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ABSTRACT

For a commutative ring with identity .Let AG(R) be the set of ideals of R with non-zero annihilators .The
annihilating-ideal graph of R with vertex set AG(R)*= AG(R)-{0} and two distinct vertices | and J are adjacent
if and only if 1.J=0 .In this paper we investigate and find the graph AG(R) to be planar. Also we give some basic
properties of AG(R), where R finite local rings. Finally we find planarity Zn.
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1-INTRODUCTION

Let R be a finite commutative ring with identity, and Z(R) (A(R)) the set of zero divisors( ideals with non-zero
annihilator , respectively). We associate a simple graph I'(R)[2](AG(R) respectively) with vertices Z(R)*=Z(R)-{0}
((A(R)*=A(R)-{0}, respectively) and two vertices x and y (I and J, respectively) are adjacent if and only if xy=0(
1J=(0), respectively).The first study of planar of zero divisor graph in 2001[3] when an interesting question was
proposed by Anderson, Frazier, Lauve and Livingston: For which finite commutative rings R is I'(R) planar? answer
this question was given from by some authors see[1 ,3, 6 ].Our goal in this paper is to investigate finite commutative
rings whose Annihilating-ideal graph are planar. It is clear that if I'(R) is not - planar then AG(R) is need not to be
planar, for example, I'(Z32) is shown in figure( 1-1) , and figure (1-2) shows AG( Z32)

(2)
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(8)

20 18

Fig. 1.1and 1.2

For notation, we let Kn represents the complete graph on n vertices,if n=3 , then is called triangle and Km,n the
complete bipartite graph with part sizes m and n. We will repeatedly use Kuratowski’s theorem, which states that a
graph is planar if and only if it does not contain a subdivision ofK5 orK3,3 [7].

When working with polynomial rings, say K[X]/I, we will let X denote the cosetX+l. In particular Fn is denoted by a
field of order n Y, is the set of coset representatives of F*m in F*=F —{0},>% = X% u {0}.The symble"—" is
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denoted the edge between two vertices ,[9]. Zn denoted the ring of integers modulo n. Finally ann(X) denoted by
annihilator of se X .

2. PLANARITY OF COMMUTATIVE LOCAL RINGS.

It well known that if (R,M) is a finite local ring with maximal ideal M, then |R|=pt, for a some positive prime number p
and positive integer t.In this section we investigate planarity of local rings of order pt

Question:

Under what conditionfinite commutative ring R is AG(R) is planar?
First we prove some results in a finite local rings

Proposition 2.1:

Let R be alocal ring , then every minimal ideal of R adjacent with every ideal vertices in annihilating ideal
graph of R.

Proof :

Let K minimal ideal of R,ifK is not adjacent with every ideal vertices then there exists an ideal vertex J of
AG(R)such thatk.J #0 ,so that J <& ann(K) but ann(K) maximal and R local ring which implies a
contradictstherefor,K.J=0 and hence Kadjacent with every vertices in AG(R) .pg

A converse of Proposition2.1 is not true in general as the following example shows:

Example 1:

Let R = Z,[X,Y]/(X*XY,Y?) the ideals of R, 1,=(X) ,1L=(Y) ,Is=(X,Y), L=(X?),Is=(X%Y) , le=(X+Y),
1,=(X24Y), 15=(X3), 1,=0¢°)Y), 1,=0<+Y) it's clearly I, adjacent with every other ideal vertices but not minimal ideal .

Theorem 2.2:

If R local ring with maximal ideal M and M?=0 , then either R has exactly one ideal M or R contains at least two
minimal ideals.

Proof:

If R contains at least two minimal ideals we are done . Suppose that R contains one minimal ideal, since M?=0 , then
Mcann(M) , but M maximal ideal , so that M=ann(M). On the other hand ann(M) is minimal ideal . Which leads M
minimal and maximal ,since R local then for every ideal J of R,Mc J < M by chosen R contains one minimal ideal
and hence J =M. Which implies that R contains one ideal g

Proposition 2.3:

Let R be a local ring with M?=0, then AG(R) is complete graph.

Proof:

If R contained one ideal,then AG(R) = ki.we are done .If not ,let | and J be any ideal vertices of AG(R). Since
1J=MM=(0), then any ideal vertices adjacent in AG(R).Therefore AG(R) is complete graph.gg

Corollary 2.4:

Let R be a local ring with M?=(0). Then AG(R) is planar if and only if s<4, where s=|A(R)*|.
Proof:

Appling Proposition 2.3 AG(R) is complete graph so that AG(R) is planar if and only if s<4.g
Theorem 2.5:

Let R be a local ring . Then either M*=0 or AG(R) has a triangle
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Proof:

Since R local ring , then there exists an integer n > 2 such that M" = 0 and M™*# 0. Clearly M™* . 1 € M"* M = 0 for
each ideal | of R. Whence M"" is adjacent to every non- zero ideal vertex | of AG(R).Now if M*=0 we are done .If
not , then M? and M™? will be adjacent, so that AG(R) hastriangular M>—M"*—M""—M?,

Theorem 2.6:
Let R be a local ring with |R|=p', where p is positive prime number and t=2,3. Then R is planar
Proof:

If t=2, then by [8] R=Z,20r Z,[XJ(X?).So that AG(R)=K; which is planar. If t=3, then R = F,[X]/(X%),
FIX,YV(X,Y)?, ADXJ(PX,X* —ap) or Z,’where A= Z,2 and a€ X3 . So that AG(R)=K, where R =F,[X]/(X%),
A[X)/(pX,X?) ,Zs* and AG(R) = K, ,where F[X,Y)/(X,Y)?, A[X]/(PX,X? —ap) ,anda€ ¥?> . For all cases R is
planar.gg

Theorem 2.7:

If R is isomorphic to one of the following six rings of orderp’
Fo DX, YV(OX,Y,PY2 Fe[X, Y, Z1/(X, Y, Z)20rF, [XY (X2, PX),Fo X, YT/ (X3 XY, Y), Z, [X, Y]/ (X2 -
P.XY,Y? pX),Z,2[X]/(pX,X°). Then AG(R) is not planar;for all other local rings R of order p*, AG(R) is planar.

Proof:

Consider local rings (R,M) which is not field of order p*, where p positive prime number. In [ 8 ] Corbas and Williams
conclude that the non-isomorphic commutative local ring with identity of order p* are precisely the following 20 rings:
FalXI/(X?), Z,2 [XU(X*+X+1), FXI/(XY), Z,2[X)/(X*-ap) where p # 2 and a€ X° ,Z,[X]/(X*-2X-2), Z 2 [X]/(X*
pX), Z,2 [XU(X°-p,2X), Z,+, Fo[X, YU XY, Y?), [XYI(XY,X? -Y?), FX,YV(X2Y?), Z,2 [X,YI(X2XY- p,Y?),
Z,2 [XU(X?), Z,2 X YU(XE = pXY,Y2pX) L\ Z,2 [X,YT/(XP = p XY, Y2 = p, pX) , Z,3[X]/(X? = p2pX), Z,2[X]/
(PX,X3),F XV, pX), Fo? X, Y(X,Y,p)* and F,[X,Y,Z]/(X,Y,2)%

It is easy to check that if R= F,[X]/(X?) or sz[X]/(X2 + X + 1), then R has non- zero one ideal, so that AG(R)
isomorphic to K; and hence R is planar in this cases. Consider the rings R = F,, [X]/(X”'),sz [X]/(X? — ap) where p #
2anda € ¥* ,Z,[X]/(X*- 2X = 2), Z,2[X]/(X3- p,2X) orZ,+ , then R have non-zero three ideals and
AG(R)=K and hence R is planar in this cases.Consider the ring R= Fy[X,YJ/(X?Y?), Z,2 [X,Y/(X?*,XY- p,Y?)
L2 [X]/(X? — pX),or Z,2 [X]/(X?) , then R have non-zero five ideals and AG(R)=Kj 4, so that R is planar.

Consider the rings R = F,[X,YJ/(XY,X? -Y?) ,then R have non-zero five ideals (X), (Y), (X,Y), (X?) and (X+Y), also
ifR = sz[X,Y]/(X2 —p.XY,Y?=p, pX), then R have non-zero five ideals (2), (X), (Y), (X+Y) and (X,Y), the ringR =
Zps[X]/(X2 —p?,pX), then R have non-zero five ideals (2), (4), (X), (2+X) and (2,X), therefore by figure (2-1)
,AG(R) is planar. Now if R zzpe'[X]/(xz,pX), the ideal vertices (4), (4,X), (4+X), (X) and (2,X) are all adjacent to each
other in AG(R), thus Ks is a sub-graph og AG(R) and we get is not planar in this cases. Also if R =
Fp[X,Y,Z]/(X,Y,Z)Zoerz [X,Y]/(X,Y,P)2then R have non-zero eleven ideals with M?=0, where M a maximal ideal in R
therefore by Corollary 2.4 AG(R)=K;. Whence  AG( R) not planar in this cases.The ideal vertices (X?), (X) and
(X,Y) are all adjacent to (X*+Y), (X,Y) and (Y) in AG(F,[X,YI/(X?,XY,Y?). The ideal vertices (2,Y), (2) and (Y) are
all adjacent to (2+Y), (X) and (X,Y) in AG(Z,2[X,YJ/(X* — p,XY,Y?pX)). Finally the ideal vertices (X?), (p) and
(p+X?) are all adjacent to (p+X), (X) and (p,X) in AG(Z,2 [X]/(pX,X?)). Thus the last three rings all have K3 as a sub-
graph. Therefore are not planar.

Fig (2-1)
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R= Fp[X,Y]/(X2,Y2), Z_(p"2)[X,YV(X2,XY- p,Y2) ,Z_(p"2 ) [XJ/(X"2- pX),or Z_(p~2 )[X]/(X2)

Theorem 2.8:
Let R = Z,™ be a ring of integer module p™ where p prim and m positive number ,then R is planar iff m<8

Proof:

Clearly Zp™ has (m-1) ideals, therefore (AG(R )) <4 if m< 5 implies AG(R) is planar, if m=6,7 or8 then AG(R) is
planar see figures ( 2-2, 2-3 and 2-4) .

If m> 9 then the vertices ideals (™), (p™?), (0™), (™), (™) adjacent so that Zs" has Ksas a sub graph ,there for
Z:-" is not planar.

pE\

Figure2-2 AG(ZP6)

Figure 2-4 AG(ZP8)

3. PLANARITY OF COMMUTATIVE NON-LOCAL RINGS

In this section we investigate planarity of non-local rings. It well known thata finite ring R, being Artinian, is
isomorphic to a finite product of Artinian local rings. Thus if R is a finite ring, then R=R;XR,x ...xR, for some n > 1
and each R; is an Artinian local ring.

Theorem 3.1

Let R =RiXRx ...xR, for some n >3 and each R; is a local ring, then R is planar if and only if R= Fx Fx F or Ax
Fx F where F, Fand F are fields and A local ring contains one ideal.

Proof:

If n>4 , then AG(R) has K33 as a sub-graph by (0,0,...... Rn-1,0) ,(0,0,....0,R),(0,0,.....,Ry.1,R,) are all adjacent to
(R1,0,0,...) ,(R,R2,0,.....0), (0,R5,0,....,0).Then AG(R) is not planar .

If n =3, then there exists three cases:

Page | 88



International Journal of Enhanced Research in Science, Technology & Engineering
ISSN: 2319-7463, Vol. 6 Issue 11, November-2017, Impact Factor: 4.059

Case 1: if Ry and R, not field , thenthere exists ideals I, € Ryand 1, R, such that 12 =0, i=1,2 . Therefore AG(R) is
not planar by (R;,0,0) ,(11,0,0) and (Ry,1,,0) are all adjacent to (0,1,,0) ,(0,1;,Rs) and (0,0,R3) is Kssa sub-graph of
AG(R).

Case 2:1f one of the R;,i=1,...,3 ,without loss generality say R; not field, then there exists two sub-cases

Sub-cases a: If R; has at least two ideals, say 1;and 1, therefore the ideal vertices (1;,0,0) ,(I2 ,0,0) and (Ry,0,0) are all
adjacent to(0,R,,0) ,(0,R,R3) ,(0,0,R3) } a K33 sub-graph of AG(R). Therefore AG(R) not planar.

Sub-cases b:If R;has exactly one ideal say M;then by theorem 2.2 M,?=0.Since R, and R; fields, then R has ideals{J;
=(R1,R2,0), J=(R1,0,R3), J3=(R1,0,0) » 34=(0,R2,R3), J5=(0,0,R3) ,J6=(0,R5,0),1=(M1,Rz,R3) ,Js=(M1,R;,0)
Jo=(M1,0,R3) ,J10=(M3,0,0)},then AG(R) is planar see figure (3-1).

(M10.0)
(Mi1Ra.Rs)
.

0083

Fig (3-1)

Case 3:

|fR1,R2,R3 are f|9|d, then R have ideaIS{J1=(R1,0,0),J2=(R1,RZ,O),J3=(R1,O,R3),J4=(0,Rz,O),J5=(O,Rz,R3),J6=(O,0,R3) },
whence AG(R) planar see figure (3-2 ).g

Fig. (3- 2)

Theorem 3.2:

Let R =R, *R, where R, , R, local ring with My , M,# 0 ,M;* = M,* =0, then R is planar iff R=A x B ,where A and B
local ring with one ideal.

Proof:

Since M;,M,#0 ,then R; and R not field, then by theorem 2.2 R; and R; either contains one ideal or contains at least
two minimal ideals .

If R;,R, contains one ideal, then AG(R) is planar .If Ry,R, contains two minimal ideals say 11,1, be minimal ideals

in R;and J3,J, minimal ideals in R,, then the ideal vertices(Ry,0),(11,0) and (l,,0)are all adjacent to(0,R,),(0,J1) and( 0,J,)
a K33 sub-graph. Therefore AG(R) not planar.
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If Ry contains one ideal and R, contains at least two minimal ideals, let J;,J, be minimal ideals in R, and M,a maximal
ideal in R, since JuhEM, and  Ji,J; # M, , we get ideals (Ry,0),(Ry,J1) and(Ry,J;) are all adjacent
to(0,M5),(0,J1),(0,J:)a K33 sub-graph in AG(R) and hence R is not planar.gg

Theorem 3.3:
Let R be a finite ring such that R = R; x R;where R; and R; are local rings with M,* # 0, then AG(R) is not planar.
Proof:

Since R, finite local ring, then exists an integer n>1 such that M,"=(0) and M,"*# 0,but M,*# 0, then we have n > 5.S0
that by proof of theorem 2.5 R, contains a triangle M,>— M,"*— M,"%— M,? we note that (M,"%)’= M,"*.M,"!=
M,".M,*'=0 ,where s;=n-2 > 0,similarly (M,"?)? =M," .M,®=0 , where s,=n-4> 0.Therefor the ideal vertices (R;,0),
(Ri,M;" and (R;,M,"™?) are all adjacent to (0,M,"?), (0, M™%, (0,M,9)} a Ks ssub-graph in AG(R) and hence R is not
planar gy

Theorem 3.4:

Let R = R;x R, where R; and R; are local rings then AG(R) is planar if and only if R = A;xA, or F xB, where F is
afield,A;,A; are field or local rings with one ideal and B local ring contains two or three ideals with maximal ideal
M,satisfiesM’=0 and M* =0.

Proof :

It clear that, if R; and R, fields or contains one ideal, then R is planar and R; for some i=1 or 2,contains triangular, then
by Theorem 3.3R not planar. Also if R; and R, contains at least two ideals, then the ideal vertices ideals (Ry,0), (11,0)
and (1,,0) are all adjacent to (0,R;),(0,J;) and (0,J,) in AG(R). Therefore K3 is a sub-graph of AG(R) and therefore
AG(R) not planar.So we enough investigate two cases:

Case 1: If Ry is a field and R;local ring contains at least four ideals say |4, I, lsand 1,without loss generality 1, minimal
ideal. Since R, local, then by Proposition 2.1 I, adjacent with every other ideal vertices I, I,, I and 1,°=0. So that the
ideal vertices (R1,0), (Ry,l4) and (0,1,) are all adjacent to (0,1,), (0,12) and (0,13) in AG(R). Therefore Ks 3 is a sub-graph
of AG(R)and so AG(R) not planar. Also if R, less than or equal three ideals, but not contains triangular say I4,1,13,since
R, not triangular I’=0 ,i=12 and 11.1,=0,11.13=0,1,.1;20then  the ideals in RyxR, are
J]_:(Rl,|1),J2=(R1,|2),\]3=(R1,|3),J4=(R1,0),Js:(O,Rg),\]s:(O,|1),\]7:(0,|2),\]8:(0,|3), then AG(R) is planarsee figure (3'3)

I

Fig. (3- 3)

Case 2: If Ry contains one ideal say My, then M;%=0, Now if R, contains at least three ideals I, I, and I3 with minimal
ideal I3,then the ideal vertices (Ry,0), (M1,0) and (My,l5) are all adjacent to (0,11)(0,12)(0,13) in AG(R) a Ks3. Therefore
K is a sub-graph of AG(R) and so AG(R) not planar. If R, contains two ideals I; and I, with 1;%=1,=0, then vertex
ideals (My,0), (Mg,l1), (My,1,), (0,11) and (0,1,) is Ks a sub-graph of AG(R), so that AG(R) not planar. If R, contains two
ideals I; and I, with

|12:03nd |22¢0, Clearly 11.1,=0 then R haveideaISle(Rl,O),Jzz(Rl,|1),J3:(R1,|2), J4:(M1,0),J5:(M1,|1), JGZ(Ml,lz),J7:
(M1,R2),J6=(0,11),J5=(0,1,),J10=(0,Ry) is planar see figure (3-4)yg
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Fig. (3-4)

Theorem 3.5:
Ji

letR = Zp1“1p2“2p3“3. <opm T, Where pjdistin_. .2 ideals and 0y, ap,..., 0 positive number m> 2
then Risplanar iff R= .

Proof:

Since Zpla1p2a2p3a3. .. pmam = Zplalx szazx Zp3u3. .. meum

If m >3 , then by Theorem 3.1 R is planar iff R = Zy;1X ZpX Zps oF Zp12X ZppX Zy3

If m= 2, then by Theorem 3.4 R is planar iff R = Z,,"'x Z,;,”* , where 03,0, =1,2

Or R =Z;x Zp2°‘2 , where ap =3,4

Example 2:

Let R= Zpp," Where p;=3,p,=2.Then R =Z,s then R has ideals
{(2),(3),(4),(6),(8),(12),(16),(24)} . Hence AG(R) is planar.

(2}

Fig. (3- 2)
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