient )( xf   is often denoted by )( xg . The best-known formulas for 
k

  are called 

the Fletcher-Reeves (FR) [5] and the Dai and Yuan (DY) [4], formulas and are given by: 
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In the already-existing convergence analysis and implementations of the CG, the Wolfe conditions, namely: 
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1
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where 
k

d  is descent direction, i.e., 0
k

T

k
dg  and  10

21
  . More  performance  profile, is  given  in  

[7]. Dai and Yuan [3] showed that the FR method is globally convergent if the strong Wolfe conditions are satisfied. 

 

In this paper, we focus on the spectral conjugate gradient methods. We organized this paper as follows: In Section 2, a 

new spectral conjugate gradient formula and the corresponding algorithm are given. Section 3, establishes global 

convergent with the Wolfe line search for the new method. The results of some numerical experiments are presented in 

Section 4. Finally we present the discussion of result and conclusion in the last part. 

 

NEW SPECTRAL CONJUGATE GRADIENT METHOD  
 

In the past few years, to generate sufficient descent directions, some modified conjugate gradient methods are proposed 

and this is classified as class.  

The approach is to modify search direction such that the generated direction satisfies 
2
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gcdg . Zhang 

et al. [8] proposed a modified Fletcher–Reeves conjugate gradient method, in which the direction 
k

d  is given by: 
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In an effort to improve the CG method, Basim et al. [2], we combine the INQ method which has good computational 

properties with the BSQ method which has strong convergence properties. 
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where   
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Then when 
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k
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k
 0  and ,10 

k
r  we take the specific form of ,

k
r  from (8) and conjugacy condition 
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From )9(  we get : 
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Therefore  : 
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That the form of 
k

r  was determined by (11). 

In this section, we will give our new algorithm and the assumptions. 
 

Algorithm  BSS 

 

Step  1: Given ,,0,
111

gdRx
n

   if ,
1

g  then stop. 

Step 2 : Find 
k

  satisfying the Wolfe conditions (4-5), let 
kkkk

dxx 
1

. 

Step 3 : If ,
1


k

g then stop, otherwise go to Step 4. 

Step 4 : Compute 
k

  by the formula (8), then generate 
1k

d  by (6). 

Step 5 : Let ,1 kk  and go to Step 2. 

 

GLOBAL CONVERGENCE 

 

To analyze the global convergence of Algorithm A, the following assumption is necessary. 

i. The level set  )()(
1

xfxfRx
n

  is bounded. 

ii. In a neighborhood U  of )(, xf   is continuously differentiable and its gradient is Lipschitz continuous,  

namely, there exists a constant 0L  such that Uyxyxygxg  ,,)()( . More details can be  

found in [6]. 
The following lemma gives the well-known Zoutendijk conditions [9]. 

 

Lemma 3.1.  

Suppose that Assumption (i) and (ii) hold, and consider any iteration of the form (2), where 
k

d  is a descent direction 

and 
k

  satisfies the weak Wolfe conditions (4) and (5). Then the Zoutendijk condition : 
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holds.  

 

Lemma 3.2.  

Consider the Algorithm 2.1, where  
k

  satisfies the Wolfe conditions (4) and (5). Then the direction 
1k

d  given by 

(8) satisfies the sufficient descent condition : 
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Proof :  

From (8), the result clearly holds for ,0k   we get 
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We see that (13) holds for all  ,0k  which concludes the proof. 

 

Lemma 3.3.  

Suppose that Assumption (i) and (ii) hold. Consider the Algorithm 2.1, where 
k

  satisfies the Wolfe conditions (4) 

and (5). Then 
k

  determined by (8) satisfies : 
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Proof :  

From the line search conditions (4), (5) and the sufficient descent condition (13), we have : 
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In this case, it is easy to show that : 
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Other with we have : 
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Theorem 3.4.  

Suppose that Assumption (i) and (ii) hold.  
k

x  is a sequence generated by Algorithm 2.1, 
k

  satisfies the Wolfe 

conditions (4) and (5). Then either 0
1


k
g  for some  k  or  
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Proof :  

 

If the theorem is not true, there exists a constant  ,0  such that : 
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We now rewrite (6) as : 
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Squaring both sides of the above equation, we get : 
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Since the sufficient descent condition (13) is hold, we obtain : 
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Dividing both sides by 
2
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dg  and applying (27), we have : 
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By (17), we obtain : 
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Noting that : 
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This contradicts the Zoutendijk condition (12), concluding the proof. 

 

NUMERICAL EXPERIMENTS  

 

In this section, we give some numerical results of new Algorithm  to show that the method is efficient for unconstrained 

optimization problems. The problems that we tested are from [1].  
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Table 1 show the computation results, where the columns have the following meanings : NI, NR and NF stand for the 

total number of all iterations, the number of restart calls and the total number of function evaluations, respectively; 

1k
g  is the norm of the residual at the stopping point. The code is written in Fortran 90.  

 

We used 15 test problems with dimension 100 and 1000 to test the performance of the proposed methods. We define a 

termination criterion for the methods as 
6

1
10






k
g . 

 

 DISCUSSION OF RESULT AND CONCLUSION 

 

From the above table, it is clear that our modification of the spectral Gradient coefficient  is still very much in place. 

Though we obtained good results and rate of convergence was moderate improved in the new algorithm. 

 

We conclude by affirming that the new algorithm in this work was effective in the computational treatment of 

unconstrained optimization problems. 

 

Table 1: Comparison of different CG-algorithms with different test functions and different dimensions 

 

                                FR algorithm                                   BSS algorithm      

                         P. No.            n                NI               NR             NF               NI              NR               NF 

83 20 38 93 18 47 100 1 

83 16 37 131 45 78 1000  

85 21 37 88 18 43 100 2 

78 19 37 92 19 46 1000  

26 7 13 52 15 32 100 3 

28 10 15 42 10 22 1000  

20 5 10 64 13 32 100 4 

28 7 14 129 46 77 1000  

68 16 41 67 8 37 100 5 

93 22 55 115 27 73 1000  

19 6 10 25 5 12 100 6 

21 6 11 29 6 14 1000  

17 6 8 31 9 15 100 7 

15 5 7 17 6 8 1000  

155 23 85 313 60 180 100 8 

182 31 96 F F F 1000  

93 9 53 231 41 124 100 9 

299 30 166 711 196 445 1000  

66 14 36 110 35 71 100 10 

44 8 22 84 15 47 1000  

23 8 12 25 7 13 100 11 

25 7 12 29 7 15 1000  

114 24 69 218 65 121 100 12 

462 79 262 634 169 345 1000  

150 31 97 123 21 47 100 13 

406 66 245 616 88 370 1000  

41 13 21 45 11 23 100 14 

44 10 21 55 11 27 1000  

31 12 18 80 22 49 100 15 

27 10 14 166 67 129 1000  

2544 510 1466 4415 1060 2569  Total 

Fail  : The  algorithm  fail to converge.   

 

Problems numbers indicant for : 1. is the Extended Rosenbrock, 2. is the Extended White & Holst, 3. is the Extended 

Beale, 4. is the Extended Tridiagonal 1, 5. is the Generalized Tridiagonal 2, 6. is the Extended Himmelblau, 7. is the 

Extended PSC1, 8. is the Extended Powell, 9. is the Quadratic Diagonal Perturbed, 10. is the Extended Wood, 11. is 
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the NONDIA (CUTE), 12. is the DIXMAANE (CUTE), 13. is the Partial Perturbed Quadratic, 14. is the LIARWHD 

(CUTE), 15. is the DENSCHNC  (CUTE). 
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