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ABSTRACT 

 

In this work, the spectral characterization of generalized projections in a prime real von Neumann algebra 

analogy to the work in [6] are investigated. 
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INTRODUCTION 

The subject that studied and investigated here is of the theory of algebra von Neumann , spicily Jordan algebra . Let H 

be a complex Hilbert space and B(H) the * - algebra of all bounded linear operator on H. 

Definition 1.1. : TB(H) is called generalized projection if T2=T*  , where T* is the adjoint of T . 

The notation of generalized projections on a finite dimensional Hilbert space introduced by GroB and Trenkler [5] . In 
this work , the concept of generalized projections is extended on a prime real von- Neumann algebra R of operators on 

a Hilbert space H , where H is not necessarily  finite dimensional ,  the spectral characterization of generalized 

projections are obtained by using spectral theory of operators (see [9] and [7]).  

Definition 1.2. : Let  B(H) be  * - algebra of all bounded linear operators  on a Hilbert space H. A real * - algebra R in 
B(H) is called a real von Neumann algebra if it is closed in weak operator topology and satisfies the condition 

RiR={0}. The least von Neumann algebra U(R)=R+iR (complex) which contains R is called the enveloping of R. 

JW-algebra is a good example of  a real von Neumann algebra.  

We employ [1] , [2] , [8] and [10] a standard background references for the objects in this work. We recall that an 

algebra R is said to be prime if for ideals U and V of R with UV=0 implies either U=0 or V=0. For an operator T , the 

range , the null space and the spectrum of T are denoted by R(T) , N(T) and (T) respectively. 

By ( theorems one and two [3]) we see that , if R is  prime real von Neumann algebra , then U(R) is  prime von 

Neumann algebra. Furthermore the mapping from U(R) onto R is a C-algebra isomorphism. 

Definition 1.3. : Let R be prime real von Neumann algebra , an operator T R  is said to be normal if 
* *

T T T T , 

an orthogonal projection if 
2 *

T T T  .  
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2. THE SPECTRAL CHARACTERIZATION  

If T is a normal operator , then there exists a unique resolution of the identity E on the Borel subset of (T) such that T 

has the following spectral representation ( see[9] ) . 

( T )

T d E ( )



     

The following facts are the main results .  

Theorem 2.1 : Let  R be prime real von Neumann algebra and T R  , then T is a generalized projection if and only if 

T is a normal operator and 

2 2
i i

3 3(T ) { 0 ,1 , e , e }
  

  . In this case , T has the following spectral representation  

2 2 2 2
i i i i

3 3 3 3T 0 E (0 ) E (1) e E (e ) e E (e )
     

    .   …(1) 

where E ( )  denotes the spectral projection associated with a spectral point ( T )     and E ( ) 0    if 

( T )   . 

Proof : Let T be generalized projection , then , 
2 *

T T   and  
* 3 2 *

T T T T T T T   , hence T is normal 

operator. 

Let 

( T )

T d E ( )



     , then 
*

( T )

T d E ( )



     . 

Now 
2 *

T T   implies that 
2 * 2

( T )

T T ( ) d E ( ) 0



        . 

Hence , 
2

     , for all ( T )    . If ( T )    and 0   , we denote 
i

re


   , where        , 

then 
2 2 i i

r e re
  
   and r 0 , so 

r i 2 i
re e

  
 . 

Hence , r 1  and 
3 i

1 e
 

 . This show that 3 2 k      for an integer k , hence we obtain 3 3 3      , 

thus k {0 ,1 , 1}  . If k 1  , then 3 2     , so 
2

3
     . If k 1 , then 3 2      , so 

2

3
      . If   

k 0 , then 3 0   , so 0    . 

Therefore 

2 2
i i

3 3(T ) { 0 ,1 , e , e }
  

  . 

Denote by E ( )   the spectral projection of the normal operator T associated with a spectral point { } , then 

E ( ) , ( T )    are orthogonal projections and mutual orthogonal , and  

2 2 2 2
i i i i

3 3 3 3T 0 E (0 ) E (1) e E (e ) e E (e )
     

    , where E ( ) 0   if ( T )   , E ( ) 0   if  

2 2
i i

3 3{ 0 ,1 , e , e } \ (T )
  

    and 

( T )

E ( ) I



    (see [8]). 
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Conversely ,assume that the operator T is normal and 

2 2
i i

3 3(T ) { 0 ,1 , e , e }
  

  . Then T has the following form 

2 2 2 2
i i i i

3 3 3 3T 0 E (0 ) E (1) e E (e ) e E (e )
     

    , where E ( ) 0    if ( T )   , E ( ) 0   if 

2 2
i i

3 3{ 0 ,1 , e , e } \ (T )
  

    and 

( T )

E ( ) I



     . Thus   

4 2 4 2
i i i i

2 3 3 3 3T 0 E (0 ) E (1) e E (e ) e E (e )
     

     

    

2 2 2 2
i i i i

3 3 3 30 E (0 ) E (1) e E (e ) e E (e ) T
     


       . 

Hence T is generalized projection.            

Note: Let be generalized projection , in general ( T )  is not necessarily equal to the whole set 

2 2
i i

3 3{ 0 ,1 , e , e }
  

. 

If a number 

2 2
i i

3 3{ 0 ,1 , e , e }
  

  is not belong to ( T )   , for example 

2
i

3(T ) {1 , e }


   , then formula (1) has 

been changed by 

2 2
i i

3 3T E (1) e E (e )
 

  , where 

2
i

3E (1) E (e ) I


    . 

Corollary 2.2: Let R be prime real von Neumann algebra and RT   be generalized projection , then we have  

(1). The range R(T) is closed . 

(2). 
4

T T   and 
3

T  is an orthogonal projection on R(T) . 

Proof :  

(1). Since T a generalized projection , by theorem (2.1)  we have that T is normal and it's spectrum is finite , so O is not 

a limit point of the spectrum of the normal operator T , then R(T) is closed .  

(2). Clearly .         

 If H is a finite dimensional space , then we have the following consequence . 

 Corollary 2.3: Let 
n n

T M


  be a n n   matrix . If 
2 *

T T , then there exists a unitary matrix 
n n

U M


   such 

that U T U


 is a diagonal matrix and 
1 2 3 4

2 2
i i

3 3

n n n n
U T U 0 I I e I e I

  


    , where 

4

i

i 1

n n



   , 

i
0 n n   and 

i
n

I is the identity on  a suitable 
i

n - dimensional complex space , i 1 , 2 , 3 , 4 . 

Definition 2.4: Let R be prime real von Neumann algebra , by the following symbols we denote : 

1. 
G P 2 *

R { T R : T T }    . 

2. 
Q P 4

R { T R : T T }     . 
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3. 
P I

R { T R : T   is a partial isometry } . 

4. 
N * *

R { T R : T T T T }    . 

The theorem in [4] is proved for a finite dimensional Hilbert spaces, here the same result also holds for an 

infinite dimensional Hilbert space the proof is different from [4] and based on the spectral representation ( see [9] ). 

Theorem 2.5: Let R be prime real von Neumann algebra and T R , then the following statements are equivalent . 

1. 
G P

T R   . 

2. 
Q P P I N

T R R R     . 

3. 
Q P N

T R R    

Proof: (1) ( 2 ) . Let 
G P

T R   , then by theorem (2.1) T has the following from  

2 2 2 2
i i i i

3 3 3 3T 0 E (0 ) E (1) e E (e ) e E (e )
     

    ,where E ( ) 0   if ( T )    and E ( ) 0  if  

2 2
i i

3 3{ 0 ,1 , e , e } \ (T )
  

    hence we have 

8 2 8 2
i i i i

4 3 3 3 3T 0 E (0 ) E (1) e E (e ) e E (e )
     

     

2 2 2 2
i i i i

3 3 3 30 E (0 ) E (1) e E (e ) e E (e ) T
     

           . 

We observe that  

2 2 2 2
i i i i

3 3 3 3T 0 E (0 ) E (1) e E (e ) e E (e )
     


    ,  then  

2 2
i i

3 3T T 0 E (0 ) E (1) E (e ) E (e )
  


    which is an orthogonal projection on the subspace 

2 2
i i

3 3E (1) E (e ) E (e )
  

  , hence T is a partial isometry . 

Now 

2 2
i i

3 3T T 0 E (0 ) E (1) E (e ) E (e ) T T
  

 
     . 

 T is normal . Hence 
Q P P I N

T R R R   . 

(2 ) (3) . Clearly . 

(3) (1) . Let 
Q P N

T R R  , then T is normal and 
4

T T  , hence 

2 2
i i

4 3 3(T ) { : ) { 0 ,1 , e , e }
  

       . 

Using theorem (2.1) we get
G P

T R .    
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