

"Method Development and Validation of Stability-Indicating RP-HPLC Method For Zonisamide and Cilostazol in Synthetic Mixture"

Joshi Asha¹, Tarai Dhirendra Kumar²

¹Dept. of Pharmaceutical Quality Assurance, Noble Pharmacy College, Bamangam, Dist. Junagadh, Gujarat, India ²M.pharm, Assistant Professor, Dept. of Pharmaceutical Chemistry, Noble Pharmacy Collage, Bamangam, Dist. Junagadh, Gujarat, India

ABSTRACT

A simple, rapid, economical, precise, and accurate Stability indicating RP-HPLC method for simultaneous estimation of Zonisamide and Cilostazole synthetic mixture. Has been developed. The method has shown adequate separation for Zonisamide and Cilostazole from their degradation products. The separation was achieved by hyper sail BDS C 18 (250mm x 4.6 mm, 5 μ m) column and Buffer (Potassium Phosphate, pH 4.0): Methanol (60:40) as mobile phase, at a flow rate of 1 ml/min. Detection was carried out at 236 nm. These drugs were subjected to hydrolysis, oxidation, photolysis, and thermal to apply stress conditions.

Key Words: Zonisamide, Cilostazol, Stability indicating RP-HPLC Method, HPLC method, ICH Q2 (R1) guidelines.

INTRODUCTION

Definition of Alzheimer's disease. [01-03]

Alzheimer's disease is a progressive neurologic disorder that causes the brain to shrink (atrophy) and brain cells to die. Alzheimer's disease is the most common cause of dementia a continuous decline in thinking, behavioral and social skills that affect a person's ability to function independently. Approximately 5.8 million people in the United States age 65 and older live with Alzheimer's disease. Of those, 80% are 75 years old and older. Out of the approximately 50 million people worldwide with dementia, between 60% and 70% areestimated to have Alzheimer's disease. The early signs of the disease include forgetting recent events or conversations. As the disease progresses, a person with Alzheimer's disease will develop severe memory impairment and lose the ability to carry out everydaytasks. Medications may temporarily improve or slow the progression of symptoms. These treatments can sometimes help people with Alzheimer's disease maximize function and maintain independence for a time.

Introduction To Stress Degradation Study^[22]

According to an FDA guidance document, a stability-indicating method (SIM) is defined as "a validated quantitative analytical procedure that can detect the changes with time in the pertinent properties of the drug substances and drug product". A stability-indicating method accurately measures the active ingredients, without interference from degradation products, process excipients, impurities, or other potential impurities. The ICH guidelines Q1A(R2) (2003) elaborate on stability testing of APIs "s and drug products to determine storage conditions, retest period, maximum expiring dating period of drug products, correctpackaging to protect the product, and transport conditions.

Forced degradation study:

The major routes of degradation of any drug substance include hydrolysis, oxidation, heat, and photolysis.

RESULT AND DISCUSSION

Drug Identification

The identification of drugs was carried out by performing melting point determination, solubility study, and taking IR and UV spectra as preliminary work which showed no following results.

Melting Point Determination

The melting point of Zonisamide and Cilostazole have been determined using Capillary Method.

Table : Melting Point of Drugs

Drug Name	Reported (°C)	Observed (°C)
Zonisamide	161-163°C	163 °C
Cilostazol	159°C	158°C

Observation: The melting point of Zonisamide and Cilostazole was found to be in the range of acceptance criteria as shown in the above table.

Solubility Study

Table : Solubility Data of Zonisamide and Cilostazole

Solvent	Solubility		
	Zonisamide	Cilostazole	
Water	Very slightly soluble	Slightly soluble	
Acetonitrile	Soluble	Freely Soluble	
Methanol	Freely soluble	Soluble	

Identification by IR Spectroscopy Zonisamide

Table : IR Interpretation of Zonisamide

Fig : IR Spectra of Sample Cilostazole Table : IR Interpretation of Cilostazole

2200

1800

1400

1000 800 600 400

Functional Group	Frequency (cm ⁻¹)
N-H stretching	3200
C=C stretching	1446-1621
C-N stretching	1044=1244

METHOD DEVELOPMENT

Selection and Detection of Wavelength

3800

3400

3000

2600=

The sensitivity of the HPLC method that uses UV detection depends upon the proper selection of detection wavelength. An ideal wavelength is the one that gives a good response to the drugs that are to be detected. At 236 nm both drugs give a good response and also degrade product detected at this wavelength. So 236 nm was selected for stability-indicating simultaneous estimation of Zonisamide and Cilostazole in synthetic mixture.

Wavelength Determination

UV spectra of Zonisamide and Cilostazole were taken in Methanol and λ max was observed using Systronic 119

Observation

Zonisamide and Cilostazole both drug give higher absorbance at 236 nm. So 236 nm has been selected as detection wavelength. Note: All the chromatograms are shown at wavelength of 236 nm. So, 236 nm is shown in final optimized method.

FORCED DEGRADATION STUDY

The sample was injected under various stress conditions. Here, chromatograms of optimized degrade conditionstion are shown.

Sr. No.	Stress Type	Stress Condition
1	Acid hydrolysis	0.1 N HCl at 70 °C for 4 hr.
2	Base hydrolysis	0.1 N NaOH 70 °C at for 3 hr.
3	Oxidative Degradation	3 % H2O2 at 70 °C for 2 hrs.
4	Thermal Degradation	105 °C for 3 hrs
5	Photolytic Degradation	UV for 8 hrs

Table : Different Degradation Conditions

Zonisamide and Cilostazole Standard for stability

Zonisamide and Cilostazole Sample for Stability

Zonisamide and Cilostazole Acid Degradation Blank

Zonisamide Acid Degradation Standard at 4 hrs.

Cilostazole Acid Degradation Standard at 4 hrs.

Zonisamide and Cilostazole Acid Degradation Sample at 4 hrs.

Observation

All solution has been reacted with 0.1 N HCl at 70 °C for 4 hours. 23.457% Zon and 19.28% Cilo have been degraded in a standard mixture. 24.563% Zon and 16.03% Cilo have been degraded in the sample mixture.

Chromatogram for Base Degradation

Zonisamide and Cilostazole Base Degradation Blank

Zonisamide Base Degradation at 3 hrs.

Cilostazole Base Degradation at 3 hrs.

Zonisamide and Cilostazole Base Degradation Sample at 3 hrs.

Observation

All solution has been reacted with 0.1N NaOH at 70 $^{\circ}$ C for 3 hours. 26.818% Zon and 11.03% Cilo have been degraded in the standard mixture. 25.955% Zon and 12.25% Cilo have been degraded in the sample mixture.

Chromatogram for Oxidative Degradation

Zonisamide and Cilostazole Oxidation Degradation Blank

Cilostazole Oxidation Degradation at 4 hrs.

Zonisamide and Cilostazole Oxidation Degradation sample at 2 hrs.

Observation

All solution has been reacted with 3% H2O2 for 3 hours at 70°C 19.176% Zon and 21.38% Cilo have been degraded in the standard mixture. 19.055% Zon and 22.32% Cilo have been degraded in the sample mixture.

Chromatogram for Thermal degradation

Zonisamide and Cilostazole Thermal Degradation Blank

Zonisamide Thermal Degradation at 3 hrs.

Cilostazole Thermal Degradation at 3 hrs.

Observation

All solutions have been kept at 105^oC for 3 hours in a constant temperaturewater bath 1.957% Zon and 2.55% Cilo have been degraded in the standard mixture. 3.851% Zon and 3.17% Cilo have been degraded in the sample mixture.

Chromatogram for Photolytic Degradation

Zonisamide and Cilostazole Photo Degradation Blank

Zonisamide Photo Degradation at 8 hrs.

Observation

All solutions have been kept under UV light for 8 hours 2.556% Zon and 1.31 % Cilo have been degraded in the standard mixture. 3.467% Zon and 2.45% Cilo have been degraded in the sample mixture.

Calculation for Stability

Drugs	Area
Zonisamide	2609.246
Cilostazol	1387.644

Table Zonisamide and Cilostazole Standard for Stability

Zonisamide % Degradation

Zonisamide					
Parameter	Standard		Sa	mple	
	Area %Degradation		Area	%Degradation	
Acid	1997.196	23.457	1968.338	24.563	
Base	1909.487	26.818	1932.007	25.955	
Thermal	2558.191	1.957	2508.756	3.851	
Oxidation	2108.892	19.176	2112.049	19.055	
Photo	2542.562	2.556	2518.784	3.467	

Cilostazole % Degradation

Cilostazole				
Parameter	Sta	Sample		
	Area	%Degradation	Area	%Degradation

Acid	1120.042	19.28	1165.267	16.03
Base	1234.564	11.03	1217.595	12.25
Thermal	1352.217	2.55	1343.593	3.17
Oxidation	1091.004	21.38	1077.94	22.32
Photo	1369.465	1.31	1353.703	2.45

Method Validation Specificity

Chromatogram of Zonisamide and Cilostazole Sample

Linearity and Range

Chromatogram of Zonisamide and Cilostazole Blank

Table Linearity Data for Zonisamide.

Sr. No	Concentration (µg/ml)	Area

1	12.5	1306.184
2	18.75	1929.307
3	25	2638.816
4	31.25	3150.319
5	37.5	3955.194
6	62.5	6595.817
7	75.0	7862.973

Linearity Data for Cilostazole

Sr. No	Concentration (µg/ml)	Area
1	12.5	681.427
2	18.75	1006.184
3	25	1375.925
4	31.25	1594.389
5	37.5	2061.696
6	62.5	3451.063
7	75.0	4114.731

Fig. Overlay chromatogram of different concentrations of binary mixtures of Zonisamide and Cilostazol

Calibration Curve of Cilostazole (12.5-75.0 µg/ml).

Precision Repeatability

Repeatability Data for Zonisamide.

Zonisamide					
Sr. No. Conc (μg/ml) Area Mean ± S.D (n=6) % R.S.D					
		2628.227			

1.	25.0	2633.585 2586.921 2644.136	2626.660±20.219	0.770
		2630.867 2636.221		

Repeatability data for Cilostazole

Cilostazole							
Sr No.	Conc (µg/ml)	Area	Mean ± S.D (n=6)	% R.S.D			
		1365.556					
		1355.670	_				
1.	25.0	1375.926	1370.361 ±8.470	0.618			
		1378.688					
		1371.784					
		1374.543					

Intraday precision data for Estimation of Zonisamide and Cilostazol.

Sr.	Zonisamide			Cilostazole			
No.	Conc. (µg/ml)	Area Mean ± S.D. (n=3)	% R.S.D	Conc. (µg/ml)	Area Mean ± S.D. (n=3)	% R.S.D	
1	12.5	1289.071 ± 8.346	0.647	12.75	675.412±6.343	0.939	
2	25.0	2609.733±20.069	0.769	25.5	1366.585±15.698	1.149	
3	37.5	3914.149±41.572	1.062	38.25	2043.460±19.374	0.948	

Interday precision

Interday Precision data for Estimation of Zonisamide and Cilostazol.

S	Zonisamide				Cilostazole			
Sr. No.	Conc. (µg/ml)	Area Mean ± S.D. (n=3)	% R.S.D	Conc. (µg/ml)	Area Mean ± S.D. (n=3)	% R.S.D		
1	12.5	1291.889±11.293	0.874	12.5	672.262±9.972	1.483		
2	25.0	2616.637.±33.942	1.297	25.0	1372.525±23.099	1.683		
3	37.5	3917.968±23.514	0.600	37.5	2041.072±18.026	0.883		

6.1.1. Accuracy

Recovery Data for Zonisamide.

Sr. No.	Conc. Level (%)	Sample amount (µg/ml)	Amount Added (µg/ml)	Amount recovered (µg/ml)	% Recovery	% Mean Recovery ± S.D
1		12.5	6.25	6.359	101.741	100.264 ± 1.655
2	80 %	12.5	6.25	6.155	98.475	
3		12.5	6.25	6.286	100.577	
4		12.5	12.5	12.677	101.414	100.508± 1.101
5	100 %	12.5	12.5	12.603	100.827	
6		12.5	12.5	12.410	99.283	
7	120 %	12.5	18.75	18.858	100.577	99.994 ± 0.644
8		12.5	18.75	18.619	99.303	
9		12.5	18.75	18.769	100.102	

Recovery Data for Cilostazol.

Sr. No.	Conc. Level (%)	Sample Amount	mount Added	Amount recovered (µg/ml)	% Recovery	% Mean Recovery ± S.D
1		12.5	6.25	6.362	101.785	100.156 ± 1.635
2	80 %	12.5	6.25	6.157	98.516	
3		12.5	6.25	6.260	100.167	
4		12.5	12.5	12.600	100.798	101.036 ± 0.584
5	100 %	12.5	12.5	12.713	101.701	
6		12.5	12.5	12.576	100.610	
7		12.5	18.75	18.785	100.189	99.464 ± 0.812
8	120 %	12.5	18.75	18.485	98.586	
9	1	12.5	18.75	18.679	99.619	1

LOD and LOQ Limit of Detection

Limit of Detection Data for Zonisamide and Cilostazol.

Zonisamide	Cilostazole
LOD = 3.3 x (SD / Slope)	LOD = 3.3 x (SD / Slope)
= 3.3 x (58.562/260.700)	= 3.3 x (50.111/133.900)
= 0.741 µg/ml	= 1.235 µg/ml

Limit of Quantitation

Limit of Quantitation Data for Zonisamide and Cilostazole.

Zonisamide	Cilostazole
LOQ = 10 x (SD / Slope)	LOQ = 10 x (SD / Slope)
= 10 x (58.562/260.700)	= 10 x (50.111/133.900)
$= 2.246 \mu g/ml$	$= 3.742 \ \mu g/ml$

Robustness

Robustness data for Zonisamide.

Sr No.	Area at Flow rate(- 0.2 ml/min)	Area at Flow rate(+ 0.2 ml/min)	Area at pH (- 0.2)	Area at pH (+0.2)	Area at Mobile phase(-2)	Area at Mobile phase(+2)
1	2726.090	2562.392	2694.242	2514.690	2696.866	2557.256
2	2693.081	2536.563	2655.831	2482.026	2657.852	2540.851
3	2746.918	2593.915	2726.090	2536.020	2717.819	2591.321

%	0.997	1.120				
R.S.D			1.307	1.083	1.131	1.004

Robustness data for Cilostazole

Sr No.	Area at Flow rate(- 0.2 ml/min)	Area at Flow rate(+ 0.2 ml/min)	Area at pH (- 0.2)	Area at pH (+ 0.2)	Area at Mobile phase(-2)	Area at Mobile phase(+2)
1	1393.284	1310.780	1372.748	1293.065	1369.052	1304.322
2	1426.891	1344.275	1413.130	1316.762	1408.879	1341.581
3	1432.351	1352.503	1421.411	1322.290	1417.146	1351.151
% R.S.D	1.492	1.654	1.857	1.184	1.839	1.857

Analysis of marketed formulation by the developed method.

The applicability of the proposed method was tested by analyzing the commercially available Tablet formulation Entresto. The results are show.

Analysis of Marketed Formulation.

ynthetic miyturo	Label claim		Assay (% of label claim*) Mean ± S. D.		
mixture	Zonisamide	Cilostazole	% Zonisamide	% Cilostazole	
	40mg	25mg	95.94 ± 1.07	98.31 1.28	

METHOD VALIDATION SUMMARY

Summary of Ciloidation Parameters of Stability Indicating RP-HPLC Method for Zonisamide and Cilostazol

Sr. No.	Parameter		Zonisamide	Cilostazol
1	Specificity		Specific	
2	Linearity & Range		12.5-75.0	12.5-75.0
3	Regression equation		y = 105.6x-40.235	y =55.419x-37.432
4	Correlation coefficient (r ²)		0.9995	0.9987
5	Precision (% RSD)	Repeatability	0.770	0.618

International Journal of Enhanced Research in Science, Technology & Engineering ISSN: 2319-7463, Vol. 11 Issue 5, May-2022, Impact Factor: 7.957

		Interday	0.600-1.297	0.883-1.683
		Intraday	0.647-1.062	0.939-1.149
6	Accuracy (% recovery)		99.994-100.508	99.464-101.036
7	Limit of Detection(LOD)		0.741 µg/ml	1.235 µg/ml
8	Limit of Quantification(LOQ)		2.246 µg/ml	3.742 µg/ml
9	Robustness (%	RSD)	The system suitability parameters were found well within the acceptance criteriaas per system suitability	

CONCLUSION

- Stability Indicating RP-HPLC methods have been developed and validated for the determination of Zonisamide and Cilostazole in a synthetic mixture.
- The methods are found to be specific as there was no interference of any co- eluting impurities after the stress degradation study.
- The degraded products are well resolved, indicating the method can also be useful for the determination of degraded products. The proposed method is found to be simple, accurate, precise, and robust.
- Hence, it can be used successfully for the routine analysis of Zonisamide and Cilostazole in a synthetic mixture. and for analysis of stability samples obtained during accelerated stability study

REFERENCES

- [1]. Ganguli M, Dodge HH, Shen C, Pandav RS, DeKosky ST.Alzheimer disease. *Archives of Neurology*. **2005**,779–784.
- [2]. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer's disease. *Lancet* 2011; 377:1019–1031.
- [3]. Aarsland D, Andersen K, Larsen JP, et al. Prevalence and characteristics of dementia in Parkinson disease: an 8year prospective study. Archives of Neurology. 2003;60:387–392.
- [4]. Akhondzadeh S, Noroozian M, Mohammadi M, et al. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer's disease: a double-blind, randomized and placebo-controlled trial. Journal of Clinical Pharmacy and Therapeutics. 2003;28:53–59
- [5]. Granic, I., Masman, M.F., Luiten, P.G.M, Eisel, U.L.M (2010). Braak staging in mouse models of Alzheimer's disease, *American Journal of Pathology*, 177 (4): 1603 1605.
- [6]. Lott IT, Head E (March 2005). "Alzheimer's disease and Down syndrome: factors in pathogenesis". *Neurobiology of Aging*. 26 (3): 383–389.
- [7]. Arnáiz E, Almkvist O (2003). "Neuropsychological features of mild cognitive impairment and preclinical Alzheimer's disease". *Acta Neurologica Scandinavica. Supplementum.* 179: 34–4.
- [8]. Albert MS, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimer's and Dementia.1016,2011
- [9]. Tripathi KD. Pharmacological Classification of Drugs; 6th Edition, Jaypee Brothers Medical Publishers, India, 2021, pp 1270-1279.
- [10]. Ahuja s. and Michael WD. Handbook of pharmaceutical analysis by HPLC; 1st edition Elsevier academic press, 2005, PP 44-45.
- [11]. Lough WJ, Wainer IW. In HPLC fundamental principles and practices; Blackie Academic and professional, 1991, pp 52
- [12]. USP 27/NF 22, United States Pharmacopoeial Convention, Rockville, Maryland, USA p. 2231(2003).
- [13]. Valko K, Snyder LR and Glajch J "Retention in reversed-phase liquid chromatography as a function of mobile phase composition" *J.chromatogr*, 1993 656(2), 501-520.

- [14]. Neue UD, HPLC columns theory, technology, and practice; John Wiley and Sons, New York, 1997.
- [15]. Gertz C. HPLC tips and tricks; alden press, oxford, 1990, PP 1-84.
- [16]. Dong WM. Modern HPLC for practicing scientist; a Wiley-inter science publication USA 2006,1-9.
- [17]. ICH guidelines (Q2) R1, text on validation of analytical procedure, methodology, international conference on harmonization Geneva, 2005
- [18]. Validation of Compendial Procedures The United States Pharmacopeia, 32th Rev. and The National Formulary, 27th Rev. Rockville, MD. The United States Pharmacopeial ConventionInc.2009; I 734.
- [19]. Validation of Analytical Procedures, Text and Methodology Q2(R1), ICH Harmonised Tripartite guidelines, International Conference on Harmonisation of Technical RequirementsFor Registration Of Pharmaceuticals For Human Use, 2005, 1.
- [20]. ICH, Validation of Analytical Procedures; Methodology, Q2 (R1), International Conference on Harmonization, IFPMA, Geneva 1996.
- [21]. FDA, "Guidance for Industry; Analytical Procedures and Methods Validation (Draft guidance), Food & Drug Administration", Rockville, US Department of Health and Human Services, 2000.
- [22]. Brummer H, "How to Approach a Forced Degradation Study", Life sci. tech bul., 2011.
- [23]. "Drug profile for Zonasimide", December 2021, https://go.drugbank.com/articles/A1384
- [24]. "Drug profile for Cilostazole", December 2021, https://go.drugbank.com/drugs/DB01166
- [25]. Indian pharmacopeia. Volume II, Ghaziabad: Indian pharmacopeia commission, 2018, pp3555.
- [26]. The United State Pharmacopeia 43, United state pharmacopoeial Convention, Inc. 2020.
- [27]. Kumar V, Dhore D, and Kumar M." HPLC Method for Simultaneous Determination of Impurities and Degradation Products in Zonisamide." *Indian.J.Pharma.Sci.*2009, 71 (5), 521-526.
- [28]. Maryam H, Alipour E and Arezou F." Determination and Validation of Zonisamide and its Four Related Substances by HPLC and UV-Spectrophotometry." *Indian J. Pharm. Sci.* **2010**,72 (3), 302-306.
- [29]. Rao U and Nikalje P." Determination of Furosemide and Zonisamide as a Drug Substance and in Dosage Form by Ion Pair –Reversed-Phase Liquid Chromatographic Technique." J.Applied Pharma.Sci.2012,02 (05),94-99.
- [30]. Yamini M, Kumar H, Rao S and Rao V." Determination of Zonisamide in Bulk and Pharmaceutical Formulation by UV Spectrophotometric Method." *Int. J. Pharm. Sci. Rev. Res.* **2019**,54(2), 79-83.
- [31]. Nimbokar S, Badukale N, Panchale W, Bakal R, Gudalwar B, and Manwar J." DevelopmentAnd Validation Of Rp-Hplc Method For Determination Of Zonisamide From Tablet Formulation." World.J.Pharma. &.Med.Res. 2021,7(2),196-200.
- [32]. Rani S, Rathna B, Kumar V, Venu P and Chandra S." A new RP-HPLC method development and validation for simultaneous estimation of lamotrigine and zonisamide in pharmaceutical tablet dosage formulations." *Int.Res.Pharma.Sci.*2015,6(2),139-144.
- [33]. Siddiqua H, Kumar S, Padavala C and Kauser R." Development and Validation of RP-HPLC Method for the Simultaneous Estimation of Bupropion and Zonisamide in Bulk and Tablet Dosage Form." *Int.J.Pharmacy.* & *Pharma.Res.* **2020**,19(2),253-270.
- [34]. Indian pharmacopeia. Volume II, Ghaziabad: Indian pharmacopeia commission, 2018, pp 1619.
- [35]. The United State Pharmacopeia 43, United state pharmacopoeial Convention, Inc. 2020.
- [36]. Patel J, Patel C, Patel P, Prajapati P, Anand I and Patel M." HPTLC Method For The Estimation Of Cilostazol In Bulk And Formulation." *Int.J.Chem.Sci.*2008,6(3),1433-1437.
- [37]. Kumar P, Kumar V, Kumar P and Jain D." Spectrophotometric Determination of Cilostazol in Tablet Dosage Form." *Tropical.J.Pharma.Res.* **2010**,9(5),499-503.
- [38]. Gomes M, Klein T, Simionatto M, Nadal J, Zanin S, Borsato D and Farago P."A Simple RP-HPLC/UV Method for Determination of Cilostazol in Polymeric Nanoparticles Suspensions: Development and Validation." *Latin.Am.J.Pharmacy.* 2015,34(4),803-9
- [39]. Deokar G, Katoriya V, Shinde L, Raut S, Chaure S and Kshirsagar S."
- [40]. Narenderan V, Babu S and Meyyanathan S." A Sensitive Liquid Chromatography-tandem Mass Spectrometry Method for the Estimation of Cilostazol in Bulk and a Pharmaceutical Formulation." *Res.J.Pharm. & Tech.* 2019,12(6),2781-2783.
- [41]. Damor D and Mashru R." Method Development And Validation Of Simultaneous Estimation Of Cilostazol And Telmisartan." *Int. Bulletin.Drug.Res.* **2015**, 5(8),12-22.
- [42]. Patel R and Maheshwari D." A New Rp-HPLC Method For Simultaneous Estimation Of Telmisartan And Cilostazol In Synthetic Mixture." *Int.J.Recent.Sci.Res*.2015,6(4),3306-3310.
- [43]. Thomas A, Bhosale S and Nanda R." Formulation Of Solid Dosage Form Containing Clopidogrel And Cilostazol And Its Hplc Analysis." *Int.J.Pharmacy. & Pharma.Sci.*2017,9(6),12-18.
- [44]. Nishad S and Dedania Z." Simultaneous Development And Validation Of Hptlc Method For Determination Of Zonisamide And Cilostazol In Synthetic Mixture." *World.J.Pharma.Res.* **2021**,10(2),762-771.
- [45]. Lieberburg I. Methods of using Zonisamide as adjunctive therapy for partial seizures. United States patent US

2005/0154034 A1,2005.

- [46]. Venkata S, Bhaskar S, Batchu C, and Kale S. Process for the preparation of Zonisamide. United States patents US 2006/0084814 A1,2006.
- [47]. Julie F, Rose A. Analogues of Cilostazol. Europe patents EP 2152689 A1.
- [48]. Sen N, Bhonsle S, Prasath A and Krishnan A. Modified release Cilostazol compositions. United States patents US 2005/0255155A1,2005.
- [49]. Mukai T, Tomohira Y, Toda M, Yamada K and Yoshikazu O. Cilostazol preparation. United States patents US 7,144,585 B1,2006.