Working Stress Versus Limit State Method-A Gistical View For Designing of Rcc Stuctures

Manoj Kumar Varshaney
(FISCE, FIWRS, FIPHE, FAE, FIIBE, MCEGR, MISTE, MISCA, MISRS, MIE)
Sr. Lecturer/ H.O.D. Civil Engineering, D.N. Polytechnic, Meerut (U.P.)-250103

Abstract

The title of this technical paper deals and demonstrates the pros and cons of WSM versus LSM and highlights the revised code of design of RCC structures as LSM. LSM is better and revised method over working stress and LSM is in vogue .Though in LSM permissible stresses are more than WSM \& designed load is multiplied with factor 1.5 , even the size of section remains small and steel remains more, even than the cost remains less than WSM. The differentiation must be known by elite readers for getting known the changing procedure of design of RCC structures using both methods.

Key Words:-LSM-Limit State Method, WSM-Working State Method, RCC-Reinforced Cement Concrete, fckCharateristic Strength of Concrete, cbc-Permissible Compressive Stress of Concrete in Bending etc.

INTRODUCTION

While designing RCC structures like beam, slab, column, portal frame, retaining wall, dam, chimneys, over-head water tanks, bunkers, stair-case and silos etc., it has been observed that out of three methods of designing only two methods are popular and in vogue.

In existing scenario or a decade back only, limit state method has been emphasized and put into the syllabus of civil engineering whether it is in diploma or degree. The past method working stress, was full of easy conceptual basis and mend for mild steel having grade $\mathrm{Fe}-250$, where the hooks are provided at ends of bar, so that the bond between the cement concrete and steel surface could be perfect and no slip could be possible and load of tensile be transferred on steel and compression on concrete, as concrete is better in compression while steel is in tension alike in compression. The steel is now used as HYSD bars or TOR steel bars and have more yield strength like $\mathrm{Fe}-415$, $\mathrm{Fe}-500$, and $\mathrm{Fe}-550$, whose surface has corrugations and due to this the concrete makes better bond with steel surface. By this reason the bars have bends at ends rather than hooks.

Also the grade of cement concrete has been increased from M-15 to M-20, M-25 and M-30 for general and specified works. Similarly the design procedure has been modified and treated as limit state method.

The below paragraph/sub title, demonstrates the actual differentiation in theoretical aspect, materials grade, permissible strength, changing designing concept, checking concept and respective formulas etc.

DIFFERENTIAL ASPECT

Since the method of limit state has been in prevailing and commonly in use, hence pros over working stress are being emphasized below in two segments viz first part as working stress and limit state as second part.

Working stress method is based on theoretical aspect and has easy calculation.

Working Stress

(1)Some assumptions are followed up for making simple calculation.
(2) Permissible stress of concrete in bending is taken fck/3, here fck=characteristic strength of concrete like M-15,M-20,M-25,M-30,M-35 \& M-40 respectively has fck $15,20,25,30,35 \& 40 \mathrm{~N} /$ square mm . So permissible stress of concrete in bending respectively becomes 5,7 , $8.5,10,11.5$ and 13.
(3) Permissible stress of steel in tension is taken fy/1.78, here fy=yield strength of steel, where fy is $250 \mathrm{~N} / \mathrm{sq}$. mm, stands Fe-250 grade steel. So permissible stress of steel for fy- 250 is $140 \mathrm{~N} / \mathrm{sq} . \mathrm{mm}$.
For $\mathrm{Fe}-350 / 415 / 500 / 550$ the values may be 190/230/275/300 N per sq.mm.
(4) Permissible direct stress of concrete in compression is taken fck/4, where for fck values $15,20,25,30,35 \& 40$, direct stress respectively taken $2.5,4,5,6,8,9 \& 10 \mathrm{~N}$ per sq. mm.
(5) Permissible stress of steel in compression fsc ,is taken 130,130,190 \& 190 N per sq.mm, respectively for $\mathrm{Fe}-250,350,415 \& 500$ grade steel.
(5A) Modular ratio m is taken $\mathrm{Es} / \mathrm{Ec}=$ modulus of elasticity for steel/modulus of elasticity for concrete or 280/3 multiplied by permissible stress of concrete in bending.
Hence $m=18,13,11,9,8 \& 7$ for respective grade of concrete $15,20,25,30 \& 40$.
(6) $C=$ compressive Force of Concrete

T=Tensile Force by Steel

(7)Lever Arm

$\mathrm{Za}=$ Actual lever Arm=($\mathrm{d}-\mathrm{Xa} / 3$)
Zc=Critical Lever Arm=d-Xc/3
(8) Critical neutral axis $=\mathrm{Xc}$
(m)(Permissible stress of concrete in bending).d /(m) (permissible stress of concrete .in bending) +permissible stress of steel in tension.
(For m=18, M-15, Fe-250, $\mathrm{X}_{\mathrm{c}}=0.39 \mathrm{~d}$)
($\mathrm{m}=18, \mathrm{M}-15, \mathrm{Fe}-350, \mathrm{X}_{\mathrm{c}}=0.32 \mathrm{~d}$)
($\mathrm{m}=18, \mathrm{M}-15, \mathrm{Fe}-415, \mathrm{X}_{\mathrm{c}}=0.28 \mathrm{~d}$)
$\left(\mathrm{m}=18, \mathrm{M}-15, \mathrm{Fe}-500, \mathrm{X}_{\mathrm{c}}=0.246 \mathrm{~d}\right)$
(9) Stress Diagram in compression zone

Triangular
cbc, Xa, d-Xa, st/m, T, C, Xa/3,Za.
Here $\mathrm{cbc}=$ permissible bending stress of concrete in

Limit State

(1)-Some assumptions are followed up for making up simple calculation.
(2)Permissible stress in concrete

$=0.446 \mathrm{fck}$

For M10,15,20,25,30,35 and 40
Stress in concrete $=4.46,6.69,8.92,11.15,13.38,15.61$ and $17.84 \mathrm{~N} / \mathrm{sq} \mathrm{mm}$ respectively.

(3)Permissible stress in steel $=\mathbf{0 . 8 7} \mathbf{f y}$

For $\mathrm{Fe}-250,350,415,500 \& 550$, the respective permissible stress $=217.5,304.5,361,435 \& 478.5 \mathrm{~N} /$ sq.mm.
(4)Permissible direct stress of concrete in compression $=0.4 \mathrm{fck}$.
For M10, $15,20,25,30,35 \& 40$,respective stress will be $4,6,8,10,12,14 \& 16 \mathrm{~N} /$ sq.mm.
(5)Permissible stress of steel in compression $=\mathbf{0 . 6 7} \mathbf{f y}$ For $\mathrm{Fe} 250,350,415,500 \& 550$, the respective permissible stress of steel in compression $=167.5,234.5$, $278,335 \& 368.5 \mathrm{~N} / \mathrm{sq} . \mathrm{mm}$.
(5A) No modular ratio m is taken into account.
(6) $\mathrm{Cu}=$ compressive Force of concrete.
$\mathrm{Tu}=$ Tensile Force of steel

(7)Lever Arm

Actual lever arm $\mathrm{Z}=(\mathrm{d}-0.42 \mathrm{Xu})$
Critical Lever Arm Zumax =d-0.42xumax
(8)Critical Neutral Axis Xumax
[0.0036/Xumax $]=[(0.87$ fy/Es $)+0.002] /(d-X u m a x)$
Es=200000N/sq.mm
Xumax $=(700)(\mathrm{d}) /(1100+0.87 \mathrm{fy})$
(For M15 \& Fe250,Xumax $=0.53 \mathrm{~d}$)
(For M15 \& Fe 350,Xumax $=0.51 \mathrm{~d}$)
(For Fe 415,Xumax $=0.48$ d)
(Fe 500,Xumax $=0.46 \mathrm{~d}$)
(9)Stress diagram in compression zone

Rectangular and parabolic
$0.446 \mathrm{fck}, 3 \mathrm{Xu} / 7,4 \mathrm{Xu} / 7,0.42 \mathrm{Xu}$,

bending Xa=Actual Neutral Axis, $\mathrm{T}=$ total tensile force, $\mathrm{C}=$ total compressive force	$\mathrm{Tu}=$ total tensile force, $\mathrm{Cu}=$ total compressive force.
(10)-Compressive force in balance condition$\begin{aligned} & \mathrm{Xa}=\mathrm{Xc} \\ & \mathrm{C}=\mathrm{b} \times \mathrm{Xc} \times \mathrm{cbc} / 2 \end{aligned}$	(10)Compressive force in balance condition
	Xu=Xumax
	$\mathrm{Cu}=0.36 \mathrm{fck} . X \mathrm{Xu}$.
11-Tensile force $=T=$ steel area \times stress T=Ast \times st	
	(11)Tensile Force
	Tu=0.87fy.Ast
12-Actual Neutral Axis = Xa	(12)For actual neutral Axis
$\mathrm{Xa}=$ area moment of compression zone with respect to	$\mathrm{Cu}=\mathrm{Tu}$
neutral axis=equivalent concrete area moment in tension	$0.36 \mathrm{fck} . \mathrm{Xu} . \mathrm{b}=0.87 \mathrm{fy}$.Ast
zone with respect to Neutral axis against tensile steel	$\mathbf{X u}=\mathbf{0 . 8 7 f y}$.Ast/0.36fck.b
$\mathrm{b} \times \mathrm{Xa} \times \mathrm{Xa} / 2=\mathrm{m} \times \mathrm{Ast}(\mathrm{d}-\mathrm{Xa})$	$\mathrm{Xu}=2.416$ fy.Ast/fck.b
13-Permissible position of Xa and Xc $\mathrm{Xa}<\mathrm{Xc}=$ under reinforced Means less provided steel as per requirement and by this cause steel will fail before collapse. $\mathrm{Xa}=\mathrm{Xc}=$ balance section Means steel provided is same as required, by this cause both will fail simultaneously. $\mathrm{Xa}>\mathrm{Xc}=$ over reinforced, Means provided steel is more than required, hence concrete will fail before the steel.	
	(13) Permissible position of Xu and Xumax. Xu<Xumax =under reinforced
	Means less provided steel as per requirement and by this
	cause steel will fail before collapse.
	$\mathrm{Xu}=$ Xumax =balance
	Means steel provided is same as required, by this cause both will fail simultaneously.
(14)-Percentage of steel, $\mathrm{P} \%=$ Ast $\times 100 / \mathrm{b} . \mathrm{d}$	Xu>Xumax =over reinforced $=$ not desired
(15)-Permissible steel ...	
For M-15 and Fe-350	(14)Percentage steel p\%=Ast $\times 100 / \mathrm{b} . \mathrm{d}$
p\% steel $=50 \times \mathrm{X} 1 \mathrm{xcbc} /$ st	
0.42\%	(15)For Permissible Steel
For M25,Fe-415, p\%=0.53\%	Cumax=Tumax
For M30,Fe-415,p\%=0.61\%	0.36.fck.Xumax. $\mathrm{b}=0.87 \mathrm{fy}$.Ast
Less steel than Limit State	p\% steel=41.4.Xumax.fck/fy. d
	(For M15, Fe-350,p\% steel $=0.88 \%$)
	For M25, Fe-415,p\% steel=1.2\%
16-Critical Lever Arm	For M30,Fe-415,p\%=1.44\%
$\mathrm{Z}=(\mathrm{d}-\mathrm{Xc} / 3)=(\mathrm{d}-0.33 \mathrm{Xc})$	More steel than Working Stress
For M-15 \& Fe-250,Xc=0.39d, Z=0.87d	
For M-15 \& Fe-350, Xc=0.32d, $\mathrm{Z}=0.89 \mathrm{~d}$	(16)Critical Lever Arm
For M-15 \& Fe-415,Xc=0.28d, $\mathrm{Z}=0.90 \mathrm{~d}$	$\mathrm{Z}=$ (d-0.42Xumax)
	For M15,Fe250,Z=0.78d
17-Moment of resistance	For M15,Fe350,Z=0.79d
(A) $\mathrm{Xa}<\mathrm{Xc}=$ under reinforced	For M15,Fe415,Z=0.80d
Moment $=\mathrm{M}=\mathrm{M}$ steel $=$ Tensile force $\times \mathrm{Z}$	
$\mathrm{M}=(\mathrm{Ast} \times \mathrm{st})(\mathrm{d}-\mathrm{Xa} / 3)$	(17)-Bending Moment Condition
(B)Xa=Xc=balance section	$(\mathbf{A}) \mathbf{X u}<\mathbf{X u m a x}=$ Under Reinforced ,Steel will fail
M steel=Ast \times st($\mathrm{d}-\mathrm{Xa} / 3$)	earlier.
Or M concrete $=\mathrm{b} \times \mathrm{Xa} \times \mathrm{cbc}(\mathrm{d}-\mathrm{Xa} / 3) / 2$	Moment Mu steel=Tu× lever arm
(C) $\mathrm{Xa}>\mathrm{Xc}=$ over reinforced	Mu steel $=0.87 \mathrm{fy}$.Ast(d-0.42Xu)
Concrete will fail.	(B)Xu=Xumax =balance
M concrete $=\mathrm{b} \times \mathrm{Xa} \times \mathrm{cbc}(\mathrm{d}-\mathrm{Xa} / 3)$	$\mathrm{Mu}=0.36 \mathrm{fck} . X u m a x . b(d-0.42 \mathrm{Xumax})$ (C)Xu>Xumax $=$ over reinforced $=$ not desired in limit state.
(18)Moment Resistance Factor	Mu=Mumax
$\mathrm{Q}=0.5 \times \mathrm{cbc} \times \mathrm{X} 1 \times \mathrm{Z} 1 \times \mathrm{b} \times \mathrm{d} \times \mathrm{d}$	$=0.36 \mathrm{fck} . X u m a x . b(d-0.42 \mathrm{Xumax})$

```
cbc=permissible compressive stress of concrete in
bending
X1=Coefficient of neutral Axis,Z1=Coefficient of lever
Arm.
For M-15 & Fe-250,
Q=0.5 }\times5\times0.39\times0.87=0.85N/sq.mm
(19)Designed Load
Designed load=Incoming Load
If incoming load=50 KN/m then
Designed load=50KN/m...
[(20)Nominal Shear stress or incoming Shear Stress
tv=V/b.d
V=maximum shear force
b.d= shear area
(22)Shear Force borne by bent-up bar
Vb=Asv}\times\mathrm{ sv }\times\operatorname{Sin}4\mp@subsup{5}{}{\circ
=0.707\timesAsv\timessv
Here sv=permissible tensile or shear stress similar to st
Asv=area of bent-up bar
```

(23)Shear Force borne by Stirrups
Vs=Asv×sv(d/s) Or $S=A s v \times s v \times d / V s$
Here $S=$ spacing
d=effective depth of beam
Asv=area of two leg stirrup.
(24)Shear Force borne by Concrete
tc=permissible bond stress of concrete, dependent on
\%age steel of straight bar at end bottom and concrete grade.
This can be taken from tables by Interpolation.
\%age steel $=0.15 \%$ or less, tc $=0.18,0.18,0.19$ for M15,20,25 respectively.
\%age steel $=0.25 \%$,tc $=0.22,0.22,0.23$
\%age steel $=0.50 \%, \mathrm{tc}=0.29,0.30,0.31$
(25)Shear Strength of concrete for Slab

The value of K is multiplied by tc for slab.
$\mathrm{K}=$ coefficient dependent on slab thickness.
Slab depth $=150 \mathrm{~mm}$ or less, $175 \mathrm{~mm}, 200 \mathrm{~mm}, 225 \mathrm{~mm}$, $250 \mathrm{~mm}, 275 \mathrm{~mm}, 300 \mathrm{~mm}$ or more.
$\mathrm{K}=1.3,1.25,1.20,1.15,1.10,1.05,1.00$ respectively.
(26)Maximum Shear Stress borne by Concrete tc maximum $=$ dependent on concrete grade .
tc maximum $=1.6,1.8,1.9,2.2,2.3,2.5$ for beam under respective grade of concrete $\mathrm{M}-15,20,25,30,35,40$.
tc maximum $=0.8,0.9,0.95,1.1,1.15,1.25$ for slab under concrete grade $15,20,25,30,35,40$.
(28)tv>tc maximum $=$ need to change the design.
(29)Design for Shear Reinforcement.
(A)tv<tc/2=No shear arrangement required

```
(18)Moment Resisting Factor
Xu=Xumax
Mu limit=Cu max xZ
(For M15,Fe250,Xumax =0.53d)
Mu limit=0.149fck.b.d.d
Qu=0.149 }\times15=2.235N/sq.mm for M15.
```

(19)Designed Load or Factored Load
Designed load $=1.5 \times$ Incoming Load
If incoming load $=50 \mathrm{KN} / \mathrm{m}$, Designed load $=75 \mathrm{KN} / \mathrm{m}$
Factored moment $=1.5 \times$ Given Moment
Factored Shear $=\mathrm{Vu}=1.5 \times$ Given Shear
(20) Nominal Shear stress or incoming Shear Stress
tuv=Vu/b.d
$\mathrm{V} u=$ maximum factored shear force
(22)Shear Force borne by bent-up bar
Vub=Asv×sv \times Sin 45°
$=0.707 \times A s v \times 0.87 \mathrm{fy}=0.757 \times$ Asv $\times f y$
Here Asv=total cross sectional area of bent-up bars.
(23)Shear force borne by stirrups
Vus=Asvxsv(d/s) Or Spacing s=Asvxsvxd/Vus
Here $\quad \mathrm{s}=$ spacing of stirrups. $\mathrm{sv}=0.87 \mathrm{fy}$,
Asv=cross sectional area of stirrup.
For 8 mm size two leg stirrups Asv= $2 \times 50=100$ sqmm.
(24) Shear Force borne by Concrete
tuc=permissible bond stress borne by concrete dependent
on \% age steel and grade of concrete
For $<=0.15 \%, 0.25 \%, 0.50 \%$ of steel
M15,tuc $=0.28,0.36,0.48 \mathrm{~N} / \mathrm{sq} . \mathrm{mm}$
M20,tuc $=0.29,0.36,0.49$
M 25 , tuc $=0.29,0.37,0.50$ respectively.

(25)Shear stress borne by concrete for slab

 =k×tuc$\mathrm{K}=$ coefficient dependent on slab thickness.
Slab depth $=150 \mathrm{~mm}$ or less, $175 \mathrm{~mm}, 200 \mathrm{~mm}, 225 \mathrm{~mm}$, $250 \mathrm{~mm}, 275 \mathrm{~mm}, 300 \mathrm{~mm}$ or more.
$\mathrm{K}=1.3,1.25,1.20,1.15,1.10,1.05,1.00$ respectively.
(26)Maximum Shear stress borne by concrete. tuc maximum $=$ dependent on concrete grade . tuc maximum $=2.5,2.8,3.1,3.5,3.7,4.0$ for respectively concrete gradesM15,20,25,30,35,40.
tuc maximum $=3.25,3.5,3.72,4.025,4.07,4.20$ for slab under concrete grade $15,20,25,30,35,40$.
(28)tuv>tuc maximum $=$ need to change the design.

```
(B)tv=tc/2 or tv=tc ,Shear needed to adjust with stirrups
with minimum spacing. S=0.87fy.Asv/0.4b,Here
S=spacing, b=width of beam.
(C)tv>tc<tc maximum for beam
Or
tv>kxtc <tc maximum
Then tr=tv-tc here tr=remaining shear stress
Vr=remaining shear force =tr }\times\textrm{b}.\textrm{d
Vb=shear force borne by bent-up bar= 0.707\timesAsv }\times\mathrm{ sv for
sin 45', Asv=area of bent-up bar, Vs=Vb/2=shear force
borne by stirrups.
Here Vb>Vr/2, Spacing S=Asv}\timessv\timesd/V
S should not be more than the lesser value of 0.75d or
300mm.
```


(30)Development length

```
Ldt=development length in tension
=bar dia. \(\times\) st/4 tbdt
Here tbdt =permissible bond stress in tension \(\mathrm{st}=\) permissible tensile stress of steel.
Value of \(\mathrm{tbdt}=0.6,0.8,0.9,1.0,1.1\) for \(\mathrm{Fe}-250\) grade and respective grades of concrete like M-15,20,25,30,35
Value of tbdt=0.96,1.28, 1.44, 1.60, 1.76 for \(\mathrm{Fe}-415\) or 500 grade with respective concrete grade like M-15,20,25,30,35.
```

(31)Development length of steel in compression $=$ Ldc $=$ bar dia. \times st $/ 5$ tbdt
(32) Checking in development length

Ldt $<=1.3 \mathrm{M} 1 \div \mathrm{V}+\mathrm{Lo}$
Here M1=bending moment of straight bar at ends bottom , $\mathrm{V}=$ shear force, $\mathrm{Lo}=$ Anchorage length $=12 \times$ bar dia or d , whichever is more.
(33)Design step for singly RCC beam
(a)depth d assumed $=$ span/10 to span $/ 15$
(b) $b=d / 2$ to $d / 3$
(c)Dead load of beam $\mathrm{Wd}=\mathrm{b} \times \mathrm{D} \times 1 \times$ density of rcc
(d)Live Load wlive=Given
(e)Total load w=wd+wlive
(f)Effective length $\mathrm{l}=\mathrm{L}+\mathrm{B}$ or $\mathrm{L}+\mathrm{d}$ whichever is less.
(g)Maximum bending Moment $\mathrm{M}=\mathrm{w} .1 .1 / 8$ say
(h)moment resisting factor $\mathrm{Q}=0.5 . c \mathrm{cvc}$.(X1).(Z1)
(i)d required=M/Q.b whole power 0.5
(j) compare d required \& d assumed

D assumed $>$ or $=d$ required it's ok
If d assumed< d required, then again design.
(k)Ast required=M/st.z1.(d required)

```
(29)Design for shear Reinforcement.
(A)tuv<tuc/2=No Shear
(B)tuc>or =tuv minimum shear
Spacing Sv=0.87.fy.Asv/(0.4b)
(C)tuv>tuc<tuc maximum
or
tuv>k.tuc<tuc maximum
shear remaining =tur=tuv-tuc
Vur=tur.b.d
Vub=0.707.Asv.sv
Vus=Vur/2 and Vub>Vur/2
Spacing S=0.87fy.Asv.d/Vus
0.75d or 300mm
Overall whichever is less.
```

(30)Development Length

Ldt=development length in tension
$=0.87$ fy.bar diameter/4tbdt
tbdt is dependent on bar size, surface roughness of bar, compaction and grade of concrete.
tbdt $=1.2,1.4,1.5,1.7,1.9$ for plain bars for respective concrete grades M20,25,30,35,40.
Also tbdt for deformed bars $=1.92,2.24,2.4,2.72,3.04$ for respective grades of concrete.
(31)Ldc =development length of steel in compression $=0.87 \mathrm{fy} . \mathrm{bar}$ diameter $/ 5$ tbdt.
(32) Checking in development length
$\mathrm{Ldt}<=\mathrm{M} 1 \div \mathrm{Vu}+\mathrm{Lo}$
M1 $=$ Ast $\times 0.87 \mathrm{fy} \times \mathrm{Z}$
Ast=area of straight bar without bent-up bar.
(33) Design of Singly reinforced beam
(a)Assumed d=span/10 to span $/ 15$
(b) $b=d / 2$ to $d / 3$
(c)Dead load of beam $\mathrm{Wd}=\mathrm{b} \times \mathrm{D} \times 1 \times$ density of $\mathrm{rcc} \ldots$
(d)Live Load wlive=Given
(e)Total load w=wd+wlive

Factored load wu=1.5(wd+wl)

(f)Effective length $\mathrm{l}=\mathrm{L}+\mathrm{B}$ or $\mathrm{L}+\mathrm{d}$ whichever is less.
(g) Maximum Bending Moment $\mathrm{M}=$ wu.1.1/8
(h) $\mathrm{Qu}=0.36$ fck.Xumax(1-0.42Xumax/d)/d
(i)d required $=(\mathrm{Mu} / \mathrm{Qu} . \mathrm{b})$ whole power0.5
(j) compare d required $\& d$ assumed

Condition:-
D assumed $>$ or $=d$ required it's ok
If d assumed< d required, then again design.
If under reinforced means d assumed $>\mathrm{d}$ required
$\mathrm{Mu}=0.87 \mathrm{fy}$.Ast.d[1-Ast.fy/b.d.fck]
(1)Ast min. $=0.85 \mathrm{bd} / \mathrm{fy}$
(m)Ast max=0.04b.D
(n)Ast required>Ast min, Ast required<Ast max
(o) $\mathrm{N}=$ number of bars=Ast/ast

Ast actual=(N)(ast)
(p)Decide number of bent-up bars.
(q)Check the beam in Shear and Bond, not in deflection

IN SHEAR

tv>tc<tc maximum for beam
Or
tv>k \times tc <tc maximum
Then tr=tv-tc here tr=remaining shear stress
$\mathrm{Vr}=$ remaining shear force $=\mathrm{tr} \times \mathrm{b}$.d
$\mathrm{Vb}=$ shear force borne by bent-up bar $=0.707 \times$ Asv \times sv for $\sin 45^{\circ}$, Asv=area of bent-up bar, $\mathrm{Vs}=\mathrm{Vb} / 2=$ shear force borne by stirrups.
Here $\mathrm{Vb}>\mathrm{Vr} / 2$, Spacing $\mathrm{S}=\mathrm{Asv} \times \mathrm{sv} \times \mathrm{d} / \mathrm{Vs}$
S should not be more than the lesser value of 0.75 d or 300 mm .

IN BOND

Development length
Ldt=development length in tension
$=$ bar dia. \times st/ $/ 4$ tbdt
Here tbdt =permissible bond stress in tension $\mathrm{st}=$ permissible tensile stress of steel.
Value of $\mathrm{tbdt}=0.6,0.8,0.9,1.0,1.1$ for $\mathrm{Fe}-250$ grade and respective grades of concrete like M-15,20,25,30,35
Value of tbdt= $0.96,1.28,1.44,1.60,1.76$ for $\mathrm{Fe}-415$ or 500 grade with respective concrete grade like M-15,20,25,30,35.

Development length of steel in compression $=\mathrm{Ldc}=$ bar dia. $\times \mathrm{st} / 5 \mathrm{tbdt}$
development length
$\mathrm{Ldt}<=1.3 \mathrm{M} 1 \div \mathrm{V}+\mathrm{Lo}$
Here M1=bending moment of straight bar at ends bottom, $\mathrm{V}=$ shear force, $\mathrm{Lo}=$ Anchorage length $=12 \times$ bar dia or d , whichever is more.
Ast=area of straight bar without bent-up bar.
(k)Get Ast required

No of bars required $=$ Ast/ast round off.
For balance means $\mathrm{d}=\mathrm{d}$ required
$\mathrm{Mu}=$ Ast $\times 0.87 \mathrm{fy}$ (d-0.42Xumax)
(1)Ast min. $=0.85 \mathrm{bd} / \mathrm{fy}$
(m)Ast max=0.04b.D
(n)Ast required>Ast min, Ast required<Ast max
(o) $\mathrm{N}=$ number of bars=Ast/ast

Ast actual=(N)(ast)
(p)Decide number of bent-up bars.
(q)Check in shear, bond and deflection

IN SHEAR
tuv<tuc/2=No Shear
tuc $>$ or $=$ tuv minimum shear
Spacing Sv=0.87.fy.Asv/(0.4b)
tuv>tuc<tuc maximum
or
tuv>k.tuc<tuc maximum
shear remaining =tur=tuv-tuc
Vur=tur.b.d
Vub=0.707.Asv.sv
Vus=Vur/2 and Vub>Vur/2
Spacing S=0.87fy.Asv.d/Vus
0.75 d or 300 mm

Overall whichever is less.

IN BOND

Development Length

Ldt=development length in tension
$=0.87 \mathrm{fy} . \mathrm{bar}$ diameter/4tbdt
tbdt is dependent on bar size, surface roughness of bar, compaction and grade of concrete.
tbdt $=1.2,1.4,1.5,1.7,1.9$ for plain bars for respective concrete grades M20,25,30,35,40.
Also tbdt for deformed bars=1.92, 2.24, 2.4, 2.72, 3.04 for respective grades of concrete.

Ldc =development length of steel in compression $=0.87 \mathrm{fy} . \mathrm{bar}$ diameter $/ 5$ tbdt.
development length

NO CHECK IN DEFLECTION	$\begin{array}{\|l\|} \hline \text { Ldt }<=\mathrm{M} 1 \div \mathrm{Vu}+\mathrm{Lo} \\ \text { M1 }=\text { Ast } \times 0.87 \mathrm{fy} \times \mathrm{Z} \\ \text { Ast=area of straight bar without bent-up bar. } \end{array}$
	CHECKING IN DEFLECTION
(34)Doubly Rcc beam (a)Critical Neutral Axis $\mathrm{Xc}=(\mathrm{m} . \mathrm{cbc} . \mathrm{d} / \mathrm{m} . \mathrm{cbc}+\mathrm{st}$	service stress fs= $0.58 . \mathrm{fy}$ (Ast required/Ast provided)
	From graph get modification factor k
	(1/d) maximum $=20 . \mathrm{k}$ for simply supported beam
	$(1 / \mathrm{d})$ maximum $=7 \mathrm{k}$ for cantilever beam
(b)Actual Neutral Axis Xa b.Xa.Xa/2+(1.5m-1)Asc(Xa-d')=m.Ast(d-Xa)	(1/d)actual < [1/d]maximum
	(34) Doubly Rcc beam
	(a)Critical Neutral Axis
	Xumax $=700 \mathrm{~d} /(1100+0.87 \mathrm{fy}$)
	(b)Actual Neutral Axis $\quad \mathbf{X u}$
	Total compressive force C
	$\mathrm{C}=\mathrm{C}^{\prime}+\mathrm{C}^{\prime \prime}=$ compressive force due to compression zone concrete +Compressive force due to Asc C"=0.36fck.Xu.b C"=fsc.Asc-fcc.Asc
(c)Lever Arm for singly or due to concrete$\mathrm{Z}^{\prime}=(\mathrm{d}-\mathrm{Xc} / 3)$	C=0.36fck.Xu.b+Asc(fsc-fcc)
	Tensile force $=T=0.87 \mathrm{fy}$.Ast
Lever Arm due to Asc	$\mathrm{C}=\mathrm{T}$
Z"=(d-d')	So $\mathrm{Xu}=(0.87 \mathrm{fy}$.Ast-Asc.fsc)/0.36fck.b
	Neglecting fcc
(d)Compressive Force due to singly$\mathrm{C}^{\prime}=\mathrm{b} \times \mathrm{X} \times \mathrm{cbc} / 2$	(c)Lever Arm
	For $Z^{\prime}=$ L.A. $=(\mathrm{d}-0.42 \mathrm{xumax})$
Compressive Force due to AscC" $=(1.5 \mathrm{~m}-1)$ Asc \times cbc'	For Z'=L.A. $=\left(\mathrm{d}-\mathrm{d}^{\prime}\right.$)
Here cbc'=stress on the surface of Asc. cbc' $=\mathrm{cbc}(\mathrm{Xc}-\mathrm{d}) / \mathrm{Xc}$	-->
(e)Bending Moment $\mathrm{M}^{\prime}=$ bending moment due to singly $=C^{\prime} \times Z^{\prime}$ $=\mathrm{b} \times \mathrm{Xc} \times \mathrm{cbc}(\mathrm{d}-\mathrm{Xc} / 3) / 2$ M"=Bending Moment due to Asc (1.5m-1) Asc×cbc'(d-d")	
	(e)Bending Moment $\mathrm{M}=\mathrm{M}^{\prime}+\mathrm{M}^{\prime \prime}$
(f)Stress of Steel in Compression	$\mathrm{M}^{\prime}=\mathrm{C}^{\prime} \times \mathrm{Z}^{\prime}=0.36 . \mathrm{fck} . \mathrm{Xumax} . \mathrm{b}(\mathrm{d}-0.42 \mathrm{xumax})$
	$\mathrm{M}^{\prime \prime}=\mathrm{C}=\times \mathrm{Z}^{\prime \prime}=$ fsc. Asc (d-d')
$\begin{aligned} & \text { sc }=130,130,190,190 \mathrm{~N} / \text { square } \quad \mathrm{mm} \\ & \mathrm{Fe}-250,350,415,500 . \end{aligned}$	
Asc=10 square mm	
Equivalent area of concrete in compression $=(1.5 \times 18-1) \times 10=260$ square mm .	
	(f)Stress of steel in compression fsc Dependent on d'/d fsc $=217,217,217,217$ for $\mathrm{Fe}-250$, respectively $\mathrm{d}^{\prime} / \mathrm{d}$ for 0.05,0.10,0.15,0.20.
(g)Determination of Moment	
Given data b,d,Ass,Ast,d'.Xc=m.cbc.d/m.cbc+st	$\mathrm{fsc}=355,353,342,329$ for Fe-415.
	$\mathrm{fsc}=424,412,395,370$ for Fe-500.
Get Xa from equation	$\mathrm{fsc}=458,441,419,380$ for Fe-550.
b.Xa.Xa/2 +(1.5m-1)Asc(Xa-d')=m.Ast(d-Xa)	
Condition:- If $\mathbf{X a}>\mathbf{X c}=\mathbf{o v e r}$ reinforced	(g) Determination of Moment
Concrete Will fail, hence moment$\mathrm{Mc}=\mathrm{b} . \mathrm{Xa} . \mathrm{cbc}(\mathrm{~d}-\mathrm{Xa} / 3) / 2+(1.5 \mathrm{~m}-1) \mathrm{Asc} . c b c^{\prime}\left(\mathrm{d}-\mathrm{d}^{\prime}\right)$	Given data b,d,Asc,Ast,d'.
	$\mathrm{Xu}=(0.87 \mathrm{fy} . \mathrm{Ast}$-fsc.Asc)/0.36fck.b
If $\mathbf{X a}=\mathbf{X c}=$ balance section $\mathrm{Mc}=\mathrm{b} . \mathrm{Xa} . \mathrm{cbc}(\mathrm{d}-\mathrm{Xa} / 3) / 2+(1.5 \mathrm{~m}-1)$ Asc.cbc'(d-d')	fsc can be from d'/d from table
	Xumax $=700 \mathrm{~d} / 1100+0.87 \mathrm{fy}$
	Condition

If $\mathbf{X a}<\mathbf{X c}=$ under reinforced Steel will fail.
Now transfer the st to cbc' at top of beam on compression zone.
Also at Asc get the value of cbc"
b.Xa.cbc'(d-Xa/3)+(1.5m-1)Asc.cbc"(d-d')

(i)Finding Asc and Ast

$\mathrm{Xc}=(\mathrm{m} . \mathrm{cbc} . \mathrm{d} / \mathrm{m} . \mathrm{cb} \mathrm{c}+\mathrm{st})$
cbc' $=\mathrm{cbc}\left(\mathrm{Xc}-\mathrm{d}^{\prime}\right) / \mathrm{Xc}$
M1=Moment due to singly =b.Xc.cbc(d-Xc/3)/2
M2=M-M1=Moment due to Asc
M2 $=(1.5 \mathrm{~m}-1)$ Asc.cbc'(d-d')
Asc can be had from above.
Ast1=steel required for singly.
Ast1=M1/st(d-Xc/3)
Ast2=area of steel in tension due to Asc
Ast2=M2/sc(d-d')
Ast=Ast1+Ast2=total steel in tension.

(35)Tee Beam Design

(a) Depth of T beam
d=effective depth $=$ span $/ 10$ to span/15,
bw $=$ width of beam $=d / 3$ to $2 d / 3$
(b) $\mathrm{bf}=$ width of flange $=10 \div 6+\mathrm{bw}+6 \mathrm{Df}$

Or
$b f=b w+A / 2+B / 2$
(c) NEUTRAL AXIS

Critical Neutral Axis $\mathrm{Xc}=(\mathrm{m} . \mathrm{cbc} . \mathrm{d} / \mathrm{m} . \mathrm{cbc}+\mathrm{st})$
Actual Neutral Axis Xa, when $\mathrm{Xa}<\mathrm{Df}$ or $\mathrm{Xa}=\mathrm{Df}$
bf.Xa.Xa/2 =m.Ast.(d-Xa)
If $\mathrm{Xa}>\mathrm{Df}$, then
bf.Df(Xa-Df/2) + bw (Xa-Df)(Xa-Df)/2 =m.Ast(d-Xa)
Get Xa.
If $\mathrm{Xa}<\mathrm{Xc}=$ under reinforced
$\mathrm{Xa}=\mathrm{Xc}=$ balance
$\mathrm{Xa}>\mathrm{Xc}=$ over reinforced
(g)Lever Arm
$\mathrm{Xa}<\mathrm{Df} \quad$ Lever Arm=d-Xa/3
Xa=Df Lever Arm=d-Df/3
$\mathrm{Xa}>\mathrm{Df} \quad \mathrm{Z}^{\prime}=\mathrm{d}-\mathrm{y} \quad \mathrm{Z}^{\prime \prime}=[\mathrm{d}-(\mathrm{Df}+(\mathrm{Xa}-\mathrm{Df}) / 3]$
(h)Compressive Force C

When $\mathrm{Xa}<\mathrm{Df} \quad \mathrm{C}=\mathrm{bf} . \mathrm{Xa} . \mathrm{cbc}(\mathrm{d}-\mathrm{Xa} / 3) / 2$
When $\mathrm{Xa}=\mathrm{Df} \quad \mathrm{C}=\mathrm{bf} . \mathrm{Df} . \mathrm{cbc}(\mathrm{d}-\mathrm{Df} / 3) / 2$
When Xa>Df $\quad \mathrm{C}=\mathrm{C}^{\prime}+\mathrm{C}^{\prime \prime}$
$\mathrm{C}^{\prime}=\mathrm{bf} . \mathrm{Df}\left(\mathrm{cbc}+\mathrm{cbc} c^{\prime}\right)\left(\mathrm{d}-\mathrm{y}^{\prime}\right) / 2$
$y^{\prime}=\left(2 . c b c+c b c^{\prime}\right)(D f / 3) /\left(c b c+c b c^{\prime}\right)$
$\mathrm{C}^{\prime \prime}=(\mathrm{bw})(\mathrm{Xa}-\mathrm{Df})(\mathrm{cbc} / 2)\left(\mathrm{Z}^{\prime \prime}\right)$
Z"=d-[Df+(Xa-Df)/3]
(36)Column design
(a)Effective Length 1
$\mathrm{l}=0.65 \mathrm{~L}$ for both end fixed
$\mathrm{l}=0.80 \mathrm{~L}$ when one end fixed and another end free.
(b)Short Column
$1 / b<=12$
Long Column
$1 / b>12$
$\mathbf{X u}>\mathbf{X u m a x}=o v e r$ reinforced
Mu is calculated by $\mathrm{Xumax}=\mathrm{Xu}$

If $\mathbf{X u}=$ Xumax

$\mathrm{Mu}=0.36$ fck.Xumax.b
(d-0.42Xumax)+Asc.(fsc-fcc)(d-d')
If Xu<Xumax
$\mathrm{Mu}=0.36 \mathrm{fck} . \mathrm{Xu}(\mathrm{b})(\mathrm{d}-0.42 \mathrm{Xu})+\mathrm{Asc}(\mathrm{fsc}-\mathrm{fcc})\left(\mathrm{d}-\mathrm{d}^{\prime}\right)$
(i)Finding Asc and Ast

Ast'=Mulimit /(0.87 fy(d-0.42Xumax)
Mu"=Mu-Mlimit
Ast"=Mu"/(0.87.fy)(d-d')
Ast=Ast'+Ast"
Asc=Mu"/fsc.(d-d')
(35) Tee Beam LSM
(a)Depth of T beam
d=Span/10 to Span/15
Breadth of beam bw $=\mathrm{d} / 3$ to $2 \mathrm{~d} / 3$
(b)Width of flange $=b f=l o \div 6+b w+6 D f$ Or
bf=bw+ A/2 +B/2
(3)NEUTRAL AXIS

Critical Neutral Axis $=$ Xumax $=700 \mathrm{~d} /(1100+0.87 \mathrm{fy})$
Actual Neutral Axis Xu, when Xu<Df or Xu=Df
$\mathrm{Xu}=0.87 . \mathrm{fy}$.Ast/0.36.fck.bf
If $\mathrm{Xu}>\mathrm{Df}$, Also $\mathrm{Xu}=\mathrm{Xumax}$ and $\mathrm{Df}<3 . \mathrm{Xu} / 7$ or
$\mathrm{Df}=3 \mathrm{Xu} / 7$, then stress block will lie rectangular and remaining parabolic.
If $\mathrm{Df}>3 . \mathrm{Xu} / 7$, then stress block will lie rectangular upto $3 \mathrm{Xu} / 7$ and rest parabolic.
If Xumax $=\mathrm{Xu}, \mathrm{Xu}>\mathrm{Df}$ and $\mathrm{Df} / \mathrm{d}<$ or $=0.2$ or $\mathrm{Df}<3 \mathrm{Xu} / 7$
$\mathrm{Cu}=0.36$.fck.bw.Xumax+0.446fck(bf-bw).Df
Total tension $\mathrm{Tu}=0.87$ fy.Ast
IF Xumax $=\mathrm{Xu}, \mathrm{Xu}>\mathrm{Df}$ and $\mathrm{Df} / \mathrm{d}>0.2$
$\mathrm{Cu}=0.36$.(Xumax/d)fck.bw.d.d +0.45 fck(bf-bw).Yf
Here $\mathrm{Yf}=0.15 \mathrm{Xu}+0.65 \mathrm{Df}$
Xumax $>\mathrm{Xu}, \mathrm{Xu}>\mathrm{Df}, \mathrm{Df}<3 \mathrm{Xu} / 7$
$\mathrm{Cu}=0.36 \mathrm{fck} . \mathrm{bw} . \mathrm{Xu}+0.446$ fck(bf-bw).Df
Tu=0.87fy.Ast
Xumax >Xu>Df, Df>3Xu/7
$\mathrm{Cu}=0.36 \mathrm{fck} . \mathrm{bw} . \mathrm{Xu}+0.45 \mathrm{fck}$. Yf(bf-bw)
Here $\mathrm{Yf}=0.15 \mathrm{Xu}+0.65$. Df, $\mathrm{Yf}<\mathrm{Df}$ or $\mathrm{Yf}=\mathrm{Df}$
$\mathrm{Xu}>$ Xumax means over reinforced
Redesign

[^0]```
Column Axial Load P=Ac.cc+Asc.sc
(c)Longitudinal bar dia}=12\textrm{mm}\mathrm{ to }50\textrm{mm}\mathrm{ .
Lateral ties bar dia=8mm to }12\textrm{mm}\mathrm{ or bar dia/4,
whichever is maximum.
(d)Independent ties spacing
Least dimension of column
or
16\timesbar diameter or
or
300mm whichever is less.
(e)Spiral reinforcement
Pitch max=75 mm or Core diameter/6 whichever is
minimum
Pitch minimum =25 mm or 3}\times\mathrm{ ties dia
Whichever is less.
(f)cbc and cc value
M15-cbc=5, cc=4, M20-cbc=7, cc=5,
M25-cbc-8.5, cc=6, M30-cbc-10, cc=8,
Fe-250-st=140, sc=130, Fe-350-st=190, sc=190,
Fe-415-st=230, sc=190,Fe-275-st=275, sc=190 N/square
mm.
(g)Strength for short Column for non helical
P=Ak.cc+ Asc.sc
 Ag=gross area of column =3.14\timesd\timesd/4
Dk=Core diameter
=D-2xcover+2\timesties diameter
Ak=Core Area=(3.14\timesDk\timesDk/4)-Asc
Vus=volume of spiral for per pitch height.
```

$\mathrm{l}=0.80 \mathrm{~L}$ when one end fixed and another end free.
(b)Short Column
e-min=1/500 +D/30 >or=20 mm
e-min should not be greater than 0.05D

Column factored load $\mathrm{Pu}=0.4 \mathrm{fck}$. Ac+0.67fy.Asc
(c)Longitudinal bar dia $=12 \mathrm{~mm}$ to 50 mm .

Lateral ties bar dia $=8 \mathrm{~mm}$ to 12 mm or bar dia/4, whichever is maximum.
(d)Independent ties spacing

Least dimension of column
or
$16 \times$ bar diameter or
or
300 mm whichever is less.
(e)Spiral reinforcement

Pitch $\max =75 \mathrm{~mm}$ or Core diameter/6 whichever is minimum
Pitch minimum $=25 \mathrm{~mm}$ or $3 \times$ ties dia
Whichever is less.
(f)

NO NEED
(g) Strength for short Column for non helical Factored load $\mathrm{Pu}=0.4 \mathrm{fck} . \mathrm{Ac}+0.67 \mathrm{fy}$.Asc

## CONCLUSION

The title demonstrates the pros and cons, while differentiating the WSM to LSM method of designing of RCC structures. In existing scenario LSM method is in vogue and while designing, the incoming load is multiplied by load factor 1.5 and also the permissible stresses are more in steel and concrete in bending and in compression too. Even this act, the section in LSM remains small and steel used remains more than WSM, even this, the valuation remains economical for LSM. Though steel is costlier than concrete by 70 times, even than designing of RCC sections through LSM are cheaper. The technical paper is covering maximum differentiation as seemed sufficient and enough for learning purpose. Effective points will enhance the readers knowledge.

## REFERENCES

[1]. Reinforced Cement Concrete Structure Book (ISBN-978-81-944036-9-2) from M.K.VARSHANEY published book from JPN Publication Meerut, edition 2021-22.
[2]. Quantity Surveying and Valuation book from M.K.VARSHANEY published from Nav Bharat Publication Meerut edition 2020-21
[3]. Civil Estimating Costing and Valuation book from Manoj Kumar Varshaney, published from Nav Bharat Publication Meerut edition 2005
[4]. Design of RC Structures from M.K.Varshaney, published under JPN Publication Meerut, edition 2019-20
[5]. Valuation of Methods for designing of RCC structures - A case study with working stress v/s limit state vis-à-vis ultimate load method title published in Indian Valuer journal of december2013/sept-2013 page no.1524/1078.

International Journal of Enhanced Research in Science, Technology \& Engineering ISSN: 2319-7463, Vol. 12 Issue 1, January-2023, Impact Factor: 7.957
[6]. Valuation of strength of structural steel angle sections under I.S. Code 800-1984- A case study with equal vis-à-vis unequal angles title published under M.K.Varshaney in $30^{\text {th }}$ IEC of IEI held at Guwahati during 17-20 December 2005, proceedings volume ISBN-978-81-9318-0-1 page no.163/171
[7]. Optimum Building Shapial Structures-An economical Estimation title published in Indian Surveyor of its volume july-2011-ISSN-0970-3470 page number46/51.


[^0]:    (36) Column design
    (a)Effective Length 1
    $1=0.65 \mathrm{~L}$ for both end fixed

