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ABSTRACT 

 

In this research paper, the aim is to show how Mag-spring (newly invented Magnetic spring) as a nonlinear absorber could 

enhance vibration cancellation of the main system especially in a forced vibration in the frequencies around the resonance 

of the main system. It is shown that, this can be accomplished by keeping the natural frequency of the absorber, 𝜔𝑛 =  
𝑘

𝑚
 

intact with excitation frequency by employing a softening spring attached to the absorber mass. This kind of absorber will 

enhance the system to perform as a self-regulating system by being stiff when frequency is high and soft when frequency is 

low. In other words, at high frequency the amplitude of vibration is low and the spring at that point will behave as a hard 

spring. While, at low frequency the vibration amplitude is high and the at that point will behave as a soft spring. This kind 

of behaviour is expected when providing a system with a variable 𝑘, so, it will keep following the excitation frequency 

(when frequency is high, 𝑘 is high, and when frequency is low, 𝑘 is low as well). The results are compared with an 

equivalent linear absorber system. The Mag-spring was invented for a purpose other than vibration cancelation. However, 

the non-linearity that Mag-spring shows brought the idea of investigating a new way that could guide to a novel point of 

view in enhancing the vibration cancellation in vibrating structures.  The results and discussion for the nonlinear spring 

(Mag-spring) and equivalent linear spring are presented in this paper; including a study of the effect of mass ratio, effect of 

damping ratio (light damping), and a comparison between linear and nonlinear tuned vibration absorber (TVA).  

 

 

 

 

INTRODUCTION 
 

This paper mainly focuses on analytical discussion how a 2DOF linear system could perform as a tuned vibration absorber 

(TVA). Also, the analytical solution of an un-damped TVA.The aim here is to study the behaviour of a nonlinear spring 

instead of linear one in a vibration absorber system. To do so, next section in the research paper presents the softening 

nonlinear behaviour of the Mag-spring by a polynomial showing relation between force and displacement of spring. Using 

nonlinear Mag-spring as a vibration absorber gives two coupled nonlinear second order differential equations. Finally paper 

presents the mathematical process to solve these two nonlinear differential equations for the primary system and the 

nonlinear absorber is discussed. The Matlab program written to solve governing equations is explained as well.This paper 

also discusses about an ideal nonlinear stiffness and a few theoretical ideal nonlinear stiffness curves for a TVA. The 

simulation results for these different curves and the Mag-spring have been compared as well. 

 

Tuned vibration absorber 

 To design a linear vibration absorber, specific parameters should be properly adjusted. Stiffness and mass of absorber are 

the two most significant parameters involved in designing an absorber. However, domain of the vibration of the absorber 

should be maintained in an acceptable range, according to the space provided. Also the design of the effective domain of 

the absorber (the vibration in this domain remains in an acceptable range), which depends on mass ratio, should be 

calculated as well. 

 

Figure 1 shows a main system and absorber. Stiffness and mass of the main system and absorber are 𝑘, 𝑚, 𝑘𝑎 , 𝑚𝑎  

respectively. 
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Figure 1: main system (𝒌,𝒎) and absorber (𝒌𝒂,𝒎𝒂) 

 

𝑋1 =
𝐹0 𝑘𝑎 − 𝑚𝑎𝜔

2 

 𝑘 + 𝑘𝑎 − 𝑚𝜔2  𝑘𝑎 − 𝑚𝑎𝜔
2 − 𝑘𝑎

2
 

 

Eqn. 01 

𝑋2 =
𝑘𝑎𝐹0

 𝑘 + 𝑘𝑎 − 𝑚𝜔2  𝑘𝑎 − 𝑚𝑎𝜔
2 − 𝑘𝑎

2
 

 

Eqn. 02 

When  𝝎𝒏𝒂 =  
𝒌𝒂

𝒎𝒂
 , 𝑿 = 𝟎 , 𝑿𝒂 = −

𝑭𝟎

𝒌𝒂
 

 

Then, for designing an absorber the following parameters should be considered: 

1) 
𝑘𝑎

𝑚𝑎
=  𝜔𝑛𝑎

2 = 𝜔𝑛
2 =

𝑘

𝑚
 

2) 𝑋𝑎<= specified space  (half/less of the given space) 

3) 𝜔𝑛1 − 𝜔𝑛2 ≥ minimum specified 

 

 
 

Figure 2: frequency domain for a system with two degree of freedom 

 

Which the last one can be shown in the form of  𝜗 =
𝑚𝑎

𝑚
  𝑎𝑛𝑑  

𝜔𝑛1−𝜔𝑛2

𝜔𝑛
=  𝜗 

However, for an absorber with nonlinear spring, the method (analysis of the absorber) will slightly be different as there is 

no a straight analytical solution for the equations of motions (depends on the nonlinearity of the absorber). The definition of 

𝜔𝑛𝑎 =  
𝑘𝑎

𝑚𝑎
 will not be straight forward anymore and 𝜔𝑛𝑎  will change with the amplitude of vibration. In the 

next,When𝜔𝑛1 and 𝜔𝑛2are the two natural frequencies of the two degree of freedom system, it can be seen from Eqn. 1 

that when the excitation frequency 𝜔 equals either of 𝜔𝑛1 or 𝜔𝑛2, resonance takes place.  

 

The following example clarifies the above concepts for a system with linear absorber, assume that:  

𝑘1 = 10000
𝑁

𝑚
𝑘2 = 3850 

𝑁

𝑚
𝑎nd 𝑚1 = 1𝑘𝑔𝑎𝑛𝑑𝑚2 = 0.3850𝐾𝑔 this gives: 

𝜔𝑛𝑎 =  
𝑘𝑎

𝑚𝑎
=  

3850

0.385
= 100 rad/s𝑎𝑛𝑑𝜔𝑛 =  

𝑘1

𝑚1
=  

10000

1
= 100 rad/s 

Which means the absorber is tuned to the main system. Therefore, 𝜔𝑛1 and  𝜔𝑛2 for this system are, 73rad/s and 135rad/s 

respectively as in  

𝑘𝑥 

𝑥 

𝑥𝑎  

𝑘𝑎(𝑥𝑎

− 𝑥) 𝑘𝑎(𝑥𝑎 − 𝑥) 

𝑓0 sin𝜔𝑡 𝑓0 sin𝜔𝑡 
 

 
 

𝑘 𝑘𝑎  
m 

 

m 𝑚 𝑚𝑎  
𝑚 

𝑚𝑎  
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Figure 2. The forced response for this system is shown above: 

If 𝑚𝑎and 𝑘𝑎   are chosen such that 𝜔 =  
𝑘𝑎

𝑚𝑎
, then, X1 = 0 , that is, the first mass does not vibrate at all.So, if the main 

system is a SDOF mass spring (𝑚1,  𝑘1) system subjected to a vibratory excitation frequency  𝜔, then by connecting it to a 

second mass spring (𝑚𝑎 ,  𝑘𝑎) system with 𝜔 = 𝜔𝑛𝑎 =  
𝑘𝑎

𝑚𝑎
=  

𝑘1

𝑚1
,  the main system will stop oscillating under this 

excitation. So, the connected mass spring system is serving as a TVA.  

𝝎𝐧𝐚 =  
𝒌𝐚

𝒎𝐚
           and           𝝎𝐧 =  

𝒌𝟏

𝒎𝟏
Eqn.3 

 Where, 𝜔n  is the main system’s natural frequency and 𝜔na  is the absorber’s natural frequency. 

At 
𝜔

𝜔na
= 1, a zero response can be gained.  

 

The zero response cannot be gained when damping is presented to the main system at 
𝜔

𝜔na
= 1. But, low response will be 

delivered for a range of frequenciesaround
𝜔

𝜔na
= 1. 

 
 

Figure 3: comparison of domain of vibration between a linear absorber system with damping and without damping. 

 

Non-linear spring 

The characteristics of non-linear magnetic spring were first calibrated by measuring the maximum amplitude of the system 

when the load was varied and found that, it is a hardening spring. This kind of spring is ideal to be added in parallel to the 

spring of a single degree of freedom system (SDOF) to control unwanted vibration. In SDOF system, when the amplitude 

of vibration is minimal, the nonlinear spring shows low stiffness and barely affects the stiffness of the system. To achieve 

this goal, it has been decided to use some parts of the working domain of the nonlinear spring which shows the softening 

behaviour. The non-linearity of the spring was modelled and a graph as in  

Figure 4 has been obtained by means of best curve fitting with 11
th

 order. 

 

Table 01: Calibration data for non-linear magnetic spring 

 

X (m) F (N) X (m) F (N) 

0 0 0.0138 33 

0.00126 1 0.0151 36 

0.00217 2 0.0164 38 

0.00323 2.5 0.0178 40 

0.00445 3 0.019 42 

0.00562 5.4 0.02015 42 

0.00712 8.2 0.02118 43 

0.00853 11 0.0222 43.9 

0.00958 17 0.02337 43.5 

0.01027 21 0.0247 44 

x/x0 

𝝎
𝝎𝒏𝒂  
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0.0118 25 0.0258 44 

0.0128 28.5   

Based on the curve, it is clearly seen that the effective operational amplitude domain of the non-linear system is from 0 to 

15mm. The regions of 0-5mm, 5-10mm. 10-15mm represent high, medium and low stiffness respectively. 

 

 
 

Figure 4: Modified non-linear calibrated curve 

 
The curve fitting on graph  

Figure 4, produces a polynomial of order 11
th

 for the nonlinear spring with softening behaviour that its coefficients are 

documented in  

Table2. The mathematical model for the solution is given by: 

𝑓 𝑥 = 𝐴11x11 + A10x10 + A9x9 + A8x8 + A7x7 + A6x6 + A5x5 + A4x4 + A3x3 + A2x2

+ A1x + A0 

Eqn. 04 

 

Table2: Polynomial solution of modified non-linear data 

 

coefficient value 

A0 0.002896853 

A1 3874.69756 

A2 -2590.56601 

A3 -47765585.5 

A4 257588759.9 

A5 6.26569E+11 

A6 -7.7201E+12 

A7 -4.93E+15 

A8 8.69E+16 

A9 1.79E+19 

A10 -3.24E+20 

A11 -1.86E+22 

 

The effective stiffness of the nonlinear Mag-spring can be achieved by running the vibrating system with constant forces in 

time domain and calculate the related amplitude at each force.   

Figure 5 shows how the Mag-spring nonlinearity is changing with displacement. As it can be seen from the graph, the 

stiffness of the spring is from 3800N/m to 100N/m while the displacement is changing from 0 mm to 12 mm.  

 

The non-linear stiffness obtained is then substituted in the main governing equations of two- dimensional non-linear 

system, which are: 
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𝑚1𝑥 1 + 𝑘1𝑥1 − 𝑓(𝑥1 , 𝑥2) = 𝐹0sin⁡(𝜔𝑡) Eqn. 05 

𝑚2𝑥 2 + 𝑓(𝑥1 , 𝑥2) = 0 Eqn. 06 

 

 
 

Figure 5: Graph of nonlinear stiffness (Softening behaviour) 

 

Solving two-dimensional non-linear vibration-absorber system in MATLAB 

Convergence criteria and maximum permissible time step 

The equations are second order derivative of the displacement of the mass in the main system,𝑥1(𝑡), and of the absorber 

mass, 𝑥2(𝑡), in time domain. To find the solution for these two differential equations, Matlab ode45 function is used. This 

function needs three sets of inputs; first, the differential equation itself, secondly, the initial time and final time and lastly, 

the initial velocity and initial displacement. As 𝑥2(𝑡) and 𝑥1(𝑡) in these equations are dependent on each other, they cannot 

be integrated separately in time domain. In this case if the time steps are small enough, it is possible to solve each equation 

separately and assume the other parameter is constant. The initial time t, and the final time is chosen t+dtat ode45. The 

criterion is chosen in a way that the difference between the integrated parameters in the two consecutive iterations should 

be less than 1% of the previous value. 1% has been found realistic after several runs. The size of time step itself is an 

important issue as well. In our cases the values of dt=0.001 for time step was chosen, as the dt=0.01was not converging 

well. This process is shown in the inner loop of flow diagram of Figure 8.  

 

Steady state solution and light damping 

To reach a steady state response, light damping should be added to the differential equations of the system. In the results 

section, the effect of light damping on a system with two degrees of freedom is depicted. An important issue is to know 

how many time steps should be taken before reaching to a steady state solution in time domain. To check the steady state 

conditions in the response of the differential equations, two schemes can be used. In the first scheme, the time domain of 

the results at extreme parts is checked visually to make sure that the results are converged to a steady state solution before 

picking the maximum amplitude. In the second scheme a certain criteria is introduced to distinguish the steady state 

situation with the program itself. In this method, the last three maximum amplitude in time domain is stored in three 

different variables and as the steady state condition, the difference between the first and third maximum should be less than 

a one percent of the maximum amplitude (this value could be different if more accurate results required). The position this 

condition needs to be checked has been shown with ―Check steady state‖ in the program flow diagram on Figure 8. When 

this criterion is fulfilled, the program stop time marching and will start to simulate the next excitation frequency. 

 

Time domain to frequency domain criteria 

The expectation from the solution is to display the result in frequency domain. This expectation can be realized by coding 

that screens through all the amplitudes obtained for one set frequency to determine the maximum value. By other words, 

firstly in each frequency of excitation (𝜔) the converged time domain of the solution for both the absorber and the main 

system is calculated and secondly the maximum of this solution selected as the amplitude related to each frequency of 

excitation. Final results will be the amplitude of vibration verses the frequency or the frequency domain results. 

 

Flow diagram of the program 

The flow diagram of the steps taken by the program is shown on Figure 8. The aim is to find the amplitude of the vibration 

of the main system and the absorber for a range of the forced excitation from 𝜔=1 to 500 rad/s. The flow diagram starts by 

defining initial parameters. There are three types of parameters. The first group are the initial conditions (initial 

displacement and initial velocity for the main system and absorber), the second group are the constant parameters (damping 

ratio, mass and stiffness of the main system and absorber and amplitude of the force, F0). The third group are the program 

counters and controller. 
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The main part of the flow diagram consists of three loops in each other. The inner loop with the k as the counter checks the 

convergence of the displacement at each time step, the loop in the middle, time loop, created the time domain response at 

each frequency of excitation. And it will stop if the response has reached to the steady state response. The outer loop, 

frequency loop, gives the frequency domain of the system. In this loop for each frequency of excitation the time loop is 

started from the beginning and the maximum domain of the time response at that frequency will store as the amplitude 

related to that frequency of excitation. The solutions obtained from the procedure illustrated on Figure 8 and explained in 

next section are analysed in the MATLAB program. 

 

State space variables 

To solve the differential equations in matlab, it is needed to write the equations in the State space form in different 

functions (file).  As for a two degree of freedom system there are two differential equations then two functions have been 

defined as follows:The first function is related to the main system and is shown as ―myfunc_x1‖. This function will be 

called from the main matlab program through the ode45 function. It needs the initial conditions and time domain intervals 

as inputs. The output of this function will be displacement ―y1(1)‖ and first derivate of the displacement ―y1(2)‖ of the 

differential equation in time domain.   

 

function y1dot=myfunc_x1(t1,y1) 

global x_2 x_2dot wn m1 k1 k2 m e w a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 EQN damp1 damp2 

F0=2; 

y1d1=y1(2); 

y1d2=-k1/m1*y1(1)+(((a11*(x_2-y1(1))^11)+(a10*(x_2-y1(1))^10)+(a9*(x_2-y1(1))^9)+(a8*(x_2-y1(1))^8)+... 

    (a7*(x_2-y1(1))^7)+(a6*(x_2-y1(1))^6)+(a5*(x_2-y1(1))^5)+(a4*(x_2-y1(1))^4)+... 

    (a3*(x_2-y1(1))^3)+(a2*(x_2-y1(1))^2)+((x_2-y1(1))*a1)+a0)/m1)+((1/m1)*F0*sin(w*t1))+... 

    -y1(2)*(damp1/m1)+(damp2/m1)*(x_2dot-y1(2)); 

%//// 

y1dot=[y1d1;y1d2]; 

  

The second function is related to the absorber and is shown as ―myfunc_x2‖. The state space form of the absorber 

differential equation is as follows: 

function y2dot=myfunc_x2(t2,y2) 

global  x_1 x_1dot m2 k1 k2 m e w a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 EQN damp2 

y2d1=y2(2); 

y2d2=-((a11*(y2(1)-x_1)^11)+(a10*(y2(1)-x_1)^10)+(a9*(y2(1)-x_1)^9)+(a8*(y2(1)-x_1)^8)+... 

    (a7*(y2(1)-x_1)^7)+(a6*(y2(1)-x_1)^6)+(a5*(y2(1)-x_1)^5)+(a4*(y2(1)-x_1)^4)+... 

    (a3*(y2(1)-x_1)^3)+(a2*(y2(1)-x_1)^2)+((y2(1)-x_1)*a1)+a0)/m2-(y2(2)-x_1dot)*damp2/m2;  

% end 

y2dot=[y2d1;y2d2]; 

 

Results 

Nonlinear Mag-spring 

The nonlinear Mag-spring is tested as vibration absorber in this research, therefore, it is necessary to defined the system 

parameters; like proper absorber mass and light damping before any further analysis and comparison with linear absorber. 

To select a proper light damping for the system, the effect of damping ratio, on a nonlinear vibration absorber is 

investigated. The absorber mass has been defined for this nonlinear system, with analogy to a linear vibration absorber. 

 

After defining the proper parameters for the nonlinear vibration absorber, a comparison with a linear absorber has been 

conducted. In the first place, the frequency response of a main system with a linear and nonlinear softening stiffness has 

been compared at different amplitude of excitation. In the second stage, mass ratio as an important parameter to control the 

vibration cancellation range of an absorber has been presented for a linear and nonlinear vibration absorber. Finally, a few 

theoretical methods are suggested to improve the nonlinearity of the spring in a way to have a self-regulating absorber in a 

wider working cancellation range of the absorber. To achieve this goal, the written MATLAB program was run several 

times and the results are presented in the following subsections. 

 

Effect of damping ratio 

It has been shown that one of the important parameter to define a proper TVA system is the damping ratio. Vibration 

absorber without damping has a very narrow range of vibration cancellation and a small change in excitation frequency 

could lead to a very high magnification ratio. Even in the linear absorber finding an optimum damping ratio to design an 
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effective absorber is a complicated issue and has not been fully resolved (Liu and Coppola 2010). However, in this section 

using damping ratio is limited only to lead the response of the system to a steady state solution; therefore light damping 

concept has been considered for this issue. 

 
 

Figure 6: Main system, Amplitude of Vibration in system with a nonlinear absorber verses frequency of excitation, 

𝑭𝟎=5N. 

 
 

Figure 6 shows the amplitude of vibration of the main system verses excitation frequency for various damping ratios. In this 

figure, the main system stiffness and mass are 10000N/m and 1 Kg respectively; therefore, the natural frequency of the 

main system is 100rad/s. To make an easier comparison, the same values have been chosen similar to the previous 

studies.As it can be seen from the  

Figure 7; low damping lead to a better cancellation at the natural frequency of the main system and vice versa, however, 

higher damping ratio reduce the amplitude of the vibration significantly, specially the second peak. As in the linear system, 

finding an optimum damping ratio to suppress amplitude at resonance with lowest cancellation amplitude could be a 

potential for another research, which is not the subject of this study (here just light damping has been used to lead the 

response to a steady state solution).  

 

The amplitude of vibration verses frequency of excitation of the absorber has been shown in  

Figure 7 at various damping ratios. 

 

 
 

Figure 7: Nonlinear absorber, Amplitude of Vibration verses frequency of excitation, 𝑭𝟎=5N 

 

As it can be seen from the  

Figure 7, at higher damping ratio the second peak nearly disappeared. Also, the first peak has been reduced significantly by 

increasing the damping ratio. It can be concluded, in contrast with the main system; increasing damping ratio just has 

positive effect on amplification of the absorber at all frequency of excitation and could lead to a more stable situation. 
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Solving 2-DOF

Initialisation

t = 0

k=0

ω = 0

ω0= 0

x1
k 
= 0

x2
k 
= 0

xdot1 = 0

xdot2 = 0

ω_end = 20

dt=0.001

dω=1
ω1=1Kg

m2=0.385kg

damping 

ratio=0.05

t=0
ω = ω + dω

k=0

t = t + dt

Solve the ode45 – absorber 

 Compute x2
k 

while x1
k-1 

= constant, At time t

Solve the ode45 - main system  

Compute x1
k 

 while x2
k 
= Constant, At time =t

Check x1
t
 , x2

t

Steady state 

Storing Max x1and Max x2

 at steady state condition

 at each frequency 

x1
ω
 =Max x1

t
 

x2
ω
 =Max x2

t

ω = ω_end?

Display max x1, max x2 at

 frequency domain 

Obtain solution for 2DOF with 

linear and non-linear absorber

No

No

Yes

Yes

Convergence criteria

Compute abs(diffx2)= x2
k 
-x2

k-1

Compute abs(diffx1)= x1
k 
-x1

k-1

Convergence check

diffx2< x2
K
/100

diffx1< x1
K
/100

x2
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=x2
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=x1
k
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K
 

 x2
t
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Figure 8: Program flow to solve 2-DOF 
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Definition of the absorber mass with nonlinear stiffness 

One of the important issues to deal with a nonlinear absorber is tuning the absorber to the natural frequency of the main 

system.  

Figure 9 shows the amplitude of the main system when the Mag-spring is used as a nonlinear absorber. As it can be seen 

from the figure, different masses have been used for a single nonlinear absorber and the results are showing that none of the 

cases has tuned 100% to the natural frequency of the main system.   

 

 
 

Figure 9: Amplitude of the main system with nonlinear absorber with different mass ratio at frequency domain. 

𝑭𝟎=5N and a light damping ratio=0.05 

 

 

Figure 9 shows that the best mass for the absorber to be tuned with the main system is between mass ratio of 40% and 30% 

and the lowest amplitude of vibration for these two cases is between 95 rad/s and 110 rad/s respectively.  

 

 
 

Figure 10: Amplitude of vibration verses the frequency of excitation for different mass ration at natural frequency 

of the main system (100 rad/s). 

 

It has been found in this case that to tune a nonlinear absorber with the main system natural frequency, The mass ratio value 

for the nonlinear absorber should be matched with the gradient of force displacement graph ( 

Figure 4) at the near zero displacement  or the stiffness of the origin of nonlinear stiffness graph ( 

Figure 5). For instance, Mag-spring nonlinearity starts with 𝑘 = 3850N/m. Therefore, the proper mass for the absorber is 

0.3850 to tune the main system with the natural frequency of the 100 rad/s. 

Figure 11 depicts the amplitude of vibration verses excitation frequency for the nonlinear absorber with different mass 

ratios. As it can be seen, the system with lower mass ratio will produce higher amplitude for the absorber and vice versa.  
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Linear verses nonlinear absorber 

In this section, the performance of the Mag-spring as a nonlinear absorber is compared with a linear absorber with 

𝑚𝑎=0.385kg and 𝑘𝑎=3850N/m attached to a main system with the stiffness of 10000N/m and mass of 𝑚=1 kg. however, 

about the parameters of the absorber are totally different. As it has been discussed in the previous section, the optimum 

mass ratio (𝑚2) for this Mag-spring as a nonlinear absorber is equal to 38.5% of the main system mass. This mass tunes the 

absorber to the main system natural frequency. The natural frequency of the main system is 100 rad/s.  

Figure 10, shows how the nonlinear absorber with 𝑚2= 0.385kg is making the lowest amplitude for the main system at its 

natural frequency, hence tunes well with the main system. Therefore, for a proper comparison, the mass of the linear 

absorber is selected to be 38.5% of the main system; hence the stiffness of the linear absorber should be 3850N/m. By 

selecting these parameters for the linear absorber, the natural frequency of the absorber and the main system become same 

as 100rad/s. 

 

 
 

Figure 11: Amplitude of a nonlinear absorber verses frequency at different mass of absorber. 𝑭𝟎=5N and light 

damping ratio = 0.05 

 

 
 

Figure 12: Magnification ratio of the main system (𝒌=10000N/m and 𝒎=1Kg) verses frequency of excitation in two 

cases: first with a linear absorber with 𝒌=3850N/m and 𝒎=0385Kg; second, with Mag-spring as an absorber with 

nonlinear stiffness and 𝒎=0.385Kg. Damping ratio=0.035 and 𝑭𝟎=2N. 

 
 

Figure 12 and  

Figure 13 show the magnification ratio of the main system response with a linear and nonlinear absorber. Both figures 

show that the range of vibration cancellation is clearly wider after magnification ratio of one. For instance, at 80 rad/s 

frequency of excitation (with 𝐹0=5N and damping ratio=0.05), the magnification ratio in a system with linear absorber is 

3.2; however, for the system with nonlinear absorber the magnification is 2, which shows about 60% reduction in 

magnification ratio, which is a significant value. Although this improvement is not a constant improvement, this could be as 
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high as 15times reduction in amplification ratio at excitation frequency of 74 rad/s(natural frequency of the two degree of 

freedom system), or as low as zero at 100 rad/s (which is the natural frequency of the main system). i.e. these values are 

different from frequency to frequency and depend on systems parameters.In addition, the maximum amplification of the 

system with nonlinear absorber has been reduced significantly at the same damping ratio and excitation amplitude. 

Moreover, the main natural frequency of the system has been shifted away from the natural frequency of the main system 

between 5% to 10% depending on the system parameters. In other words, if a nonlinear stiffness is designed properly for 

working conditions, it could work better than a linear absorber.It is worth to notice that in linear tuned vibration absorber, 

the excitation force is not an important issue, as long as using the non-dimensional parameters (like the magnification 

ratio). However, in a system with nonlinear absorber, excitation force amplitude is important. In other words, when the 

force is higher,different level of nonlinearity of the absorber will be used.  When high force is applied to the system, it will 

cause higher amplitude which in turn will deflect the nonlinear spring more. As a result, the nonlinearity will be allowed to 

play a larger role in the vibration cancellation process. So, when the involvement of the nonlinear effect is enlarged by the 

high force amplitude, oscillation displacement will be observed of being forced to be suppressed and minimized.It can be 

concluded, that it is really beneficial to make the nonlinear effect kicks in as soon as possible, which in turn will accelerate 

the vibration cancellation process. In other words, shortening the displacement required to hit the nonlinearity starting point 

will make the vibration cancellation faster and better. 

 

 
 

Figure 13: Magnification ratio of the main system (𝒌=10000N/m and 𝒎=1Kg) verses frequency of excitation in two 

cases: first with a linear absorber 𝒌=3850N/m and 𝒎=0385Kg; second, with Mag-spring as an absorber with 

nonlinear stiffness and 𝒎=0.385Kg. Damping ratio=0.05 and 𝑭𝟎=5N. 

 

Mass ratio study of linear and nonlinear absorber 

In this section, the mass ratio as an important parameter in TVA has been discussed. Role of mass ratio in nonlinear 

absorber is slightly different from a system with linear absorber as stiffness of the nonlinear absorber is not constant and 

tuning the absorber and main system has a bit more difficulty. 

Figure 14shows the effect of damping ratio on the range ofcancelation for a main system with linear tuned vibration 

absorbers and different mass ratio. It is clear from the graph that all the absorbers has the same natural frequency and hence 

tune with the main system.However,  

Figure 9, shows a nonlinear absorber system with different mass ratio; according to the graph, the absorber natural 

frequency is different from the main system depends on the mass ratio.  
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Figure 14: Amplitude of the main system (𝒌=10000N/m, 𝒎=1Kg) with linear absorber with different mass ratio (and 

stiffness) verse the frequency of excitation, 𝑭𝟎=2N and damping ratio is 0.05. 

 
Although the nonlinear absorber could work with different mass ratio in an acceptable range, it is recommended that a 

nonlinear absorber is to be used with an absorber mass which gives a wider range of cancelation around the natural 

frequency of the main system depends on expected frequency of excitation.  

Figure 15 and  

Figure 10 compare the behaviour of the main system with a linear absorber and a nonlinear absorber. In the linear absorber, 

all the system’s responses provided with different mass ratios has minimum amplitudes of vibration around the natural 

frequency of the main system.To have a fair comparison between vibration absorbers with linear and nonlinear stiffness, the 

behaviour of the main system (𝑘=10000N/m, 𝑚=1Kg) with a linear absorber (𝑘=3850N/m) at different mass ratios is 

studied. 

 

Figure 16 and  

Figure 9 show linear and nonlinear vibration absorber, both have similar behaviour when one single spring has been used 

with different mass ratio; however, the cancellation range of the system with nonlinear absorber is about 5% wider ( 

Figure 17), also the amplitude of vibration is significantly lower (at similar conditions) than the system with linear mass 

ratios, especially at higher values for the absorber mass. That is due to the nonlinearity in the absorber stiffness, which 

increases when the vibration amplitude get larger. High amplitudes make the nonlinear spring to deflect more, which in turn 

allows the nonlinear range of the spring to play a larger role in suppressing the high amplitude, which will make the 

cancellation range wider. This can be noticed when looking at  

Figure 17, that at the first peak of vibration, the nonlinear effect shows a better response in widening the cancellation range 

than the second peak due to the larger amplitude.  
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Figure 15: Closer look to the amplitude of the main system (𝒌=10000N/m, 𝒎=1Kg) with linear absorber with 

different mass ratio (and stiffness) verse the frequency of excitation, 𝑭𝟎=2N and damping ratio is 0.05. 

 

 
 

Figure 16: Amplitude of vibration of the main system (𝒌=10000N/m and 𝒎=1Kg) with an absorber (𝒌=3850N/m 

with different mass) verses the frequency of excitation 𝑭𝟎=2N, damping ratio0.05. 

 
 

Figure 17: a two degree of freedom system natural frequencies verses the mass ratio of a linear (𝒌=3850N/m) and 

nonlinear (Mag-spring) vibration absorber. 𝑭𝟎=2N, damping ratio=0.05. 
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Figure 17 compare the natural frequencies of a system with linear and nonlinear absorber at equivalent conditions, i.e. main 

system (𝑘=10000N/m, 𝑚=1Kg), excitation force (𝐹0=2N), light damping ratio= 0.05. As it can be seen from the graph, the 

second natural frequency for a linear and nonlinear absorber is nearly the same. 

 

Amplitude of vibration of the tuned nonlinear vibration absorber verses the frequency of excitation for two different 

nonlinear absorbers is shown on  

Figure 18. To simulate this situation it has been assumed that two nonlinear springs have been used on parallel as an 

absorber. Comparison of  

Figure 14 and  

Figure 18 for tuned vibration absorber with linear and nonlinear absorber show that the nonlinear absorber could have at 

least about 5% improvement in widening the range of natural frequencies (the frequency gap between the two natural 

frequencies) of the system ( 

Figure 19), apart from lowering the amplitude of vibration at system natural frequencies.  

Figure 19 shows the natural frequency of a tuned vibration absorber system with linear and nonlinear absorber, as it can be 

seen the nonlinear absorber (especially at higher mass ratio and lower frequency of the system which is most important) is 

widening the frequency gap between the natural frequencies of the tuned vibration absorber system with two degree of 

freedom. The lowest natural frequency of the system with nonlinear absorber is about 5% lower than a system with linear 

absorber in the same conditions, which is a significant improvement. 

 

 
 

Figure 18: Amplitude of vibration of the main system (𝑲=10000N/m, 𝒎=1Kg) verses frequency of excitation, 𝑭𝟎=2N, 

of a tune vibration absorber for two different nonlinear stiffness; damping ratio=0.05 
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Figure 19: a tuned two degree of freedom system natural frequencies verses the mass ratio of a linear and nonlinear 

(Mag-spring) vibration absorber. 𝑭𝟎=2N, damping ratio=0.05. 

 

CONCLUSIONS 

 

In this study, Mag-spring as a new application of magnetic spring is introduced as a nonlinear softener absorber for the first 

time. The coordinate of the mag-spring is shifted to a new point, it will work as a softening spring. The non-linearity of the 

spring was modelled and observed hat curve fitting is best with 11th order. The lower the amplitude of absorber, the higher 

is the stiffness and the higher the amplitude of absorber, the lower the stiffness. 

 

The program which was written to simulate the behaviour of a system with two degree of freedom solved the nonlinear 

differential equation of the primary system and the nonlinear absorber simultaneously. At this iterative program, for all 

frequency of excitation, the time domain of the amplitude of vibration of the main system and the absorber iteratively was 

calculated. As the two differential equations are coupled in time domain as well as frequency domain; another inner 

iterative time loop is used. As a result, time increment is depended to the convergence of the differential equation at the 

current time. Finally, the maximum amplitude of the response at steady state time domain (at each frequency of excitation) 

is used to produce the frequency domain of the amplitude of the system. 

 

Finally, the Program was run several times, with different parameters with linear and nonlinear absorber to check the 

effectiveness of using a nonlinear absorber. It was shown how the light damping coefficient has been used to reach to a 

steady state response. Also it has been shown how the mass ratio will be defined for a nonlinear absorber to be tuned to the 

primary system. The nonlinear Mag-Spring behaviour has been compared to an equivalent linear absorber. 

 

Finally, 4 different ideal nonlinear stiffness curves were introduced to be used as vibration absorbers. The response of these 

various nonlinear verses frequency of excitation is compared with the nonlinear Mag-spring response and a linear response 

as well. The utilised techniques in providing the stiffness curves were found to give encouraging results in regard of 

vibration cancellation.   
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