

Planar Annihilating-Ideal Graph of Commutative Rings

Husam Q. Mohammad¹, Sahbaa A. Younus²

¹Assist Professor /College of Computers Sciences and Math.\University of Mosul / Iraq ²Postgraduate student Ph.D./College of Computers Sciences and Math.\University of Mosul / Iraq

ABSTRACT

For a commutative ring with identity .Let AG(R) be the set of ideals of R with non-zero annihilators .The annihilating-ideal graph of R with vertex set $AG(R)^* = AG(R) - \{0\}$ and two distinct vertices I and J are adjacent if and only if I.J=0.In this paper we investigate and find the graph AG(R) to be planar. Also we give some basic properties of AG(R), where R finite local rings. Finally we find planarity Zn.

Keyword: annihilating-ideal graph, planar graph, finite rings, local rings,

1-INTRODUCTION

Let R be a finite commutative ring with identity, and Z(R) (A(R)) the set of zero divisors(ideals with non-zero annihilator , respectively). We associate a simple graph $\Gamma(R)[2](AG(R) \text{ respectively})$ with vertices $Z(R)^*=Z(R)-\{0\}$ ((A(R)*=A(R)-{0}, respectively) and two vertices x and y (I and J, respectively) are adjacent if and only if xy=0(IJ=(0), respectively). The first study of planar of zero divisor graph in 2001[3] when an interesting question was proposed by Anderson, Frazier, Lauve and Livingston: For which finite commutative rings R is $\Gamma(R)$ planar? answer this question was given from by some authors see[1,3,6]. Our goal in this paper is to investigate finite commutative rings whose Annihilating-ideal graph are planar. It is clear that if $\Gamma(R)$ is not - planar then AG(R) is need not to be planar, for example, $\Gamma(Z32)$ is shown in figure (1-1), and figure (1-2) shows AG(Z32)

For notation, we let Kn represents the complete graph on n vertices, if n=3, then is called triangle and Km, n the complete bipartite graph with part sizes m and n. We will repeatedly use Kuratowski's theorem, which states that a graph is planar if and only if it does not contain a subdivision of K5 or K3,3 [7].

When working with polynomial rings, say K[X]/I, we will let X denote the cosetX+I. In particular Fn is denoted by a field of order n , Σ_m is the set of coset representatives of F*m in F*=F -{0}, $\Sigma_m^0 = \Sigma_m^0 \cup \{0\}$. The symble"—" is

denoted the edge between two vertices ,[9]. Zn denoted the ring of integers modulo n. Finally ann(X) denoted by annihilator of se X.

2. PLANARITY OF COMMUTATIVE LOCAL RINGS.

It well known that if (R,M) is a finite local ring with maximal ideal M, then |R|=pt, for a some positive prime number p and positive integer t.In this section we investigate planarity of local rings of order pt

Question:

Under what conditionfinite commutative ring R is AG(R) is planar? First we prove some results in a finite local rings

Proposition 2.1:

Let R be a local ring , then every minimal ideal of R adjacent with every ideal vertices in annihilating ideal graph of R.

Proof :

Let K minimal ideal of R,ifK is not adjacent with every ideal vertices then there exists an ideal vertex J of AG(R)such that K.J $\neq 0$, so that $J \not\subseteq ann(K)$ but ann(K) maximal and R local ring which implies a contradicts therefor, K.J=0 and hence Kadjacent with every vertices in AG(R).

A converse of Proposition 2.1 is not true in general as the following example shows:

Example 1:

Let $R \cong Z_2[X,Y]/(X^4,XY,Y^2)$ the ideals of R, $I_1=(X)$, $I_2=(Y)$, $I_3=(X,Y)$, $I_4=(X^2)$, $I_5=(X^2,Y)$, $I_6=(X+Y)$, $I_7=(X^2+Y)$, $I_8=(X^3)$, $I_9=(X^3,Y)$, $I_{10}=(X^3+Y)$ it's clearly I_9 adjacent with every other ideal vertices but not minimal ideal.

Theorem 2.2:

If R local ring with maximal ideal M and $M^2=0$, then either R has exactly one ideal M or R contains at least two minimal ideals.

Proof:

If R contains at least two minimal ideals we are done. Suppose that R contains one minimal ideal, since $M^2=0$, then $M\subseteq ann(M)$, but M maximal ideal, so that M=ann(M). On the other hand ann(M) is minimal ideal. Which leads M minimal and maximal ,since R local then for every ideal J of $R, M\subseteq J \subseteq M$ by chosen R contains one minimal ideal and hence J = M. Which implies that R contains one ideal.

Proposition 2.3:

Let R be a local ring with $M^2=0$, then AG(R) is complete graph.

Proof:

If R contained one ideal, then $AG(R) = k_1$, we are done. If not , let I and J be any ideal vertices of AG(R). Since $IJ \subseteq MM = (0)$, then any ideal vertices adjacent in AG(R). Therefore AG(R) is complete graph.

Corollary 2.4:

Let R be a local ring with $M^2=(0)$. Then AG(R) is planar if and only if $s \le 4$, where $s=|A(R)^*|$.

Proof:

Appling Proposition 2.3 AG(R) is complete graph so that AG(R) is planar if and only if $s \le 4$.

Theorem 2.5:

Let R be a local ring .Then either $M^4 = 0$ or AG(R) has a triangle

Proof:

Since R local ring, then there exists an integer $n \ge 2$ such that $M^n = 0$ and $M^{n-1} \ne 0$. Clearly M^{n-1} . $I \subseteq M^{n-1} M = 0$ for each ideal I of R. Whence M^{n-1} is adjacent to every non-zero ideal vertex I of AG(R).Now if $M^4=0$ we are done. If not, then M^2 and M^{n-2} will be adjacent, so that AG(R) hastriangular $M^2 - M^{n-2} - M^{n-1} - M^2$.

Theorem 2.6:

Let R be a local ring with $|R|=p^t$, where p is positive prime number and t=2,3. Then R is planar

Proof:

If t=2, then by [8] $R \cong Z_{p^2}$ or $Z_p[X]/(X^2)$. So that AG(R)=K₁ which is planar. If t=3, then $R \cong F_p[X]/(X^3)$, $F[X,Y]/(X,Y)^2$, $A[X]/(PX,X^2 - ap)$ or Z_P^3 , where $A \cong Z_{p^2}$ and $a \in \sum_0^2$. So that AG(R)=K₂ where $R \cong F_p[X]/(X^3)$, $A[X]/(pX,X^2)$, Z_P^3 and $AG(R) \cong K_4$, where $F[X,Y]/(X,Y)^2$, $A[X]/(PX,X^2 - ap)$, and $a \in \sum_{n=1}^{\infty} Z_n^2$. For all cases R is planar.

Theorem 2.7:

If R is isomorphic to one of the following six rings of order p^4 $F_p^2[X,Y]/(X,Y,P)^2, F_P[X,Y,Z]/(X,Y,Z)^2 \text{ or } F_p^3[X]/(X^2,PX), F_p[X,Y]/(X^3,XY,Y^2), Z_{p^2} [X,Y]/(X^2 - p,XY,Y^2,pX), Z_{p^2}[X]/(pX,X^3).$ Then AG(R) is not planar; for all other local rings R of order p^4 , AG(R) is planar.

Proof:

Consider local rings (R,M) which is not field of order p⁴, where p positive prime number. In [8] Corbas and Williams conclude that the non-isomorphic commutative local ring with identity of order p⁴ are precisely the following 20 rings: F₄[X]/(X²), Z_{p^2} [X]/(X²+X+1), F_p[X]/(X⁴), Z_{p^2} [X]/(X²-ap) where p \neq 2 and a $\in \Sigma^2$, Z_4 [X]/(X²-2X-2), Z_{p^2} [X]/(X²-pX), Z_{p^2} [X]/(X³-p,2X), Z_{p^4} , F_p[X,Y]/(X³,XY,Y²), [X,Y]/(XY,X² -Y²), F_p[X,Y]/(X²,Y²), Z_{p^2} [X,Y]/(X²,XY- p,Y²), Z_{p^2} [X]/(X²), Z_{p^2} [X,Y]/(X² - p,XY,Y²,pX), Z_{p^2} [X,Y]/(X² - p,XY,Y² - p, pX), Z_{p^3} [X]/(X² - p²,pX), Z_{p^2} [X]/(X²,P), F_p³[X]/(X²,PX), F_p²[X,Y]/(X,Y,P)² and F_p[X,Y]/(X,Y,Z)².

It is easy to check that if $R \cong F_4[X]/(X^2)$ or $Z_{p^2}[X]/(X^2 + X + 1)$, then R has non-zero one ideal, so that AG(R) isomorphic to K₁ and hence R is planar in this cases. Consider the rings $R \cong F_p[X]/(X^4)$, $Z_{p^2}[X]/(X^2 - ap)$ where $p \neq 2$ and $a \in \Sigma^2$, $Z_4[X]/(X^2 - 2X - 2)$, $Z_{p^2}[X]/(X^3 - p, 2X)$ or Z_{p^4} , then R have non-zero three ideals and AG(R) \cong K_{1,2} and hence R is planar in this cases.Consider the ring $R \cong F_p[X,Y]/(X^2,Y^2)$, $Z_{p^2}[X,Y]/(X^2,XY - p,Y^2)$, $Z_{p^2}[X]/(X^2 - pX)$, or $Z_{p^2}[X]/(X^2)$, then R have non-zero five ideals and AG(R) \cong K_{1,4}, so that R is planar.

Consider the rings $R \cong F_p[X,Y]/(XY,X^2 - Y^2)$, then R have non-zero five ideals (X), (Y), (X,Y), (X²) and (X+Y), also if $R \cong Z_{p^2}[X,Y]/(X^2 - p,XY,Y^2 - p,pX)$, then R have non-zero five ideals (2), (X), (Y), (X+Y) and (X,Y), the ring $R \cong Z_{p^3}[X]/(X^2 - p^2,pX)$, then R have non-zero five ideals (2), (4), (X), (2+X) and (2,X), therefore by figure (2-1), AG(R) is planar. Now if $R \cong Z_p^3[X]/(X^2,pX)$, the ideal vertices (4), (4,X), (4+X), (X) and (2,X) are all adjacent to each other in AG(R), thus K_5 is a sub-graph og AG(R) and we get is not planar in this cases. Also if $R \cong F_p[X,Y,Z]/(X,Y,Z)^2 or Z_{p^2}[X,Y]/(X,Y,P)^2$ then R have non-zero eleven ideals with $M^2=0$, where M a maximal ideal in R therefore by Corollary 2.4 AG(R)=K_{11}. Whence AG(R) not planar in this cases. The ideal vertices (X²), (X) and (X,Y) are all adjacent to (X²+Y), (X,Y) and (Y) in AG($F_p[X,Y]/(X^3,XY,Y^2)$). The ideal vertices (2,Y), (2) and (Y) are all adjacent to (2+Y), (X) and (X,Y) in AG($Z_{p^2}[X,Y]/(X^2 - p,XY,Y^2,pX)$). Finally the ideal vertices (X²), (p) and (p+X²) are all adjacent to (p+X), (X) and (p,X) in AG($Z_{p^2}[X]/(pX,X^3)$). Thus the last three rings all have K_{3,3} as a sub-graph. Therefore are not planar.

Fig (2-1)

$R \cong Fp[X,Y]/(X2,Y2), Z_{(p^{2})}[X,Y]/(X2,XY-p,Y2), Z_{(p^{2})}[X]/(X^{2}-pX), or Z_{(p^{2})}[X]/(X2)$

Theorem 2.8:

Let $R = Z_P^m$ be a ring of integer module p^m where p prim and m positive number, then R is planar iff m ≤ 8

Proof:

Clearly Z_P^m has (m-1) ideals, therefore (AG(R)) ≤ 4 if $m \leq 5$ implies AG(R) is planar, if m=6,7 or8 then AG(R) is planar see figures (2-2, 2-3 and 2-4).

If $m \ge 9$ then the vertices ideals (p^{m-1}) , (p^{m-2}) , (p^{m-3}) , (p^{m-4}) , (p^{m-5}) adjacent so that Z_P^m has K_5 as a sub graph , there for Z_P^m is not planar.

3. PLANARITY OF COMMUTATIVE NON-LOCAL RINGS

In this section we investigate planarity of non-local rings. It well known that finite ring R, being Artinian, is isomorphic to a finite product of Artinian local rings. Thus if R is a finite ring, then $R \cong R_1 x R_2 x \dots x R_n$ for some $n \ge 1$ and each R_i is an Artinian local ring.

Theorem 3.1

Let $R \cong R_1 x R_2 x \dots x R_n$ for some $n \ge 3$ and each R_i is a local ring, then R is planar if and only if $R \cong F x F x F$ or A x F x F where F, F and F are fields and A local ring contains one ideal.

Proof:

If $n \ge 4$, then AG(R) has $K_{3,3}$ as a sub-graph by $(0,0,\ldots,R_{n-1},0)$, $(0,0,\ldots,0,R_n)$, $(0,0,\ldots,R_{n-1},R_n)$ are all adjacent to $(R_1,0,0,\ldots)$, $(R_1,R_2,0,\ldots,0)$, $(0,R_2,0,\ldots,0)$. Then AG(R) is not planar. If n = 3, then there exists three cases:

Case 1: if R_1 and R_2 not field, then there exists ideals $I_1 \subseteq R_1$ and $I_2 \subseteq R_2$ such that $I_i^2 = 0$, i=1,2. Therefore AG(R) is not planar by $(R_1,0,0)$, $(I_1,0,0)$ and $(R_1,I_2,0)$ are all adjacent to $(0,I_2,0)$, $(0,I_2,R_3)$ and $(0,0,R_3)$ is $K_{3,3}$ a sub-graph of AG(R).

Case 2: If one of the R_i, i=1,...,3, without loss generality say R₁ not field, then there exists two sub-cases Sub-cases a: If R₁ has at least two ideals, say I₁ and I₂ therefore the ideal vertices (I₁,0,0), (I₂,0,0) and (R₁,0,0) are all adjacent to(0,R₂,0), (0,R₂,R₃), (0,0,R₃) } a K_{3,3} sub-graph of AG(R). Therefore AG(R) not planar. Sub-cases b:If R₁has exactly one ideal say M₁then by theorem 2.2 M_1^2 =0.Since R₂ and R₃ fields, then R has ideals{J₁ = (R₁,R₂,0), J₂=(R₁,0,R₃), J₃=(R₁,0,0) , J₄=(0,R₂,R₃), J₅=(0,0,R₃), J₆=(0,R₂,0),J₇=(M₁,R₂,R₃), J₈=(M₁,R₂,0) J₉=(M₁,0,R₃), J₁₀=(M₁,0,0)}, then AG(R) is planar see figure (3-1).

Fig (3-1)

Case 3:

 $If R_1, R_2, R_3 \text{ are field, then } R \text{ have ideals} \{ J_1 = (R_1, 0, 0), J_2 = (R_1, R_2, 0), J_3 = (R_1, 0, R_3), J_4 = (0, R_2, 0), J_5 = (0, R_2, R_3), J_6 = (0, 0, R_3) \}, \\ whence AG(R) \text{ planar see figure } (3-2). \blacksquare$

Theorem 3.2:

Let $R \cong R_1 \times R_2$ where R_1 , R_2 local ring with M_1 , $M_2 \neq 0$, $M_1^2 = M_2^2 = 0$, then R is planar iff $R \cong A \times B$, where A and B local ring with one ideal.

Proof:

Since $M_1, M_2 \neq 0$, then R_1 and R_2 not field, then by theorem 2.2 R_1 and R_2 either contains one ideal or contains at least two minimal ideals.

If R_1 , R_2 contains one ideal, then AG(R) is planar .If R_1 , R_2 contains two minimal ideals say I_1 , I_2 be minimal ideals in R_1 and J_1 , J_2 minimal ideals in R_2 , then the ideal vertices (R_1 , 0), (I_1 , 0) and (I_2 , 0) are all adjacent to (0, R_2), (0, J_1) and (0, J_2) a $K_{3,3}$ sub-graph. Therefore AG(R) not planar.

If R_1 contains one ideal and R_2 contains at least two minimal ideals, let J_1, J_2 be minimal ideals in R_2 and M_2 maximal ideal in R_2 , since $J_1, J_2 \subseteq M_2$ and $J_1, J_2 \neq M_2$, we get ideals $(R_1, 0), (R_1, J_1)$ and (R_1, J_2) are all adjacent to $(0, M_2), (0, J_1), (0, J_2)$ as $K_{3,3}$ sub-graph in AG(R) and hence R is not planar.

Theorem 3.3:

Let R be a finite ring such that $R \cong R_1 \times R_2$ where R_1 and R_2 are local rings with $M_2^4 \neq 0$, then AG(R) is not planar.

Proof:

Since R_2 finite local ring, then exists an integer $n \ge 1$ such that $M_2^n = (0)$ and $M_2^{n-1} \ne 0$, but $M_2^4 \ne 0$, then we have $n \ge 5$. So that by proof of theorem 2.5 R_2 contains a triangle $M_2^2 - M_2^{n-1} - M_2^{n-2} - M_2^2$ we note that $(M_2^{n-1})^2 = M_2^{n-1} - M_2^{n-1} = M_2^n \cdot M_2^{n-2} = 0$, where $s_1 = n-2 > 0$, similarly $(M_2^{n-2})^2 = M_2^n \cdot M_2^{s^2} = 0$, where $s_2 = n-4 > 0$. Therefore the ideal vertices $(R_1, 0)$, (R_1, M_2^{n-1}) and (R_1, M_2^{n-2}) are all adjacent to $(0, M_2^{n-2})$, $(0, M_2^{n-1})$, $(0, M_2^{2})$ a $K_{3,3}$ sub-graph in AG(R) and hence R is not planar

Theorem 3.4:

Let $R \cong R_1 \times R_2$ where R_1 and R_2 are local rings then AG(R) is planar if and only if $R \cong A_1 \times A_2$ or F xB, where F is afield, A_1, A_2 are field or local rings with one ideal and B local ring contains two or three ideals with maximal ideal M, satisfies $M^2 \neq 0$ and $M^4 = 0$.

Proof :

It clear that, if R_1 and R_2 fields or contains one ideal, then R is planar and R_i for some i=1 or 2, contains triangular, then by Theorem 3.3R not planar. Also if R_1 and R_2 contains at least two ideals, then the ideal vertices ideals (R_1 ,0), (I_1 ,0) and (I_2 ,0) are all adjacent to ($0,R_2$),($0,J_1$) and ($0,J_2$) in AG(R). Therefore $K_{3,3}$ is a sub-graph of AG(R) and therefore AG(R) not planar.So we enough investigate two cases:

Case 1: If R₁ is a field and R₂local ring contains at least four ideals say I₁, I₂, I₃and I₄without loss generality I₄ minimal ideal. Since R₂ local, then by Proposition 2.1 I₄ adjacent with every other ideal vertices I₁, I₂, I₃ and I₄²=0. So that the ideal vertices (R₁,0), (R₁,I₄) and (O,I₄) are all adjacent to (O,I₁), (O,I₂) and (O,I₃) in AG(R). Therefore K_{3,3} is a sub-graph of AG(R) and so AG(R) not planar. Also if R₂ less than or equal three ideals, but not contains triangular say I₁,I₂,I₃,since R₂ not triangular I_i²=0, i=1,2 and I₁.I₂=0,I₁.I₃=0,I₂.I₃≠0then the ideals in R₁xR₂ are J₁=(R₁,I₁),J₂=(R₁,I₂),J₃=(R₁,I₃),J₄=(R₁,0),J₅=(O,R₂),J₆=(O,I₁),J₇=(O,I₂),J₈=(O,I₃), then AG(R) is planarsee figure (3-3)

Case 2: If R_1 contains one ideal say M_1 , then $M_1^2=0$, Now if R_2 contains at least three ideals I_1 , I_2 and I_3 with minimal ideal I_3 , then the ideal vertices (R_1 , 0), (M_1 , 0) and (M_1 , I_3) are all adjacent to (0, I_1)(0, I_2)(0, I_3) in AG(R) a $K_{3,3}$. Therefore $K_{3,3}$ is a sub-graph of AG(R) and so AG(R) not planar. If R_2 contains two ideals I_1 and I_2 with $I_1^2=I_2^2=0$, then vertex ideals (M_1 , 0), (M_1 , I_1), (M_1 , I_2), (0, I_1) and (0, I_2) is K_5 a sub-graph of AG(R) not planar. If R_2 contains two ideals I_1 and I_2 with $I_1^2=I_2^2=0$, then vertex ideals (M_1 , 0), (M_1 , I_1), (M_1 , I_2), (0, I_1) and (0, I_2) is K_5 a sub-graph of AG(R), so that AG(R) not planar. If R_2 contains two ideals I_1 and I_2 with

 I_1^2 =0 and $I_2^2 \neq 0$, clearly $I_1.I_2$ =0 then R have ideals J_1 =(R₁,0), J_2 =(R₁,I₁), J_3 =(R₁,I₂), J_4 =(M₁,0), J_5 =(M₁,I₁), J_6 =(M₁,I₂), J_7 =(M₁,R₂), J_8 =(0,I₁), J_9 =(0,I₂), J_{10} =(0,R₂) is planar see figure (3-4)

Fig. (3-4)

Theorem 3.5:

 $\begin{array}{c} J_1 \\ \text{let } R \cong Z_{p1} \overset{\alpha_1}{}_{p2} \overset{\alpha_2}{}_{p3} \overset{\alpha_3}{}_{\dots \ pm} \text{, where } p_i \text{ distin}_{\dots \ r} \text{, ideals and } \alpha_1, \alpha_2, \dots, \alpha_m \text{ positive number } m \ge 2 \\ \text{then } R \text{ is planar iff } R \cong . \end{array}$

Proof:

Since $Z_{p1}{}^{\alpha 1}{}_{p2}{}^{\alpha 2}{}_{p3}{}^{\alpha 3}$... $_{pm}{}^{\alpha m} \cong Z_{p1}{}^{\alpha 1}x Z_{p2}{}^{\alpha 2}x Z_{p3}{}^{\alpha 3}$... $Z_{pm}{}^{\alpha m}$ If $m \ge 3$, then by Theorem 3.1 R is planar iff $R \cong Z_{p1}x Z_{p2}x Z_{p3}$ or $Z_{p1}{}^{2}x Z_{p2}x Z_{p3}$ If m=2, then by Theorem 3.4 R is planar iff $R \cong Z_{p1}{}^{\alpha 1}x Z_{p2}{}^{\alpha 2}$, where $\alpha_1, \alpha_2 = 1, 2$ Or $R \cong Z_{p1}x Z_{p2}{}^{\alpha 2}$, where $\alpha_2 = 3, 4$

Example 2:

Let $R = Z_{P1P2}^4$ where $p_1=3$, $p_2=2$. Then $R \cong Z_{48}$, then R has ideals {(2),(3),(4),(6),(8),(12),(16),(24)}. Hence AG(R) is planar.

Fig. (3-2)

REFERENCES

- S.Akbari, H.R.Maimani, and S.Yassemi "When a Zero Divisor Graph is planar or a complete r partite graph". [1]. Journal of Algebra 270 (2003) 169-180
- [2]. D.F.Anderson and P.S. Livingston "The Zero - Divisor Graph of a Commutative Ring". Journal of Algebra 217 (1999) ,434-447.
- D.F.Anderson, P.S. Livingston, A. Lauve and A. Frazier "The Zero Divisor Graph of a Commutative Ring" II. [3].

- [4]. M. Behboodi and Z. R akeei "The Annihilating –Ideal Graph of Commutative Rings I ". (2011)
 [5]. M. Behboodi and Z. R akeei "The Annihilating –Ideal Graph of Commutative Rings II ". (2011).
 [6]. R. Belshoff and J. Chapman "Planar Zero Divisor Graphs". Journal of Algebra 316 (2007) 471-480.
- [7]. J.A. Bondy, U.S.R.Murty, Graph Theory with Application , American Elsevier, New York, 1976.
- [8]. B. Corbas and G.D. Williams "Ring of Order P5. I. Nonlocal rings". Journal of Algebra 231 (2) (2000) 677-690.