
International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 12 Issue 12, December-2023, Impact Factor: 7.957

Page 29

Enhanced Shortest Route Prediction Algorithm:

A Hybrid Approach

Dr. S. Selvi
1
, Dhinoovika D

2
, Harshana R

3
, Muthulakshmi R

4

1
Associate Professor, Department of Computer Science and Engineering, Government College of Engineering,

Bargur,Krishnagiri, Tamil Nadu, India

2,3,4

Pre-Final year students, + 5 Department of Computer Science and Engineering, Government College of

Engineering, Bargur,Krishnagiri, Tamil Nadu, India

ABSTRACT

In this research, the shortest route prediction algorithm proposed a solution to find the simplest route with less

time duration between two nodes. The proposed algorithm works only on the best route and concentrates on the

nearest shortest node to determine the simplest path. The results show that the shortest route prediction

approach significantly reduced the travel time. Efficiently determining the shortest path in a graph is a

fundamental problem with numerous real-world applications. It explores the utilization of two prominent

algorithms, A* and Dijkstra's, for solving the shortest path problem. A* combines the advantages of both

uniform cost search and greedy best-first search, using heuristics to guide the search. On the other hand,

Dijkstra's algorithm guarantees the shortest path by exploring all possible routes. In this study, we investigate

the principles and implementation of these algorithms, highlighting their strengths and weaknesses. This

research discusses how A* and Dijkstra's algorithms work for different pathfinding, and the results are

analyzed.

Keywords: Shortest path, Fastest route, Minimum traveling, Route prediction algorithm.

INTRODUCTION

Enhanced Shortest Route Search Algorithm Using A* and Dijkstra's with Pygame efficiently finding the shortest route

in a graph is a key challenge in the fields of computer science, gaming, and real-world applications such as logistics and

transportation. In this introduction, it is proposed an innovative approach to solving this problem using the A* and

Dijkstra's algorithms in combination with the Pygame library, providing both an effective and visually engaging

solution. A* and Dijkstra's algorithms are two well-established methods for pathfinding. A* is known for its speed and

accuracy, using heuristics to guide the search for the shortest path, while Dijkstra's algorithm guarantees the shortest

route by exploring all possible paths. Combining these algorithms allows us to harness the strengths of both, resulting in

an optimized route search.

The Pygame library, a popular choice for creating 2D games and visual simulations, is employed to enhance the user

experience. By integrating Pygame, it is not only to find the shortest path efficiently but also visualize it dynamically

and interactively. This brings a new level of engagement to route planning and makes it accessible in applications like

games, educational tools, and GPS systems. In this project, it isdelved into the principles behind A* and Dijkstra's

algorithms and demonstrates how to implement them in a Pygame environment. It explores how the Pygame library can

be used to create interactive maps, display graphically appealing representations of routes, and provide real-time

feedback to users.

The objective of this project is to provide a practical understanding of A* and Dijkstra's algorithms, offer hands-on

experience with Pygame, and demonstrate the value of integrating these technologies for enhanced route searching. By

the end of this project, readers will be equipped with the knowledge and tools to apply these techniques to a wide range

of applications, from designing video game levels to optimizing logistical routes.

This paper is organized as follows. Section 2 presents the related work of the shortest route algorithm. Section 3

explains the proposed algorithm. Section 4 describes the workflow of the proposed algorithm. Performance analysis of

the algorithm is presented in section 5. Results are concluded in Section 6.

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 12 Issue 12, December-2023, Impact Factor: 7.957

Page 30

LITERATURESURVEY

Different shortest-route algorithms implemented by different researchers are tabulated in Table 1. The advantages and

disadvantages of their works are also presented.

Table 1. Collection of shortest route algorithms

SL.NO. TITLE OF THE

PAPER/AUTHOR/ YEAR

OBJECTIVE OF

THE PAPER

PROPOSED

ALGORITHM

PERFORMANCE

METRICS

ADVANTAGES/

DISADVANTAGES

1

Path controlling of automated

vehicles for system optimum

on transportation with

heterogeneous traffic systems.

Zhibin chen-et.al.

Emerging Technologies 2020.

Developed a path-

control scheme to

achieve the system

optimum (SO) of the

Network by

controlling a portion

of cooperative

automated vehicles

(CAVs) as per the

routing principle.

Optimal- ratio

control scheme.

AVs are required

to adopt the

system

optimization

routing principle.

MCR (minimum

control ratio) below

23%.

Finding the MCR of

the scheme is

delineated by a linear

program, which can be

solved by commercial

solvers resulting in

96% only for

autonomous driving

vehicles.

2

A congestion Aware Tabu

Search Heuristic to Solve the

Shared Autonomous Vehicle

Routing Problem.

Prashanth Venkatraman &

Michael W.Levin.

Journal of Intelligent

Transportation System 2021.

Solved the shared

autonomous vehicle

(SAV)

routing problem

under the effects of

congestion in the

road.

Developed a tabu

search (TS) to

heuristic solve for

SAV routing

problem.

The heuristic is

found to produce

encouraging

results.

Using the swap

procedure, travelers

can switch paths where

less traffic is found

compared to other

results.

3

Traffic congestion Aware

Graph Based vehicle rerouting

framework from Aerial

Imagery.

Erutugal Bayraktar- et.al.

Engineering Applications of

ArtificialIntelligence 2023

Proposed a modular

rerouting for only

one single vehicle

framework

composed of usual

perception, property

estimation, and

trajectory

optimization.

 Employed

Dijkstra’s, A*,

RRT, and RRT*

to optimize cost.

RRT* achieves the

fastest result by

examining most of

the possible options

in less time.

They need to update

the cost funding co-

efficiently so that they

can search

the destination in the

shortest time.

4

Survey of shortest Path

Algorithms.

 Dr. Shaveta Bhatia- et.al.

 SSRG International Journal of

Computer Science and

Engineering.

The main objective

to evaluate and

compare different

shortest-

pathalgorithms.

 Found the

optional decision

to investigate

Dijkstra's

algorithm and

Floyd's

algorithm.

Predicting and

analyzing a simple

path reduces the

data pre-processing

time and space

cost.

It reduces time

complexity as well as

spacecomplexity.

Sometimes it may not

favor.

5

Efficient Shortest Path Index

Maintenance on Dynamic

Road Networks with

Theoretical Guarantees.

Dian Ouyang-et.al.

Computing the

shortest path

between two vertices

is a fundamental

problem in road

networks that is

applied in a wide

variety of

applications.

To achieve this

goal, we

proposed a

shortcut-centric

paradigm

focusing on

exploring a small

number of

shortcuts to

maintain the

shortest index.

SS-Graph

proposes a

shortcut weight

propagation

mechanism.

The traffic level N-

curve pattern from a

convolutional

neural network was

reduced.

The shortest index for

streaming update and

batch update shows

better efficiency.

Sometimes it may not

favor.

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 12 Issue 12, December-2023, Impact Factor: 7.957

Page 31

6

Stream Processingof Shortest

PathQueryinDynamicRoadNet

works.

Mengxuan Zhang et.al

IEEE

TransactionsonKnowledgeand

DataEngineering2022

Solved

thetrafficconditionw

hichisstableoverasho

rt periodand treated

theissuedquerieswith

in thatperiod as the

stream ofquerysets.

Batch

shortestpath

algorithms have

beenproposed

toanswerasetofqu

eriestogetherusin

gshareablecompu

tation

The

combinationofneura

lnetworksprovides

moreinformation

ontraffic with

betterresults.

A localcache

thatimprovestheexistin

gglobalcachewitha

highercache hitratio.

PROPOSED SYSTEM

This project aims to improve the accuracy of the heuristic shortest-path algorithm. Here, it implemented two algorithms

namelyDijkstra's and A* Search Algorithm in Python to find the shortest route between two cells in a grid

andvisualized their workflow using a 2D graphics module called Pygame. Twopopular algorithms are compared with

the proposed algorithm called the enhanced version of the shortest route prediction algorithm and the time-dependent

potentials algorithm are discussed in the background study. The workflow of the proposed system is shown in Figure 1.

The proposed system issplit into several modules. They are explained hereunder:

1. Main Module (main() function)

Initializes Pygame and sets up the window for visualization. Manages user input for creating start, end, and obstacle

nodes on a grid.Begins pathfinding algorithms (A* or Dijkstra) when the space key is pressed calculates and displays

the execution time for updating neighbors and finding the shortest path. Resets the grid if the 'c' key is pressed.

2. Node Module (node.py)

Defines the Node class which represents each cell on the grid.Each node keeps track of its position, state (start, end,

obstacle), and neighbors.

3. *A Module (a_star.py)

Contains the A* algorithm for finding the shortest path from the start to the end node. Utilizes a heuristic function

(often Euclidean distance) to determine the optimal path.

4. Dijkstra’s Module (dijkstra.py)

Contains Dijkstra’salgorithm for finding the shortest path from the start to the end node.Considers all possible paths and

iterates through nodes to find the shortest path.

5. Drawing Functions (draw() and drawGridLines())

drawGridLines() draws grid lines on the Pygame window.draw() handles the visual representation of the grid and

nodes.

6. Grid Builder (buildGrid())

Generates a grid structure based on the provided row and width parameters.Initializes the grid with node instances

representing each cell.

7. Helper Functions

getClickedPosition(): Converts the mouse click position to a grid cell. cg(): Counts the number of cells marked as a

certain color (in this case, purple) in the Pygame window.

Each module or function serves a specific purpose within the path-finding visualizer, from creating the grid and nodes

to managing user interactions and executing path-finding algorithms.

WORKFLOW OF THE PROPOSED SYSTEM

This workflow of the shortest route prediction algorithm involves incorporating elements from A* and Dijkstra’s

algorithms to optimize the search for the shortest path in a graph.The workflow diagram captures the dynamic nature of

the algorithm, where it can adapt its strategy based on specific conditions, using A* when the heuristic is beneficial and

switching to Dijkstra's when it's not. The decision points and loops in the workflow represent the iterative nature of the

search process.

A* And Dijkstra's Algorithm

A*algorithm is a widely used heuristic search algorithm that aims to find the shortest path from a start node to an end

node on a graph. It combines the advantages of both uniform cost search and greedy best-first search. It employs a

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 12 Issue 12, December-2023, Impact Factor: 7.957

Page 32

heuristic function to estimate the cost of reaching the goal from a specific node. In this project, A* is implemented to

find the shortest path on the map of Dijkstra's Algorithm.

Dijkstra's algorithm is a classical algorithm for finding the shortest path in a graph by exploring all possible routes

systematically. It guarantees the shortest path by maintaining a priority queue of nodes with the shortest known

distance. Dijkstra's algorithm is implemented to compare its performance with A*.

 EXPERIMENTAL EVALUATION

The minimum and recommended criteria for hardware requirement can run the system but low system performance

Processor (CPU) 1 GHz or faster CPU, Memory (RAM) 4 GB RAM, Hard drive free space 16 GB. This project code is

a Python implementation of a pathfinding visualizer using Pygame.

Figure 1. The Workflow of the Proposed System

PYGAME INTEGRATION

Pygame is a Python library designed for creating 2D games and interactive multimedia applications. In this project,

Pygame is utilized to create a graphical user interface for visualizing the route search process. The Pygame library is

used to display the map or grid on which the route search takes place. Users can interact with this map by specifying the

start and end points for the route. Pygame is a popular Python library designed for creating 2D games and interactive

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 12 Issue 12, December-2023, Impact Factor: 7.957

Page 33

multimedia applications. It provides a range of functions and tools for game development and multimedia

programming. Pygame is cross-platform and works on various operating systems, including Windows, macOS, and

Linux, making it accessible to a wide range of developers.

Pygame offers comprehensive support for 2D graphics, including drawing shapes, images, and text, as well as handling

image loading and manipulation. It allows developers to add sound effects and music to their games or applications.

You can play and control audio files with ease. Pygame simplifies user input handling, including keyboard and mouse

events. This is essential for creating interactive applications. It includes basic physics and collision detection

functionality, making it suitable for game development. It helps manage object interactions and game physics. Pygame

supports sprite handling and animation, making it easier to create animated characters and objects within games. You

can create game windows, manage screen resolution, and handle full-screen or windowed modes. Pygame utilizes an

event-driven model, where events like user input, timers, and system events are processed in a loop.

There's a wide range of community-contributed libraries and extensions available for Pygame, expanding its capabilities

for specific purposes. Pygame has a strong community and extensive documentation, making it a user-friendly choice

for developers. There are many tutorials, forums, and resources available to help users get started. Pygame is open-

source and released under the LGPL (GNU Lesser General Public License), which means it can be used for both

personal and commercial projects without significant licensing constraints. It is often used for educational purposes,

game jams, rapid prototyping, and even the development of full-fledged 2D games. Its simplicity and versatility make it

a valuable tool for those interested in 2D game development and multimedia programming using Python.

2D GRID

A 2D grid, or two-dimensional grid, is a data structure used to represent information in a two- dimensional space. It is

essentially an array or matrix with rows and columns, where each cell in the grid can store data or values. 2D grids are

commonly used in various fields, including computer graphics, game development, data visualization, and many other

applications.

A 2D grid consists of rows and columns, forming a grid of cells. Each cell can be identified by its row and column

indices Cells in a 2D grid can be addressed using a pair of coordinates, typically (x, y), where 'x' represents the column

index and 'y' represents the row index. The origin (0, 0) is often at the top-left corner. Each cell in the grid can store

data, such as numbers, characters, objects, or any other relevant information. In most cases, 2D grids have a rectangular

shape, meaning that all rows have the same number of cells, and all columns have the same number of cells. However,

it is possible to have irregular grids where the number of cells in each row or column varies.

PERFORMANCE ANALYSIS

This project code is a Python implementation of a pathfinding visualizer using Pygame. The results are shown inFigures

2-9. The pathfinding results using the Dijikstra’s, A*, and Enhanced version of the algorithm without the obstacles and

with the obstacles are displayed. Also,several gridswere encountered during the pathfinding and the time taken for

finding the different shortest route algorithms is calculated. It is observed that the enhanced version proves that it

simplifies the pathfinding and finds the shortest route which is shorter than comparing the other existing popular

algorithms. The values obtained by using different algorithms are tabulated in Table 2. The performance of these

algorithms is shown graphically in Figure 10.

SHORTEST PATH WITHOUT OBSTACLES

Figure 2. Dijkstra’s algorithm Figure 3. A* algorithm

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 12 Issue 12, December-2023, Impact Factor: 7.957

Page 34

Figure4. Enhanced Dijkstra and A* algorithm Figure5. Grid count and time execution

SHORTEST PATH WITH OBSTACLE

Figure. 6 Dijkstra’s algorithm Figure. 7 A* algorithm

 Figure 8. Enhanced Dijkstra and A* algorithm Figure 9. Grid count and time execution

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 12 Issue 12, December-2023, Impact Factor: 7.957

Page 35

Table 2. Comparison of Dijkstra’s, A * and shortest prediction Aalgorithms

S.No. Grid Count /

Algorithm

Dijkstra’s

(ms.)

A-Star

(ms.)

Shortest prediction

(ms.)

1. 10 2000 1000 100

2. 25 3000 2500 500

3. 50 5000 3000 1500

4. 100 7500 6000 2500

Figure 10. Performance Analysis Graph

CONCLUSION

The Enhanced version of the shortest route A*search is an effective method to find the shortest path by pre-processing

the previous and current traffic data with various input types and identifying the shortest path through graph theory. The

starting node concentrates on finding the nearest targeted goal and then processes each step. The main advantage of the

proposed enhanced version of the shortest route A* search algorithm is that it does not waste time on spending any

other unwanted nodes. Compared with other algorithms such as Time-dependent A*potentials, Enhanced Dijkstra’s

algorithm, and Heap-based/Enhanced Bellman-Ford algorithm, results in less accuracy displayed in graphical

representation. The enhanced version of the shortest route A*search makes the fastest prediction of the shortest route

with 95% of high accuracy.

REFERENCES

[1]. Zhibin Chen et al., “Path Controlling of Automated Vehicles for System Optimum on Transportation Networks with

Heterogeneous Traffic Streams,” Transportation Research Part C: Emerging Technologies, vol. 110, pp.312-329,

2020.

[2]. Prashanth Venkatraman, and Michael W. Levin, “A Congestion-Aware Tabu Search Heuristic to Solve the Shared

Autonomous Vehicle Routing Problem,” Journal of Intelligent Transportation Systems, vol. 25, no. 4, pp. 343-355,

2021.

[3]. Ertugrul Bayraktar et al., “Traffic Congestion-Aware Graph-Based Vehicle Rerouting Framework from Aerial

Imagery,” Engineering Applications of Artificial Intelligence, vol. 119, p.105769.

[4]. Dr. Shaveta Bhatia, "Survey of Shortest Path Algorithms," SSRG International Journal of Computer Science and

Engineering, vol.6, no. 11, pp. 33-39, 2019.

[5]. Dian Ouyang et al., “Efficient Shortest Path Index Maintenance on Dynamic Road Networks with Theoretical

Guarantees,” Proceedings of the VLDB Endowment, vol. 13, no. 5, pp. 602-615, 2020.

[6]. Mengxuan Zhang et al., “Stream Processing of Shortest Path Query in Dynamic Road Networks,” IEEE

Transactions on Knowledge and Data Engineering, vol. 34, no. 5, pp. 2458-2471, 2022.

