# Planar Annihilating-Ideal Graph of Commutative Rings 

Husam Q. Mohammad ${ }^{1}$, Sahbaa A. Younus ${ }^{2}$<br>${ }^{1}$ Assist Professor /College of Computers Sciences and Math.\ University of Mosul / Iraq<br>${ }^{2}$ Postgraduate student Ph.D./College of Computers Sciences and Math. UUniversity of Mosul / Iraq


#### Abstract

For a commutative ring with identity .Let $\mathbf{A G}(\mathbf{R})$ be the set of ideals of $\mathbf{R}$ with non-zero annihilators .The annihilating-ideal graph of $R$ with vertex set $A G(R) *=A G(R)-\{0\}$ and two distinct vertices $I$ and $J$ are adjacent if and only if $\mathrm{I} . \mathrm{J}=0$. In this paper we investigate and find the graph $\mathbf{A G}(\mathbf{R})$ to be planar. Also we give some basic properties of $\mathbf{A G}(\mathbf{R})$, where $\mathbf{R}$ finite local rings. Finally we find planarity $\mathbf{Z n}$.


Keyword: annihilating-ideal graph, planar graph, finite rings, local rings,

## 1-INTRODUCTION

Let $R$ be a finite commutative ring with identity, and $Z(R)(A(R))$ the set of zero divisors( ideals with non-zero annihilator, respectively). We associate a simple graph $\Gamma(\mathrm{R})[2]\left(\mathrm{AG}(\mathrm{R})\right.$ respectively) with vertices $\mathrm{Z}(\mathrm{R})^{*}=\mathrm{Z}(\mathrm{R})-\{0\}$ $((A(R) *=A(R)-\{0\}$, respectively) and two vertices $x$ and $y$ (I and $J$, respectively) are adjacent if and only if $x y=0$ ( $\mathrm{IJ}=(0)$, respectively). The first study of planar of zero divisor graph in 2001[3] when an interesting question was proposed by Anderson, Frazier, Lauve and Livingston: For which finite commutative rings $R$ is $\Gamma(\mathrm{R})$ planar? answer this question was given from by some authors see[1,3,6].Our goal in this paper is to investigate finite commutative rings whose Annihilating-ideal graph are planar. It is clear that if $\Gamma(R)$ is not - planar then $A G(R)$ is need not to be planar, for example, $\Gamma(\mathrm{Z} 32)$ is shown in figure( 1-1), and figure (1-2) shows AG ( Z32)


Fig. 1.1 and 1.2
For notation, we let Kn represents the complete graph on n vertices, if $\mathrm{n}=3$, then is called triangle and Km , n the complete bipartite graph with part sizes $m$ and $n$. We will repeatedly use Kuratowski's theorem, which states that a graph is planar if and only if it does not contain a subdivision ofK5 orK3,3 [7].

When working with polynomial rings, say $\mathrm{K}[\mathrm{X}] / \mathrm{I}$, we will let X denote the $\operatorname{coset} \mathrm{X}+\mathrm{I}$. In particular Fn is denoted by a field of order $n, \Sigma_{m}$ is the set of coset representatives of $F^{*} m$ in $F^{*}=F-\{0\}, \sum_{m}^{0}=\sum_{m}^{0} \cup\{0\}$. The symble"-" is
denoted the edge between two vertices, [9]. Zn denoted the ring of integers modulo n . Finally ann(X) denoted by annihilator of se X .

## 2. PLANARITY OF COMMUTATIVE LOCAL RINGS.

It well known that if $(R, M)$ is a finite local ring with maximal ideal $M$, then $|R|=p t$, for a some positive prime number $p$ and positive integer t .In this section we investigate planarity of local rings of order pt

## Question:

Under what conditionfinite commutative ring $R$ is $A G(R)$ is planar?
First we prove some results in a finite local rings

## Proposition 2.1:

Let R be a local ring, then every minimal ideal of R adjacent with every ideal vertices in annihilating ideal graph of $R$.

## Proof :

Let K minimal ideal of R , ifK is not adjacent with every ideal vertices then there exists an ideal vertex J of $\mathrm{AG}(\mathrm{R})$ such thatK.J $\neq 0$, so that $\mathrm{J} \nsubseteq \operatorname{ann}(\mathrm{K})$ but $\operatorname{ann}(\mathrm{K})$ maximal and R local ring which implies a contradictstherefor, $\mathrm{K} . \mathrm{J}=0$ and hence Kadjacent with every vertices in $\mathrm{AG}(\mathrm{R})$

A converse of Proposition 2.1 is not true in general as the following example shows:

## Example 1:

Let $\mathrm{R} \cong \mathrm{Z}_{2}[\mathrm{X}, \mathrm{Y}] /\left(\mathrm{X}^{4}, \mathrm{XY}, \mathrm{Y}^{2}\right)$ the ideals of $\mathrm{R}, \mathrm{I}_{1}=(\mathrm{X}), \mathrm{I}_{2}=(\mathrm{Y}), \mathrm{I}_{3}=(\mathrm{X}, \mathrm{Y}), \mathrm{I}_{4}=\left(\mathrm{X}^{2}\right), \mathrm{I}_{5}=\left(\mathrm{X}^{2}, \mathrm{Y}\right), \mathrm{I}_{6}=(\mathrm{X}+\mathrm{Y})$, $\mathrm{I}_{7}=\left(\mathrm{X}^{2}+\mathrm{Y}\right), \mathrm{I}_{8}=\left(\mathrm{X}^{3}\right), \mathrm{I}_{9}=\left(\mathrm{X}^{3}, \mathrm{Y}\right), \mathrm{I}_{10}=\left(\mathrm{X}^{3}+\mathrm{Y}\right)$ it's clearly $\mathrm{I}_{9}$ adjacent with every other ideal vertices but not minimal ideal .

## Theorem 2.2:

If $R$ local ring with maximal ideal $M$ and $M^{2}=0$, then either $R$ has exactly one ideal $M$ or $R$ contains at least two minimal ideals.

## Proof:

If R contains at least two minimal ideals we are done. Suppose that R contains one minimal ideal, since $\mathrm{M}^{2}=0$, then $\mathrm{M} \subseteq \operatorname{ann}(\mathrm{M})$, but M maximal ideal, so that $\mathrm{M}=\operatorname{ann}(\mathrm{M})$. On the other hand ann $(\mathrm{M})$ is minimal ideal. Which leads M minimal and maximal , since $R$ local then for every ideal J of $\mathrm{R}, \mathrm{M} \subseteq \mathrm{J} \subseteq \mathrm{M}$ by chosen R contains one minimal ideal and hence $\mathrm{J}=\mathrm{M}$. Which implies that R contains one ideal.

## Proposition 2.3:

Let $R$ be a local ring with $M^{2}=0$, then $A G(R)$ is complete graph.

## Proof:

If $R$ contained one ideal, then $A G(R)=k_{1}$. we are done .If not ,let $I$ and $J$ be any ideal vertices of $A G(R)$. Since $\mathrm{IJ} \subseteq \mathrm{MM}=(0)$, then any ideal vertices adjacent in $\mathrm{AG}(\mathrm{R})$.Therefore $A G(R)$ is complete graph.

## Corollary 2.4:

Let $R$ be a local ring with $M^{2}=(0)$. Then $A G(R)$ is planar if and only if $s \leq 4$, where $s=\left|A(R)^{*}\right|$.

## Proof:

Appling Proposition 2.3 $A G(R)$ is complete graph so that $A G(R)$ is planar if and only if $s \leq 4$.

## Theorem 2.5:

Let $R$ be a local ring .Then either $M^{4}=0$ or $A G(R)$ has a triangle

## Proof:

Since $R$ local ring, then there exists an integer $n \geq 2$ such that $M^{n}=0$ and $M^{n-1} \neq 0$. Clearly $M^{n-1}$. $I \subseteq M^{n-1} M=0$ for each ideal $I$ of $R$. Whence $M^{n-1}$ is adjacent to every non- zero ideal vertex I of $A G(R)$.Now if $M^{4}=0$ we are done .If not , then $M^{2}$ and $M^{n-2}$ will be adjacent, so that $A G(R)$ hastriangular $M^{2}-M^{n-2}-M^{n-1}-M^{2}$.

## Theorem 2.6:

Let $R$ be a local ring with $|R|=p^{t}$, where $p$ is positive prime number and $t=2,3$. Then $R$ is planar

## Proof:

If $\mathrm{t}=2$, then by [8] $R \cong Z_{p^{2}}$ or $\mathrm{Z}_{\mathrm{p}}[\mathrm{X}] /\left(\mathrm{X}^{2}\right)$.So that $\mathrm{AG}(\mathrm{R})=\mathrm{K}_{1}$ which is planar. If $\mathrm{t}=3$, then $R \cong \mathrm{~F}_{\mathrm{p}}[\mathrm{X}] /\left(\mathrm{X}^{3}\right)$, $\mathrm{F}[\mathrm{X}, \mathrm{Y}] /(\mathrm{X}, \mathrm{Y})^{2}, \mathrm{~A}[\mathrm{X}] /\left(\mathrm{PX}, \mathrm{X}^{2}-\mathrm{ap}\right)$ or $\mathrm{Z}_{\mathrm{P}}^{3}$, where $A \cong Z_{p^{2}}$ and $\mathrm{a} \in \sum_{0}^{2}$. So that $\mathrm{AG}(\mathrm{R})=\mathrm{K}_{2}$ where $R \cong \mathrm{~F}_{\mathrm{p}}[\mathrm{X}] /\left(\mathrm{X}^{3}\right)$, $\mathrm{A}[\mathrm{X}] /\left(\mathrm{pX}, \mathrm{X}^{2}\right), \mathrm{Z}_{\mathrm{P}}{ }^{3}$ and $A G(R) \cong K_{4}$, where $\mathrm{F}[\mathrm{X}, \mathrm{Y}] /(\mathrm{X}, \mathrm{Y})^{2}, \mathrm{~A}[\mathrm{X}] /\left(\mathrm{PX}, \mathrm{X}^{2}-\mathrm{ap}\right)$, anda $\in \sum^{2}$. For all cases R is planar.

## Theorem 2.7:

If R is isomorphic to one of the following six rings of orderp ${ }^{4}$
$\mathrm{F}_{\mathrm{p}}^{2}[\mathrm{X}, \mathrm{Y}] /(\mathrm{X}, \mathrm{Y}, \mathrm{P})^{2}, \mathrm{~F}_{\mathrm{P}}[\mathrm{X}, \mathrm{Y}, \mathrm{Z}] /(\mathrm{X}, \mathrm{Y}, \mathrm{Z})^{2} \mathrm{orF}_{\mathrm{p}}^{3}[\mathrm{X}] /\left(\mathrm{X}^{2}, \mathrm{PX}\right), \mathrm{F}_{\mathrm{p}}[\mathrm{X}, \mathrm{Y}] /\left(\mathrm{X}^{3}, \mathrm{XY}, \mathrm{Y}^{2}\right), \quad Z_{p^{2}} \quad[\mathrm{X}, \mathrm{Y}] /\left(\mathrm{X}^{2}\right.$
$\left.\mathrm{p}, \mathrm{XY}, \mathrm{Y}^{2}, \mathrm{pX}\right), Z_{p^{2}}[\mathrm{X}] /\left(\mathrm{pX}, \mathrm{X}^{3}\right)$. Then $\mathrm{AG}(\mathrm{R})$ is not planar;for all other local rings R of order $\mathrm{p}^{4}, \mathrm{AG}(\mathrm{R})$ is planar.

## Proof:

Consider local rings ( $\mathrm{R}, \mathrm{M}$ ) which is not field of order $\mathrm{p}^{4}$, where p positive prime number. In [8] Corbas and Williams conclude that the non-isomorphic commutative local ring with identity of order $\mathrm{p}^{4}$ are precisely the following 20 rings: $\mathrm{F}_{4}[\mathrm{X}] /\left(\mathrm{X}^{2}\right), Z_{p^{2}}[\mathrm{X}] /\left(\mathrm{X}^{2}+\mathrm{X}+1\right), \mathrm{F}_{\mathrm{p}}[\mathrm{X}] /\left(\mathrm{X}^{4}\right), Z_{p^{2}}[\mathrm{X}] /\left(\mathrm{X}^{2}\right.$-ap $)$ where $\mathrm{p} \neq 2$ and $\mathrm{a} \in \sum^{2}, Z_{4}[\mathrm{X}] /\left(\mathrm{X}^{2}-2 \mathrm{X}-2\right), Z_{p^{2}}[\mathrm{X}] /\left(\mathrm{X}^{2}-\right.$ $\mathrm{pX}), Z_{p^{2}}[\mathrm{X}] /\left(\mathrm{X}^{3}-\mathrm{p}, 2 \mathrm{X}\right), Z_{p^{4}}, \mathrm{~F}_{\mathrm{p}}[\mathrm{X}, \mathrm{Y}] /\left(\mathrm{X}^{3}, \mathrm{XY}, \mathrm{Y}^{2}\right),[\mathrm{X}, \mathrm{Y}] /\left(\mathrm{XY}, \mathrm{X}^{2}-\mathrm{Y}^{2}\right), \mathrm{F}_{\mathrm{p}}[\mathrm{X}, \mathrm{Y}] /\left(\mathrm{X}^{2}, \mathrm{Y}^{2}\right), Z_{p^{2}}[\mathrm{X}, \mathrm{Y}] /\left(\mathrm{X}^{2}, \mathrm{XY}-\mathrm{p}, \mathrm{Y}^{2}\right)$, $Z_{p^{2}}[\mathrm{X}] /\left(\mathrm{X}^{2}\right), Z_{p^{2}}[\mathrm{X}, \mathrm{Y}] /\left(\mathrm{X}^{2}-\mathrm{p}, \mathrm{XY}, \mathrm{Y}^{2}, \mathrm{pX}\right), Z_{p^{2}}[\mathrm{X}, \mathrm{Y}] /\left(\mathrm{X}^{2}-\mathrm{p}, \mathrm{XY}, \mathrm{Y}^{2}-\mathrm{p}, \mathrm{pX}\right), \quad Z_{p^{3}}[X] /\left(X^{2}-p^{2}, p X\right), Z_{p^{2}}[\mathrm{X}] /$ $(\mathrm{pX}, \mathrm{X} 3), \mathrm{F}_{\mathrm{p}}^{3}[\mathrm{X}] /\left(\mathrm{X}^{2}, \mathrm{pX}\right), \mathrm{F}_{\mathrm{p}}^{2}[\mathrm{X}, \mathrm{Y}] /(\mathrm{X}, \mathrm{Y}, \mathrm{p})^{2}$ and $\mathrm{F}_{\mathrm{p}}[\mathrm{X}, \mathrm{Y}, \mathrm{Z}] /(\mathrm{X}, \mathrm{Y}, \mathrm{Z})^{2}$.

It is easy to check that if $\mathrm{R} \cong \mathrm{F}_{4}[\mathrm{X}] /\left(\mathrm{X}^{2}\right)$ or $Z_{p^{2}}[\mathrm{X}] /\left(\mathrm{X}^{2}+\mathrm{X}+1\right)$, then R has non- zero one ideal, so that $\mathrm{AG}(\mathrm{R})$ isomorphic to $\mathrm{K}_{1}$ and hence R is planar in this cases. Consider the rings $R \cong \mathrm{~F}_{p}[\mathrm{X}] /\left(\mathrm{X}^{4}\right), Z_{p^{2}}[\mathrm{X}] /\left(\mathrm{X}^{2}-\right.$ ap $)$ where $p \neq$ 2 and $\mathrm{a} \in \sum^{2} \quad, Z_{4}[\mathrm{X}] /\left(\mathrm{X}^{2}-2 \mathrm{X}-2\right), Z_{p^{2}}[\mathrm{X}] /\left(\mathrm{X}^{3}-\mathrm{p}, 2 \mathrm{X}\right)$ or $Z_{p^{4}}$, then R have non-zero three ideals and $\mathrm{AG}(\mathrm{R}) \cong \mathrm{K}_{1,2}$ and hence R is planar in this cases. Consider the ring $\mathrm{R} \cong \mathrm{F}_{\mathrm{p}}[\mathrm{X}, \mathrm{Y}] /\left(\mathrm{X}^{2}, \mathrm{Y}^{2}\right), Z_{p^{2}}[\mathrm{X}, \mathrm{Y}] /\left(\mathrm{X}^{2}, \mathrm{XY}-\mathrm{p}, \mathrm{Y}^{2}\right)$ ,$Z_{p^{2}}[\mathrm{X}] /\left(\mathrm{X}^{2}-\mathrm{pX}\right)$, or $Z_{p^{2}}[\mathrm{X}] /\left(\mathrm{X}^{2}\right)$, then R have non-zero five ideals and $\mathrm{AG}(\mathrm{R})=\mathrm{K}_{1,4}$, so that R is planar.

Consider the rings $R \cong \mathrm{~F}_{\mathrm{p}}[\mathrm{X}, \mathrm{Y}] /\left(\mathrm{XY}, \mathrm{X}^{2}-\mathrm{Y}^{2}\right)$, then R have non-zero five ideals $(\mathrm{X}),(\mathrm{Y}),(\mathrm{X}, \mathrm{Y}),\left(\mathrm{X}^{2}\right)$ and $(\mathrm{X}+\mathrm{Y})$, also if $R \cong Z_{p^{2}}[\mathrm{X}, \mathrm{Y}] /\left(\mathrm{X}^{2}-\mathrm{p}, \mathrm{XY}, \mathrm{Y}^{2}-\mathrm{p}, \mathrm{pX}\right)$, then R have non-zero five ideals $(2),(\mathrm{X}),(\mathrm{Y}),(\mathrm{X}+\mathrm{Y})$ and $(\mathrm{X}, \mathrm{Y})$, the ring $R \cong$ $Z_{p^{3}}[X] /\left(X^{2}-p^{2}, p X\right)$, then R have non-zero five ideals (2), (4), (X), (2+X) and (2,X), therefore by figure (2-1) , $\mathrm{AG}(\mathrm{R})$ is planar. Now if $R \cong \mathrm{Z}_{\mathrm{p}}^{3}[\mathrm{X}] /\left(\mathrm{X}^{2}, \mathrm{pX}\right)$, the ideal vertices $(4),(4, \mathrm{X}),(4+\mathrm{X}),(\mathrm{X})$ and $(2, \mathrm{X})$ are all adjacent to each other in $\operatorname{AG}(\mathrm{R})$, thus $\mathrm{K}_{5}$ is a sub-graph og $\mathrm{AG}(\mathrm{R})$ and we get is not planar in this cases. Also if $R \cong$ $\mathrm{F}_{\mathrm{p}}[\mathrm{X}, \mathrm{Y}, \mathrm{Z}] /(\mathrm{X}, \mathrm{Y}, \mathrm{Z})^{2}$ orZ $_{p^{2}}[\mathrm{X}, \mathrm{Y}] /(\mathrm{X}, \mathrm{Y}, \mathrm{P})^{2}$ then R have non-zero eleven ideals with $\mathrm{M}^{2}=0$, where M a maximal ideal in R therefore by Corollary 2.4 $\mathrm{AG}(\mathrm{R})=\mathrm{K}_{11}$. Whence $\mathrm{AG}(\mathrm{R})$ not planar in this cases.The ideal vertices $\left(\mathrm{X}^{2}\right)$, $(\mathrm{X})$ and $(\mathrm{X}, \mathrm{Y})$ are all adjacent to $\left(\mathrm{X}^{2}+\mathrm{Y}\right),(\mathrm{X}, \mathrm{Y})$ and $(\mathrm{Y})$ in $\mathrm{AG}\left(\mathrm{F}_{\mathrm{p}}[\mathrm{X}, \mathrm{Y}] /\left(\mathrm{X}^{3}, \mathrm{XY}, \mathrm{Y}^{2}\right)\right)$. The ideal vertices $(2, \mathrm{Y}),(2)$ and $(\mathrm{Y})$ are all adjacent to $(2+Y),(X)$ and $(X, Y)$ in $\operatorname{AG}\left(Z_{p^{2}}[X, Y] /\left(\mathrm{X}^{2}-\mathrm{p}, \mathrm{XY}, \mathrm{Y}^{2}, \mathrm{pX}\right)\right.$ ). Finally the ideal vertices $\left(\mathrm{X}^{2}\right)$, $(\mathrm{p})$ and $\left(\mathrm{p}+\mathrm{X}^{2}\right)$ are all adjacent to $(\mathrm{p}+\mathrm{X}),(\mathrm{X})$ and $(\mathrm{p}, \mathrm{X})$ in $\mathrm{AG}\left(Z_{p^{2}}[\mathrm{X}] /\left(\mathrm{pX}, \mathrm{X}^{3}\right)\right)$. Thus the last three rings all have $\mathrm{K}_{3,3}$ as a subgraph. Therefore are not planar.


Fig (2-1)

## 

## Theorem 2.8:

Let $\mathrm{R}=\mathrm{Z}_{\mathrm{P}}{ }^{\mathrm{m}}$ be a ring of integer module $\mathrm{p}^{\mathrm{m}}$ where p prim and m positive number, then R is planar iff $\mathrm{m} \leq 8$

## Proof:

Clearly $Z_{P}{ }^{m}$ has (m-1) ideals, therefore $(A G(R)) \leq 4$ if $m \leq 5$ implies $A G(R)$ is planar, if $m=6,7$ or8 then $A G(R)$ is planar see figures (2-2, 2-3 and 2-4).

If $\mathrm{m} \geq 9$ then the vertices ideals $\left(p^{m-1}\right),\left(p^{m-2}\right),\left(p^{m-3}\right),\left(p^{m-4}\right),\left(p^{m-5}\right)$ adjacent so that $Z_{P}{ }^{m}$ has $K_{5}$ as a sub graph ,there for $Z_{P}{ }^{m}$ is not planar.


Figure2-2 AG(ZP6)


Figure 2-3 AG(ZP7)


Figure 2-4 AG(ZP8)

## 3. PLANARITY OF COMMUTATIVE NON-LOCAL RINGS

In this section we investigate planarity of non-local rings. It well known thata finite ring $R$, being Artinian, is isomorphic to a finite product of Artinian local rings. Thus if $R$ is a finite ring, then $R \cong R_{1} \times R_{2} \times \ldots \times R_{n}$ for some $n \geq 1$ and each $\mathrm{R}_{\mathrm{i}}$ is an Artinian local ring.

## Theorem 3.1

Let $R \cong R_{1} \times R_{2} x \ldots \times R_{n}$ for some $n \geq 3$ and each $R_{i}$ is a local ring, then $R$ is planar if and only if $R \cong F \times F \times F^{\prime \prime}$ or $A x$ $\mathrm{F}^{\prime} \times \mathrm{F}^{\prime \prime}$ where $\mathrm{F}, \mathrm{F}$ and $\mathrm{F}^{\prime \prime}$ are fields and A local ring contains one ideal.

## Proof:

If $n \geq 4$, then $A G(R)$ has $K_{3,3}$ as a sub-graph by $\left(0,0, \ldots \ldots R_{n-1}, 0\right),\left(0,0, \ldots .0, R_{n}\right),\left(0,0, \ldots \ldots, R_{n-1}, R_{n}\right)$ are all adjacent to $\left(R_{1}, 0,0, \ldots\right),\left(R_{1}, R_{2}, 0, \ldots .0\right),\left(0, R_{2}, 0, \ldots, 0\right)$.Then $A G(R)$ is not planar .
If $\mathrm{n}=3$, then there exists three cases:

Case 1: if $R_{1}$ and $R_{2}$ not field, thenthere exists ideals $I_{1} \subseteq R_{1}$ and $I_{2} \subseteq R_{2}$ such that $I_{i}^{2}=0, i=1,2$. Therefore $A G(R)$ is not planar by $\left(\mathrm{R}_{1}, 0,0\right),\left(\mathrm{I}_{1}, 0,0\right)$ and $\left(\mathrm{R}_{1}, \mathrm{I}_{2}, 0\right)$ are all adjacent to $\left(0, \mathrm{I}_{2}, 0\right),\left(0, \mathrm{I}_{2}, \mathrm{R}_{3}\right)$ and $\left(0,0, \mathrm{R}_{3}\right)$ is $\mathrm{K}_{3,3}$ a sub-graph of $\mathrm{AG}(\mathrm{R})$.

Case 2:If one of the $R_{i}, i=1, \ldots, 3$, without loss generality say $R_{1}$ not field, then there exists two sub-cases
Sub-cases a: If $R_{1}$ has at least two ideals, say $I_{1}$ and $I_{2}$ therefore the ideal vertices ( $I_{1}, 0,0$ ) , $I_{2}, 0,0$ ) and ( $R_{1}, 0,0$ ) are all adjacent to $\left.\left(0, R_{2}, 0\right),\left(0, R_{2}, R_{3}\right),\left(0,0, R_{3}\right)\right\}$ a $K_{3,3}$ sub-graph of $A G(R)$. Therefore $A G(R)$ not planar.
Sub-cases b:If $R_{1}$ has exactly one ideal say $M_{1}$ then by theorem $2.2 M_{1}{ }^{2}=0$. Since $R_{2}$ and $R_{3}$ fields, then $R$ has ideals $\left\{J_{1}\right.$ $=\left(R_{1}, R_{2}, 0\right), \quad J_{2}=\left(R_{1}, 0, R_{3}\right), \quad J_{3}=\left(R_{1}, 0,0\right) \quad, \quad J_{4}=\left(0, R_{2}, R_{3}\right), \quad J_{5}=\left(0,0, R_{3}\right) \quad, J_{6}=\left(0, R_{2}, 0\right), J_{7}=\left(M_{1}, R_{2}, R_{3}\right) \quad, J_{8}=\left(M_{1}, R_{2}, 0\right)$ $\left.\mathrm{J}_{9}=\left(\mathrm{M}_{1}, 0, \mathrm{R}_{3}\right), \mathrm{J}_{10}=\left(\mathrm{M}_{1}, 0,0\right)\right\}$,then $\mathrm{AG}(\mathrm{R})$ is planar see figure (3-1 ).


Fig (3-1)

## Case 3:

IfR ${ }_{1}, R_{2}, R_{3}$ are field, then $R$ have ideals $\left\{J_{1}=\left(R_{1}, 0,0\right), J_{2}=\left(R_{1}, R_{2}, 0\right), J_{3}=\left(R_{1}, 0, R_{3}\right) J_{4}=\left(0, R_{2}, 0\right), J_{5}=\left(0, R_{2}, R_{3}\right), J_{6}=\left(0,0, R_{3}\right)\right\}$, whence $A G(R)$ planar see figure (3-2 ).


Fig. (3-2)

## Theorem 3.2:

Let $R \cong R_{1} \times R_{2}$ where $R_{1}, R_{2}$ local ring with $M_{1}, M_{2} \neq 0, M_{1}{ }^{2}=M_{2}{ }^{2}=0$, then $R$ is planar iff $R \cong A \times B$, where $A$ and $B$ local ring with one ideal.

## Proof:

Since $M_{1}, M_{2} \neq 0$,then $R_{1}$ and $R_{2}$ not field, then by theorem $2.2 \mathrm{R}_{1}$ and $\mathrm{R}_{2}$ either contains one ideal or contains at least two minimal ideals.

If $R_{1}, R_{2}$ contains one ideal, then $A G(R)$ is planar .If $R_{1}, R_{2}$ contains two minimal ideals say $I_{1}, I_{2}$ be minimal ideals in $R_{1}$ and $J_{1}, J_{2}$ minimal ideals in $R_{2}$, then the ideal vertices $\left(R_{1}, 0\right),\left(I_{1}, 0\right)$ and ( $\left.I_{2}, 0\right)$ are all adjacent to $\left(0, R_{2}\right),\left(0, J_{1}\right)$ and $\left(0, J_{2}\right)$ a $K_{3,3}$ sub-graph.Therefore $A G(R)$ not planar.

If $R_{1}$ contains one ideal and $R_{2}$ contains at least two minimal ideals, let $J_{1}, J_{2}$ be minimal ideals in $R_{2}$ and $M_{2}$ a maximal ideal in $R_{2}$, since $J_{1}, J_{2} \subseteq M_{2}$ and $J_{1}, J_{2} \neq M_{2}$, we get ideals $\left(R_{1}, 0\right),\left(R_{1}, J_{1}\right)$ and $\left(R_{1}, J_{2}\right)$ are all adjacent to $\left(0, M_{2}\right),\left(0, J_{1}\right),\left(0, J_{2}\right) \mathrm{a}_{3,3}$ sub-graph in $\mathrm{AG}(\mathrm{R})$ and hence R is not planar.

## Theorem 3.3:

Let $R$ be a finite ring such that $R \cong R_{1} \times R_{2}$ where $R_{1}$ and $R_{2}$ are local rings with $M_{2}{ }^{4} \neq 0$, then $A G(R)$ is not planar.

## Proof:

Since $R_{2}$ finite local ring, then exists an integer $n \geq 1$ such that $M_{2}{ }^{n}=(0)$ and $M_{2}{ }^{n-1} \neq 0$, but $M_{2}{ }^{4} \neq 0$, then we have $n \geq 5$. So that by proof of theorem $2.5 \mathrm{R}_{2}$ contains a triangle $\mathrm{M}_{2}{ }^{2}-\mathrm{M}_{2}{ }^{\mathrm{n}-1}-\mathrm{M}_{2}{ }^{\mathrm{n}-2}-\mathrm{M}_{2}{ }^{2}$ we note that $\left(\mathrm{M}_{2}{ }^{\mathrm{n}-1}\right)^{2}=\mathrm{M}_{2}{ }^{\mathrm{n}-1} \cdot \mathrm{M}_{2}{ }^{\mathrm{n}-1}=$ $M_{2}{ }^{n} \cdot M_{2}{ }^{\mathrm{s} 1}=0$, where $s_{1}=n-2>0$, similarly $\left(M_{2}{ }^{n-2}\right)^{2}=M_{2}{ }^{n} . M_{2}{ }^{s 2}=0$, where $s_{2}=n-4>0$. Therefor the ideal vertices $\left(R_{1}, 0\right)$, $\left(\mathrm{R}_{1}, \mathrm{M}_{2}{ }^{\mathrm{n}-1}\right)$ and $\left(\mathrm{R}_{1}, \mathrm{M}_{2}{ }^{\mathrm{n}-2}\right)$ are all adjacent to $\left.\left(0, \mathrm{M}_{2}{ }^{\mathrm{n}-2}\right),\left(0, \mathrm{M}_{2}{ }^{\mathrm{n}-1}\right),\left(0, \mathrm{M}_{2}{ }^{2}\right)\right\}$ a $\mathrm{K}_{3,3}$ sub-graph in $\mathrm{AG}(\mathrm{R})$ and hence R is not planar

## Theorem 3.4:

Let $R \cong R_{1} \times R_{2}$ where $R_{1}$ and $R_{2}$ are local rings then $A G(R)$ is planar if and only if $R \cong A_{1} \times A_{2}$ or $F \times B$, where $F$ is afield, $A_{1}, A_{2}$ are field or local rings with one ideal and $B$ local ring contains two or three ideals with maximal ideal M , satisfies $\mathrm{M}^{2} \neq 0$ and $\mathrm{M}^{4}=0$.

## Proof :

It clear that, if $R_{1}$ and $R_{2}$ fields or contains one ideal, then $R$ is planar and $R_{i}$ for some $i=1$ or 2 , contains triangular, then by Theorem 3.3R not planar. Also if $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ contains at least two ideals, then the ideal vertices ideals ( $\left.\mathrm{R}_{1}, 0\right)$, ( $\left.\mathrm{I}_{1}, 0\right)$ and $\left(I_{2}, 0\right)$ are all adjacent to $\left(0, R_{2}\right),\left(0, J_{1}\right)$ and $\left(0, J_{2}\right)$ in $A G(R)$. Therefore $K_{3,3}$ is a sub-graph of $A G(R)$ and therefore $A G(R)$ not planar.So we enough investigate two cases:

Case 1: If $R_{1}$ is a field and $R_{2}$ local ring contains at least four ideals say $I_{1}, I_{2}, I_{3}$ and $I_{4}$ without loss generality $I_{4}$ minimal ideal. Since $R_{2}$ local, then by Proposition $2.1 I_{4}$ adjacent with every other ideal vertices $I_{1}, I_{2}, I_{3}$ and $I_{4}{ }^{2}=0$. So that the ideal vertices $\left(R_{1}, 0\right),\left(R_{1}, I_{4}\right)$ and $\left(0, I_{4}\right)$ are all adjacent to $\left(0, I_{1}\right),\left(0, I_{2}\right)$ and $\left(0, I_{3}\right)$ in $A G(R)$. Therefore $K_{3,3}$ is a sub-graph of $A G(R)$ and so $A G(R)$ not planar. Also if $R_{2}$ less than or equal three ideals, but not contains triangular say $I_{1}, I_{2}, I_{3}$, since $R_{2}$ not triangular $\mathrm{I}_{\mathrm{i}}{ }^{2}=0 \quad, \mathrm{i}=1,2$ and $\mathrm{I}_{1} \cdot \mathrm{I}_{2}=0, \mathrm{I}_{1} \cdot \mathrm{I}_{3}=0, \mathrm{I}_{2} \cdot \mathrm{I}_{3} \neq 0$ then the ideals in $\mathrm{R}_{1} \times R_{2}$ are $J_{1}=\left(R_{1}, I_{1}\right), J_{2}=\left(R_{1}, I_{2}\right), J_{3}=\left(R_{1}, I_{3}\right), J_{4}=\left(R_{1}, 0\right), J_{5}=\left(0, R_{2}\right), J_{6}=\left(0, I_{1}\right), J_{7}=\left(0, I_{2}\right), J_{8}=\left(0, I_{3}\right)$, then $A G(R)$ is planarsee figure (3-3)


Fig. (3-3)

Case 2: If $R_{1}$ contains one ideal say $M_{1}$, then $M_{1}{ }^{2}=0$, Now if $R_{2}$ contains at least three ideals $I_{1}, I_{2}$ and $I_{3}$ with minimal ideal $I_{3}$,then the ideal vertices $\left(R_{1}, 0\right),\left(M_{1}, 0\right)$ and $\left(M_{1}, I_{3}\right)$ are all adjacent to $\left(0, I_{1}\right)\left(0, I_{2}\right)\left(0, I_{3}\right)$ in $A G(R)$ a $K_{3,3}$. Therefore $K_{3,3}$ is a sub-graph of $A G(R)$ and so $A G(R)$ not planar. If $R_{2}$ contains two ideals $I_{1}$ and $I_{2}$ with $I_{1}{ }^{2}=I_{2}{ }^{2}=0$, then vertex ideals $\left(M_{1}, 0\right),\left(M_{1}, I_{1}\right),\left(M_{1}, I_{2}\right),\left(0, I_{1}\right)$ and $\left(0, I_{2}\right)$ is $K_{5}$ a sub-graph of $A G(R)$, so that $A G(R)$ not planar. If $R_{2}$ contains two ideals $\mathrm{I}_{1}$ and $\mathrm{I}_{2}$ with
$\mathrm{I}_{1}{ }^{2}=0$ and $\mathrm{I}_{2}{ }^{2} \neq 0$, clearly $\mathrm{I}_{1} \cdot \mathrm{I}_{2}=0$ then R haveideals $\mathrm{J}_{1}=\left(\mathrm{R}_{1}, 0\right), \mathrm{J}_{2}=\left(\mathrm{R}_{1}, \mathrm{I}_{1}\right), \mathrm{J}_{3}=\left(\mathrm{R}_{1}, \mathrm{I}_{2}\right), \mathrm{J}_{4}=\left(\mathrm{M}_{1}, 0\right), \mathrm{J}_{5}=\left(\mathrm{M}_{1}, \mathrm{I}_{1}\right), \mathrm{J}_{6}=\left(\mathrm{M}_{1}, \mathrm{I}_{2}\right), \mathrm{J}_{7}=$ $\left(M_{1}, R_{2}\right), J_{8}=\left(0, I_{1}\right), J_{9}=\left(0, I_{2}\right), J_{10}=\left(0, R_{2}\right)$ is planar see figure (3-4)


Fig. (3-4)

## Theorem 3.5:

## $\mathrm{J}_{1}$

let $R \cong Z_{p 1}{ }^{\alpha 1}{ }_{p 2}{ }^{\alpha 2}{ }_{p 3}{ }^{\alpha 3} \ldots{ }^{2}{ }^{\alpha m}$, where $p_{i}$ distin $\ldots{ }_{r-\ldots-}$ ideals and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ positive number $m \geq 2$ then $R$ is planar iff $R \cong$.

## Proof:

Since $Z_{p 1}{ }^{\alpha 1}{ }_{p 2}{ }^{\alpha 2}{ }_{p 3}{ }^{\alpha 3} \ldots{ }_{p m}{ }^{\alpha \mathrm{m}} \cong Z_{p 1}{ }^{\alpha 1} x Z_{p 2}{ }^{\alpha 2} x Z_{p 3}{ }^{\alpha 3} \ldots Z_{p m}{ }^{\alpha m}$
If $\mathrm{m} \geq 3$, then by Theorem 3.1 R is planar iff $\mathrm{R} \cong \mathrm{Z}_{\mathrm{p} 1} \times \mathrm{Z}_{\mathrm{p} 2} \times \mathrm{Z}_{\mathrm{p} 3}$ or $\mathrm{Z}_{\mathrm{p} 1}{ }^{2} \times \mathrm{Z}_{\mathrm{p} 2} \times \mathrm{Z}_{\mathrm{p} 3}$ If $\mathrm{m}=2$, then by Theorem 3.4 R is planar iff $\mathrm{R} \cong \mathrm{Z}_{\mathrm{p} 1}{ }^{\alpha 1} \mathrm{x} \mathrm{Z}_{\mathrm{p} 2}{ }^{\alpha^{2}}{ }^{2}$, where $\alpha_{1}, \alpha_{2}=1,2$ Or $\mathrm{R} \cong \mathrm{Z}_{\mathrm{p} 1} \times \mathrm{Z}_{\mathrm{p} 2}{ }^{\alpha 2}$, where $\alpha_{2}=3,4$

## Example 2:

Let $\mathrm{R}=\mathrm{Z}_{\mathrm{P} \mid \mathrm{P} 2}{ }^{4}$ where $\mathrm{p}_{1}=3, \mathrm{p}_{2}=2$. Then $\mathrm{R} \cong \mathrm{Z}_{48}$, then R has ideals
$\{(2),(3),(4),(6),(8),(12),(16),(24)\}$. Hence $A G(R)$ is planar.


Fig. (3-2)

## REFERENCES

[1]. S .Akbari ,H .R.Maimani, and S .Yassemi " When a Zero - Divisor Graph is planar or a complete r - partite graph" . Journal of Algebra 270 (2003) 169-180
[2]. D.F.Anderson and P .S .Livingston "The Zero - Divisor Graph of a Commutative Ring" . Journal of Algebra 217 (1999) ,434-447.
[3]. D.F.Anderson, P .S .Livingston ,A .Lauve and A . Frazier "The Zero - Divisor Graph of a Commutative Ring" II .
[4]. M .Behboodi and Z. R akeei "The Annihilating -Ideal Graph of Commutative Rings I " . (2011)
[5]. M .Behboodi and Z. R akeei "The Annihilating -Ideal Graph of Commutative Rings II " . (2011).
[6]. R . Belshoff and J .Chapman "Planar Zero - Divisor Graphs". Journal of Algebra 316 (2007) 471-480 .
[7]. J.A. Bondy, U.S.R.Murty, Graph Theory with Application ,American Elsevier, New York, 1976.
[8]. B .Corbas and G.D. Williams "Ring of Order P5 .I.Nonlocal rings". Journal of Algebra 231 (2) (2000) 677-690 .

