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ABSTRACT 

 

For a commutative ring with identity .Let AG(R) be the set of ideals of R with non-zero annihilators .The 

annihilating-ideal graph of R with vertex set AG(R)*= AG(R)-{0} and two distinct vertices I and J are adjacent 

if and only if I.J=0 .In this paper we investigate and find the graph AG(R) to be planar. Also we give some basic 

properties of AG(R), where R finite local rings. Finally we find planarity Zn. 
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1-INTRODUCTION 

 

Let R be a finite commutative ring with identity, and Z(R) (A(R)) the set of zero divisors( ideals with non-zero 

annihilator , respectively). We associate a simple graph (R)[2](AG(R) respectively) with vertices Z(R)*=Z(R)-{0} 
((A(R)*=A(R)-{0}, respectively) and two vertices x and y (I and J, respectively) are adjacent if and only if xy=0( 

IJ=(0), respectively).The first study of planar of zero divisor graph in 2001[3] when an interesting question was 

proposed by Anderson, Frazier, Lauve and Livingston: For which finite commutative rings R is (R) planar?   answer 
this question was given from by some authors see[1 ,3 , 6  ].Our goal in this paper is to investigate finite commutative 

rings whose Annihilating-ideal graph are planar. It is clear that if (R) is not - planar then AG(R) is need not to be 

planar, for example, (Z32) is shown in figure( 1-1) , and figure (1-2) shows AG( Z32) 

 
 

Fig. 1.1 and 1.2 

 

For notation, we let Kn represents the complete graph on n vertices,if n=3 , then is called triangle and Km,n the 

complete bipartite graph with part sizes m and n. We will repeatedly use Kuratowski’s theorem, which states that a 

graph is planar if and only if it does not contain a subdivision ofK5 orK3,3 [7]. 

 

When working with polynomial rings, say K[X]/I, we will let X denote the cosetX+I. In particular Fn is denoted by a 

field of order n , m  is the set of coset representatives of F*m  in F*=F –{0}, =  ∪  0 0
m

0
m .The symble"" is 
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denoted the edge between two vertices ,[9]. Zn  denoted the ring of integers modulo n. Finally ann(X) denoted by 

annihilator of se X . 

 

2. PLANARITY OF COMMUTATIVE LOCAL RINGS. 

 

It well known that if (R,M) is a finite local ring with maximal ideal M, then |R|=pt, for a some positive prime number p 
and positive integer t.In this section we investigate planarity of local rings of order pt 

 

Question: 

 

Under what conditionfinite commutative ring R is AG(R)  is planar? 

First we prove some results in a finite local rings 

 

Proposition 2.1: 

 

Let R  be a local ring , then every minimal ideal of R adjacent with every ideal vertices in annihilating ideal 

graph of   R . 

 

Proof : 

 Let K  minimal ideal of R,ifK is not adjacent with every ideal vertices then  there exists an ideal vertex J of  

AG(R)such thatK.J ≠0 ,so that  J ⊈ ann(K)  but ann(K) maximal and R local ring which implies  a 

contradictstherefor,K.J=0 and hence  Kadjacent with every vertices in AG(R) .▄ 

 

A converse of Proposition2.1 is not true in general as the following example shows: 

 

Example 1: 

 

Let R ≅ Z2[X,Y]/(X4,XY,Y2) the ideals of R, I1=(X) ,I2=(Y) ,I3=(X,Y), I4=(X2),I5=(X2,Y) , I6=(X+Y), 
I7=(X2+Y), I8=(X3), I9=(X3,Y), I10=(X3+Y) it's clearly I9 adjacent with every other ideal vertices but not minimal ideal . 

 

Theorem 2.2: 

 

If R local ring with maximal ideal M and  M2=0 , then either  R has exactly one ideal M or R  contains at least two 

minimal ideals. 

 

Proof: 

 

If R contains at least two minimal ideals we are done . Suppose that R contains one minimal ideal, since  M2=0 , then 

M⊆ann(M) , but M maximal ideal , so that M=ann(M). On the other hand ann(M) is minimal ideal . Which leads  M 

minimal  and maximal  ,since R local then for every ideal J of  R,M J  M by chosen R contains one minimal ideal 
and hence J =M. Which implies that R contains one ideal.▄ 

 

Proposition 2.3: 

 

Let R be a local ring with M2=0, then AG(R) is complete graph. 

 

Proof:  
 

If R contained one ideal,then AG(R) = k1.we are done .If not ,let I and J be any ideal vertices of AG(R). Since 

IJMM=(0), then any ideal vertices adjacent in AG(R).Therefore AG(R) is complete graph.▄ 

 

Corollary 2.4: 
 
Let R be a local ring with M2=(0). Then AG(R) is planar if and only if s≤4, where s=|A(R)*|. 

 

Proof: 
 

Appling Proposition 2.3 AG(R) is complete graph so that AG(R) is planar if and only if s≤4.▄ 

 

Theorem 2.5: 

 

Let R be a local ring .Then either  M4 = 0 or AG(R) has a triangle 
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Proof: 
 

Since R local ring , then there exists an integer n ≥ 2 such that Mn = 0 and Mn-1 ≠ 0. Clearly Mn-1 . I  ⊆ Mn-1 M = 0 for 

each ideal I of R. Whence  Mn-1  is  adjacent to every non- zero ideal vertex I of AG(R).Now if M4=0 we are done .If 

not , then M2 and Mn-2 will be adjacent, so that AG(R) hastriangular M2Mn-2Mn-1M2. 
 

Theorem 2.6: 
 

Let R be a local ring with |R|=pt, where p is positive prime number and t=2,3. Then R is planar 
 

Proof: 
 

If t=2, then by [8] 𝑅 ≅ 𝑍𝑝2 or Zp[X]/(X2).So that AG(R)=K1 which is planar. If t=3, then 𝑅 ≅ Fp[X]/(X3), 

F[X,Y]/(X,Y)2, A[X]/(PX,X2 –ap) or ZP
3,where 𝐴 ≅ 𝑍𝑝2  and a∈  2

0 . So that AG(R)=K2 where 𝑅 ≅Fp[X]/(X3),  

A[X]/(pX,X2) ,ZP
3 and 𝐴𝐺(𝑅) ≅ 𝐾4  ,where F[X,Y]/(X,Y)2, A[X]/(PX,X2 –ap) ,anda∈  2 . For all cases R is 

planar.▄ 

 

Theorem 2.7: 

 

If R is isomorphic to one of the following six rings of orderp4  

Fp
2[X,Y]/(X,Y,P)2,FP[X,Y,Z]/(X,Y,Z)2orFp

3[X]/(X2,PX),Fp[X,Y]/(X3,XY,Y2), 𝑍𝑝2 [X,Y]/(X2 – 

p,XY,Y2,pX),𝑍𝑝2 [X]/(pX,X3). Then AG(R) is not planar;for all other local rings R of order p4, AG(R) is planar. 

 

Proof: 

 

Consider local rings (R,M) which is not field of order p4, where p positive prime number. In [ 8 ] Corbas and Williams 

conclude that the non-isomorphic commutative local ring with identity of order p4 are precisely the following 20 rings: 

F4[X]/(X2), 𝑍𝑝2 [X]/(X2+X+1), Fp[X]/(X4), 𝑍𝑝2 [X]/(X2-ap) where p ≠ 2 and a∈  2 ,𝑍4[X]/(X2–2X-2), 𝑍𝑝2 [X]/(X2-

pX),𝑍𝑝2 [X]/(X3–p,2X), 𝑍𝑝4 , Fp[X,Y]/(X3,XY,Y2), [X,Y]/(XY,X2 -Y2), Fp[X,Y]/(X2,Y2), 𝑍𝑝2 [X,Y]/(X2,XY- p,Y2), 

𝑍𝑝2 [X]/(X2), 𝑍𝑝2 [X,Y]/(X2 – p,XY,Y2,pX) ,𝑍𝑝2 [X,Y]/(X2 – p,XY,Y2 – p, pX) ,  𝑍𝑝3 𝑋 /(𝑋2 − 𝑝2 , 𝑝𝑋),  𝑍𝑝2 [X]/

(pX,X3),Fp
3[X]/(X2,pX), Fp

2[X,Y]/(X,Y,p)2 and Fp[X,Y,Z]/(X,Y,Z)2. 

 

It is easy to check that if R≅ F4[X]/(X2) or 𝑍𝑝2 [X]/(X2 + X + 1), then R has non- zero one ideal, so that AG(R) 

isomorphic to K1 and hence R is planar in this cases. Consider the rings 𝑅 ≅ F𝑝[X]/(X4),𝑍𝑝2 [X]/(X2 − ap) where p ≠

2 and a ∈  2 , 𝑍4[X]/(X2–  2X − 2),   𝑍𝑝2 [X]/(X3–  p, 2X)  or 𝑍𝑝4 , then R have non-zero three ideals and 

AG(R)≅K1,2 and hence R is planar in this cases.Consider the ring  R≅ Fp[X,Y]/(X2,Y2), 𝑍𝑝2 [X,Y]/(X2,XY- p,Y2) 

,𝑍𝑝2 [X]/(X2 −  pX),or 𝑍𝑝2 [X]/(X2) , then R have non-zero five ideals and AG(R)=K1,4 , so that R is planar. 

 

Consider the rings 𝑅 ≅  Fp[X,Y]/(XY,X2 -Y2) ,then R have non-zero five ideals (X), (Y), (X,Y), (X2) and (X+Y), also 

if𝑅 ≅ 𝑍𝑝2 [X,Y]/(X2 – p,XY,Y2 – p, pX) , then R have non-zero five ideals (2), (X), (Y), (X+Y) and (X,Y), the ring𝑅 ≅

𝑍𝑝3 𝑋 /(𝑋2 − 𝑝2 , 𝑝𝑋) , then R have non-zero five  ideals (2), (4), (X), (2+X) and (2,X), therefore by figure  (2-1) 

,AG(R) is planar.  Now if 𝑅 ≅Zp
3[X]/(X2,pX), the ideal vertices (4), (4,X), (4+X), (X) and (2,X) are all adjacent to each 

other in AG(R), thus K5 is a sub-graph og AG(R) and we get is not planar in this cases. Also if  𝑅 ≅ 

Fp[X,Y,Z]/(X,Y,Z)2orZ𝑝2 [X, Y]/(X, Y, P)2then R have non-zero eleven ideals with M2=0, where M a maximal ideal in R 

therefore by Corollary 2.4 AG(R)=K11. Whence    AG( R) not planar in this cases.The ideal vertices (X2), (X) and 

(X,Y) are all adjacent to (X2+Y), (X,Y) and (Y) in AG(Fp[X,Y]/(X3,XY,Y2)). The ideal vertices (2,Y), (2) and (Y) are 

all adjacent to (2+Y), (X) and (X,Y) in AG(𝑍𝑝2 [X,Y]/(X2 – p,XY,Y2,pX)). Finally the ideal vertices (X2), (p) and 

(p+X2) are all adjacent to (p+X), (X) and (p,X) in AG(𝑍𝑝2 [X]/(pX,X3)). Thus the last three rings all have K3,3 as a sub-

graph. Therefore are not planar. 

 
 

Fig (2-1) 
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R≅ Fp[X,Y]/(X2,Y2), Z_(p^2 )[X,Y]/(X2,XY- p,Y2) ,Z_(p^2 ) [X]/(X^2- pX),or Z_(p^2 )[X]/(X2) 

 

Theorem   2.8:  

Let R = ZP
m be a ring of integer module  pm  where  p  prim and m positive number ,then R is planar iff m≤8 

 

Proof: 

 

Clearly ZP
m has (m-1) ideals, therefore (AG(R )) ≤4 if m≤ 5 implies AG(R) is planar, if  m=6,7 or8 then AG(R) is 

planar see figures ( 2-2, 2-3 and 2-4) . 

 

If m≥ 9 then the vertices ideals (pm-1), (pm-2), (pm-3), (pm-4), (pm-5)  adjacent so that ZP
m has K5 as a sub graph ,there for  

ZP
m is not planar. 

 

 
 

Figure2-2 AG(ZP6)                                                                             Figure 2-3 AG(ZP7) 

 

 
Figure 2-4 AG(ZP8) 

 

3. PLANARITY OF COMMUTATIVE NON-LOCAL RINGS 

 

In this section we investigate planarity of non-local rings. It well known thata finite ring R, being Artinian, is 

isomorphic to a finite product of Artinian local rings. Thus if R is a finite ring, then R≅R1xR2x …xRn for some n  1 
and each Ri is an Artinian local ring. 

 

Theorem 3.1 

 

Let R ≅R1xR2x …xRn for some n 3 and each Ri is a local ring, then R is planar if and only if  R ≅  F x F'x F'' or A x 
F'x F'' where F , F' and F'' are fields and A local ring contains one ideal. 

 

Proof: 
If n≥4 , then AG(R) has K3,3 as a sub-graph by (0,0,……Rn-1,0) ,(0,0,….0,Rn),(0,0,…..,Rn-1,Rn) are all adjacent to 
(R1,0,0,…) ,(R1,R2,0,…..0) , (0,R2,0,….,0).Then AG(R)   is not planar . 

If  n = 3, then there exists three cases: 
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Case 1: if  R1 and  R2  not field , thenthere exists ideals I1 ⊆ R1and I2⊆  R2  such that Ii
2 =0, i=1,2  . Therefore AG(R) is 

not planar  by (R1,0,0) ,(I1,0,0) and (R1,I2,0) are all adjacent to (0,I2,0) ,(0,I2,R3) and (0,0,R3) is  K3,3 a sub-graph of 

AG(R). 

 

Case 2:If one of the  Ri ,i=1,…,3 ,without loss generality say  R1 not field, then there exists two sub-cases 
Sub-cases a: If  R1 has at least two ideals, say  I1 and  I2  therefore the ideal vertices (I1,0,0) ,(I2 ,0,0) and (R1,0,0) are all 

adjacent to(0,R2,0) ,(0,R2,R3) ,(0,0,R3) } a K3,3 sub-graph of AG(R). Therefore AG(R) not planar. 

Sub-cases b:If  R1has exactly one ideal say M1then by theorem 2.2 M1
2=0.Since R2  and R3 fields, then R has ideals{J1 

=(R1,R2,0), J2=(R1,0,R3), J3=(R1,0,0)   , J4=(0,R2,R3),   J5=(0,0,R3) ,J6=(0,R2,0),J7=(M1,R2,R3) ,J8=(M1,R2,0) 

J9=(M1,0,R3) ,J10=(M1,0,0)},then AG(R) is planar see figure (3-1 ). 

 

 
 

Fig (3-1) 

 

Case 3: 

 

IfR1,R2,R3 are field, then R have ideals{J1=(R1,0,0),J2=(R1,R2,0),J3=(R1,0,R3),J4=(0,R2,0),J5=(0,R2,R3),J6=(0,0,R3) }, 

whence AG(R) planar see figure (3-2 ).▄ 

 

 
Fig. (3- 2) 

 

Theorem 3.2: 

 

Let R  ≅R1  ˣ R2 where R1 , R2  local ring with M1 , M2 ≠ 0 ,M1
2 = M2

2 =0, then  R is planar iff R≅A x B ,where A and B  

local ring with one ideal. 

 

Proof:  

 

Since M1,M2 ≠0 ,then R1 and R2 not field, then  by theorem 2.2 R1 and R2 either contains one ideal or contains at least 

two minimal  ideals . 

 

If  R1 ,R2  contains one ideal, then AG(R) is planar .If   R1,R2  contains  two minimal  ideals say I1,I2 be minimal ideals 
in R1and J1,J2 minimal ideals in R2, then the ideal vertices(R1,0),(I1,0) and (I2,0)are all adjacent to(0,R2),(0,J1) and( 0,J2) 

a K3,3 sub-graph.Therefore AG(R) not planar. 
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If R1 contains one ideal and R2 contains at least two minimal ideals, let J1,J2 be minimal ideals in R2 and M2a maximal 

ideal in R2, since   J1,J2 ⊆ M2 and  J1,J2  ≠ M2 , we get ideals (R1,0),(R1,J1) and(R1,J2) are all adjacent 

to(0,M2),(0,J1),(0,J2)a K3,3 sub-graph in AG(R) and hence R is not planar.▄ 

 

Theorem 3.3: 
 

Let R be a finite ring such that R ≅ R1 x R2where R1 and R2 are local rings with M2
4 ≠ 0, then AG(R) is not planar. 

 

Proof: 

 

Since R2 finite local ring, then exists an integer n≥1 such that M2
n=(0) and M2

n-1≠ 0,but M2
4 ≠ 0, then we have n ≥ 5.So 

that by proof of theorem 2.5 R2 contains a triangle M2
2 M2

n-1 M2
n-2 M2

2 we note that (M2
n-1)2= M2

n-1.M2
n-1= 

M2
n.M2

s1=0 ,where  s1=n-2 > 0,similarly (M2
n-2)2 =M2

n .M2
s2=0 , where s2=n-4> 0.Therefor the ideal vertices (R1,0), 

(R1,M2
n-1) and  (R1,M2

n-2) are all adjacent to (0,M2
n-2), (0, M2

n-1), (0,M2
2)} a K3,3sub-graph in AG(R) and hence R is not 

planar ▄ 

 

Theorem 3.4: 
 

Let R ≅ R1x R2 where R1 and R2 are local rings then AG(R) is planar if and only if R ≅ A1xA2  or  F xB, where F is 

afield,A1,A2 are field or local rings with one ideal and B local ring contains two or three ideals with maximal ideal 

M,satisfiesM
2
0 and M

4
 =0. 

 

Proof : 

 

It clear that, if R1 and R2 fields or contains one ideal, then R is planar and  Ri for some i=1 or 2,contains triangular, then 

by Theorem 3.3R not planar. Also if R1 and R2 contains at  least two ideals, then the ideal vertices ideals (R1,0), (I1,0) 

and (I2,0) are all adjacent to (0,R2),(0,J1) and (0,J2) in AG(R). Therefore K3,3 is a sub-graph of AG(R) and therefore 

AG(R) not planar.So we enough investigate two cases: 

 
Case 1: If R1 is a field and R2local ring contains at least four ideals say I1, I2, I3and I4without loss generality I4 minimal 

ideal. Since R2 local, then by Proposition 2.1 I4 adjacent with every other ideal vertices I1, I2, I3 and I4
2=0. So that the 

ideal vertices (R1,0), (R1,I4) and (0,I4) are all adjacent to (0,I1), (0,I2) and (0,I3) in AG(R). Therefore K3,3 is a sub-graph 

of AG(R)and so AG(R) not planar. Also if R2 less than or equal three ideals, but not contains triangular say I1,I2,I3,since 

R2 not triangular Ii
2=0 ,i=1,2 and I1.I2=0,I1.I3=0,I2.I3≠0then the ideals in R1xR2 are 

J1=(R1,I1),J2=(R1,I2),J3=(R1,I3),J4=(R1,0),J5=(0,R2),J6=(0,I1),J7=(0,I2),J8=(0,I3), then AG(R) is planarsee figure (3-3) 

 

 
Fig. (3- 3) 

 
 

Case 2: If R1 contains one ideal say M1, then M1
2=0, Now if R2 contains at least three ideals I1, I2 and I3 with minimal 

ideal I3,then the ideal vertices (R1,0), (M1,0) and (M1,I3) are all adjacent to (0,I1)(0,I2)(0,I3) in AG(R) a K3,3. Therefore 

K3,3 is a sub-graph of AG(R) and so AG(R) not planar. If R2 contains two ideals I1 and I2 with I1
2=I2

2=0, then vertex 

ideals (M1,0), (M1,I1), (M1,I2), (0,I1) and (0,I2) is K5 a sub-graph of AG(R), so that AG(R) not planar. If R2 contains two 

ideals I1 and I2 with  

 

I1
2=0and I2

20, clearly I1.I2=0 then R haveidealsJ1=(R1,0),J2=(R1,I1),J3=(R1,I2), J4=(M1,0),J5=(M1,I1), J6=(M1,I2),J7= 
(M1,R2),J8=(0,I1),J9=(0,I2),J10=(0,R2) is planar see figure (3-4)▄ 
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Fig. (3-4) 

 

Theorem 3.5: 

 

let R ≅ Zp1
α1

p2
α2

p3
α3… pm

αm, where  pi distinct prime ideals and α1, α2,..., αm  positive number m≥ 2 

then R is planar iff     R ≅  . 

 

Proof: 

 

Since Zp1
α1

p2
α2

p3
α3… pm

αm ≅ Zp1
α1x Zp2

α2x Zp3
α3… Zpm

αm 

If m ≥3 , then by Theorem 3.1 R is planar iff  R ≅ Zp1x Zp2x Zp3  or Zp1
2x Zp2x Zp3 

If m= 2 , then by Theorem 3.4 R is planar iff R ≅  Zp1
α1x Zp2

α2 , where α1,α2  =1,2 

Or R ≅Zp1x Zp2
α2  ,  where α2  =3,4 

 

Example 2: 

 

Let R= ZP1P2
4   where  p1=3 ,p2 =2 .Then R  ≅Z48,then R has ideals 

{(2),(3),(4),(6),(8),(12),(16),(24)} . Hence AG(R) is planar. 

 
 

Fig. (3- 2) 

J1 
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