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ABSTRACT 

 

Spectroscopic imaging is non-destructive, non-invasive & chemical free technique which can be used to analyze 

wide range of biological materials. There are many varieties of apple fruits found in Indian market. To identify the 

variety of apples such as Fuji, Red Star and Gala based on their parameters various machine learning models can 

be used. In order to distinguish the variety more precisely a comparison of machine Learning based Principal 

Component Analysis (PCA) and Linear Discriminant Analysis  (LDA) is proposed in this paper. The spectral 

database provided by CAPA Apple Quality Grading Multi-Spectral Image Database, ULG (Gembloux Agro-Bio 

Tech) – Belgium is used here. LDA & PCA are the dimensionality reduction techniques used in Machine 

Learning. It uses ‘feature similarity’ to predict the values of new datasets which further means that the new data 

point will be assigned a value based on how closely it matches the points in the training set. The developed model is 

evaluated in terms of  the performance parameters.  

 

Index Terms — PCA, LDA, 

 

 

 

INTRODUCTION 

 

Machine learning with big data technologies and other fast computing techniques is developing in various fields or 

applications. It can be defined as the scientific method that allows machines to learn without programming the 

devices. In this fast developing world, healthcare is one of the important concern. It is said that ‗Eat apple a day keeps 

a doctor away‘. It shows the importance of apples in fruit market. A variety of apples are produced in agriculture field. 

[2] Each variety may yield better income based on the quality, texture, shape etc. As per market survey, it is observed 

that higher grade apples generate larger revenues. Conventional methods of sorting or grading is human-dependent. 

Very often mechanical devices are also used to differentiate the variety based on dimensions and weight. More 

recently, machine learning algorithms along with some image processing techniques are emerged to improve the 

process of sorting. [1] It provides the substitute to the human eye, enabling to detect features which humans cannot 

detect. The machine vision based algorithms for grading and sorting are much more powerful than conventional 

methods. They have automatic learning capabilities and ensure a detection performance far beyond the speed and 

accuracy of any trained operator. This paper presents use PCA& LDA algorithm to detect the variety of apples. 

 

HYPOTHESIS 

 

All the organic materials including fruits continuously emit and absorb energy at the molecular level by lowering or 

boosting their molecular energy levels. Molecules' structure determines the wavelengths at which they absorb, reflect, 

and transmit electromagnetic radiation  

 

Ultraviolet (UV), visible light (VIS), near-infrared (NIR), mid-infrared (MIDIR), and far-infrared (FIR) are examples 

of electromagnetic waves (FIR). [5] Each zone corresponds to a distinct type of atomic or molecule transition with 

various frequencies. Food tissues, like any biological material, are held together by a variety of molecular 

connections and pressures. O-H or C-H bonds are abundant in water, carbohydrates, and lipids. C-H or N-H bonds are 

abundant in organic molecules and petroleum derivatives.  

 

Electromagnetic waves are transferred through a fruit sample when it is exposed to light. The stretching and bending 

vibrations of chemical bonds such as O-H, N-H, and C-H affect the energy of incident electromagnetic waves. As a 

result, spectroscopy can offer unique and detailed fingerprints of fruit samples using the changes in molecular energy 

levels that have been observed. The electromagnetic wave is viewed as light at the macro level, and the transitioning 

of the incidence. 
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The reflection, dispersion, and transmission of light are all examples of electromagnetic waves. Because of the 

absorption a portion of light penetrates sample tissue, the intensity and wavelengths of emission, and physical and 

chemical states of the objective material influence absorption or reflection. This property of organic materials to 

behave differently at different wavelengths of Electromagnetic radiations according to physical and chemical 

properties is of great importance in determination of fruit quality non-destructively. 

 

METHODOLOGY 

 

Various machine learning models or algorithms can be used to identify the variety of apple based on their features.  In 

order to achieve this Principal Component and Linear Discriminant analysis are used in this paper.  

 

Principal Component Analysis: 

PCA is widely used method developed for dimensionality reduction. Dimensionality reduction is the method of 

taking high dimensional space data and mapping it into a different space with much smaller dimensionality. This 

procedure is closely linked to the concept of lossy compression used in information theory. There are quite a few 

reasons to decrease the dimensionality of data. First, high dimensional data impose computational challenges. 

Mathematical analysis for PCA is as follows [9]. It begins with p-dimensional vectors, which are then projected down 

into a q-dimensional subspace to summarise. The projection of the original vectors on to q directions, the primary 

components that span the sub-space, will constitute our summary. 

 

There are numerous mathematical methods for deriving the principal components that are equivalent in weight. The 

most straightforward method is to determine the projection that maximises variance. The first and most important 

factor is the direction in space where projections differ the most. The direction that maximises variation among all 

directions to the first is the second main component. The k
th

 Component is orthogonal to the previous k-1 components 

and maximises variance. In all, there are p main components. 

 

Instead of maximising variance, it may appear that finding the projection with the shortest average (mean-squared) 

distance between the original vectors and their projections on to the principal components is a better option; this turns 

out to be identical to maximising variance. Assume that the data has been centered, meaning that every variable has a 

mean of 0. If we encode the centered data in a matrix x, where rows represent objects and columns represent 

variables, then 𝑥𝑇𝑥 =  𝑛𝑣, where v represents the data's covariance matrix. 

 

Minimizing projection residuals:  

Let's start with a single-dimensional projection. To put it another way, we have p-dimensional vectors that we want to 

project onto a line passing through the origin. The line can be specified by a unit vector along it, w, and the projection 

of a a data vector 𝑥𝑖          onto the line is  𝑥𝑖        . 𝑤   , which is a scalar. When we project on to one of the coordinate axes, we 

get the correct answer. This represents the projection's distance from the origin; in p-dimensional space, the real 

co-ordinate is   𝑥𝑖        . 𝑤     𝑤   . Because the mean of the vectors  𝑥𝑖         is zero, the projection's main will be zero. 

 
1

𝑛
 𝑛

𝑖=1 (  𝑥𝑖         . 𝑤     ) 𝑤    =    
1

𝑛
 𝑛

𝑖=1 𝑥𝑖 . 𝑤      𝑤            (1)  

 

There will be certain errors if we try to use our projected or picture vectors instead of our original vectors. In most 

cases, the images do not match the source vectors. We need to know when they will match? What is the size of the 

difference in the projection's error or residual? Let's imagine we have a single vector xi it can be 

 

‖ 𝑥 𝑖 −   𝑤   . 𝑥𝑖      𝑤   ‖
2 =   𝑥𝑖     𝑤   . 𝑥 𝑖 𝑤    .  𝑥𝑖    −  𝑤   . 𝑥𝑖     𝑤      

=  𝑥 𝑖  . 𝑥 𝑖  − 𝑥 𝑖  .  𝑤   . 𝑥 𝑖   𝑤    − 𝑤    .  𝑥 𝑖  𝑤   . 𝑥 𝑖  +  𝑤   . 𝑥 𝑖   𝑤    .  𝑤   . 𝑥 𝑖   𝑤              = ‖𝑥 𝑖  ‖
2 −

2(𝑤   . 𝑥 𝑖  )
2 + (𝑤   . 𝑥𝑖       )2 𝑤   .𝑤    

 = 𝑥 𝑖  . 𝑥 𝑖  − (𝑤   . 𝑥 𝑖  )
2                                  (2) 

Since 𝑤   . 𝑤   = ‖𝑤   ‖2 = 1. 
 

Add these residuals up through all the vectors 

𝑀𝑆𝐸 𝑤    =
1

𝑛
 𝑛

𝑖=1 ‖𝑥 𝑖  ‖
2 − (𝑤   . 𝑥 𝑖  )

2    (3) 

1

𝑛
  𝑛

𝑖=1 ‖𝑥 𝑖  ‖
2 −  𝑛

𝑖=1 (𝑤   . 𝑥 𝑖  )
2                 (4) 

 

Because the initial summation is independent on w, it makes no difference when attempting to reduce the mean 

squared residual. To reduce the MSE, we must increase the size of the second, i.e., we wish to maximize  
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1

𝑛
 𝑛

𝑖=1 (𝑤   . 𝑥 𝑖  )
2                                                (5) 

 

Which we can perceive is a sample mean of(𝑤   . 𝑥 𝑖  )
2. Here the sample mean of square is each time equal to the 

square of sample mean added with the sample variance: 

 

1

𝑛
 𝑛

𝑖=1 (𝑤   . 𝑥 𝑖  )
2  

1

𝑛
 𝑛

𝑖=1 𝑥 𝑖  . 𝑤    
2

 + 𝑉   𝑤   . 𝑥 𝑖         

Minimizing the residual sum of squares is equivalent to maximising the variance of the projections, as the mean of the 

projections is zero.[9] We don't wish to project on to just one vector, but on to several principle components in 

general. If the components are orthogonal and have the same unit vectors𝑤   1, 𝑤     2, … . . 𝑤   𝑘   , they are said to be 

orthogonal, then the image of 𝑥𝑖  is nothing but its projection onto the space spanned by these vectors, 

 

 

𝑘

𝑗=1

 𝑥 𝑖  . 𝑤   𝑗    𝑤   𝑗    

 

The projection's mean for each component is still zero. When we apply the same algebra to the mean squared error, 

the cross-terms between distinct components cancel out, leaving us with the task of maximising the sum of the 

variances of the projections on to the components. [9]  

 

Maximizing variance: 

 Let‘s see how to maximize the variance. Producing all the summations finds somewhat tedious, so let's perform the 

algebra in matrix form. If we load our 𝑛 data vectors into the 𝑛 × 𝑝 matrix x, then the projection is given by xw i.e. 

𝑛 × 1 matrix. [9] Thus the variance is 

 

 𝑉   𝑤   . 𝑥 𝑖   =
1

𝑛
 𝑖 (𝑥 𝑖  . 𝑤   )2                                                             

                                =
1

𝑛
(𝑥𝑤)𝑇(𝑥𝑤)                 

                             =
1

𝑛
𝑤𝑇𝑥𝑇𝑥𝑤 

                               = 𝑤𝑇 𝑥𝑇𝑥

𝑛
𝑤 

                        = 𝑤𝑇𝑣𝑤     

                                                          

Let‘s select a unit vector 𝑤    which can maximize𝑉   𝑤   . 𝑥 𝑖   . To perform this, we need to ensure that we just look at 

unit vectors. It means we need to limit the maximization. The limit or constraint is that  𝑤    . 𝑤   = 1,
and/or 𝑤𝑇𝑤 = 1. To apply this limit, let‘s introduce multiplier ⋋  and perform a superior and constrained 

optimization: 

𝐿 𝑤,⋋ ≡ 𝑤𝑇𝑣𝑤 −⋋  𝑤𝑇𝑤 − 1              (6) 

𝜕𝐿

𝜕 ⋋
= 𝑤𝑇𝑤 − 1 

𝜕𝐿

𝜕𝑤
= 2𝑣𝑤 − 2 ⋋ 𝑤 

 Setting the derivative values to zero at the optimum, it is found that 

𝑤𝑇𝑤 = 1 

       𝑣𝑤 =⋋𝑤                                                  

As a result, the desired vector w is an eigenvector of the covariance matrix v, and the maximising vector is the one 

with the greatest eigenvalue. This is good news because finding eigenvectors is a rather quick process, and 

eigenvectors have a number of useful mathematical qualities that we may exploit as follows. Because v is a pp matrix, 

it will have a maximum of p distinct eigenvectors. We know that v is a covariance matrix, thus it is symmetric, and 

that the eigenvectors must be orthogonal to one another, according to linear algebra. Because v is a matrix, it is a 

non-negative definite matrix in the sense that 𝑥 . 𝑣𝑥 ≥ 0 for any value of 𝑥  . This means that all of v's eigenvalues 

must be≥ 0. 
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The primary components of the data are the eigenvectors of v. They span the entire p-dimensional space because we 

know they are orthogonal. The direction along which the data have the maximum variation is represented by the first 

principle component, i.e. the eigenvector with the biggest value of . The path orthogonal to the first component with 

the most variance is the second principle component, or second eigenvector. ]9]Their projections will be uncorrelated 

since it is orthogonal to the first eigenvector. In reality, projections on to all of the major components are unrelated to 

one another. Our weight matrix w will be a p×q matrix if we choose q principle components, with each column 

representing a different eigenvector of the covariance matrix v. The eigenvalues gives us the variance of the 

projection on to each component. The variance of projections on to the leading 𝑞 principle components is then 

 𝑔𝑖𝑣𝑒𝑛 𝑎𝑠  

𝑞

𝑖=1

⋋𝑖. 

 

Linear Discriminant Analysis (LDA) 

The LDA approach works by projecting the original data matrix into a lower-dimensional environment. Three stages 

were required to accomplish this goal. The between-class variance or between-class matrix is used to compute the 

separability between distinct classes i.e. the distance between the means of different classes. The within-class 

variance, also known as the within-class matrix, is calculated as the distance between the mean and the samples of 

each class. The final stage is to create a lower-dimensional space that optimizes between-class variance while 

minimizing within-class variance. All these stages are discussed below. 

 

Calculating the between-class variance (SB)   

The between-class variance for the 𝑖th class  𝑆𝐵𝑖  signifies the distance among the mean for the 𝑖th class  𝜇𝑖  and 

the total mean 𝜇 . LDA method searches for the lower dimensional space, which is most widely used to improve the 

between-class variance i. e. it simply maximizes the separation distance of classes. Taking consideration of the 

following assumption, the between-class variance and the between-class matrix   𝑆𝐵  are determined, The 

assumption is that, given the original dataset matrix 𝑋 =  𝑥1 , 𝑥2 , … . . 𝑥𝑁 , in which 𝑥𝑖  denotes the i
th

 sample, 

pattern or observation whereas  𝑁 represents the entire number of samples. Every sample is denoted by 𝑀 number of 

features 𝑥𝑖 ∈  𝑅𝑀 . It means, every sample is denoted as the point in 𝑀 – dimensional space. Let‘s consider, the 

data matrix is subdivided into 𝑐 = 3 classes as 𝑋 =   𝜔1 , 𝜔2 , 𝜔3 . Let every class has five number of samples 

(i.e. 𝑛1 = 𝑛2 = 𝑛3 = 5 ), where 𝑛𝑖  denotes the number of samples in 𝑖th class. The overall number of samples 

(𝑁) can be then calculated as follows,  

𝑁 =  

3

𝑖=1

𝑛𝑖 . 

 

To compute the between-class variance 𝑆𝐵 , separation distance of various classes represented by 𝑚𝑖 −𝑚 will be 

determined as follows: 

(𝑚𝑖 −𝑚)2 =  (𝑊𝑇𝜇𝑖 −𝑊𝑇𝜇)2 

      = 𝑊𝑇 𝜇𝑖 − 𝜇 (𝜇𝑖 − 𝜇)𝑇𝑊                        

 

Where 𝑚𝑖  denotes the mean projection of 𝑖th class and is determined as follows,  

𝑚𝑖 = 𝑊𝑇𝜇𝑖 , 
 

Where 𝑚 signifies the projection of total mean of each class and is determined as follows, 

𝑚 = 𝑊𝑇𝜇, 
 

Where, 𝑊 denotes transformation matrix of LDA and 𝜇𝑖 1 × 𝑀  signifies mean of the 𝑖th class and is calculated 

as defined in Equation (7),  𝜇 1 × 𝑀  the total mean of altogether classes and is calculated as defined in Equation 

(8) . 

𝜇𝑗  =  
1

𝑛𝑗
  𝑥𝑖  𝜖 𝜔 𝑗

𝑥𝑖                                       (7)                                                                                                  𝜇 =

1

𝑁
  𝑁

𝑖=1 𝑥𝑖 =   𝑐
𝑖=1

𝑛𝑖  

𝑁
 𝜇𝑖                (8)                                            

 

Where 𝑐 denotes total number of classes as an example 𝑐 = 3. 
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The term  𝜇𝑖 − 𝜇 (𝜇𝑖 − 𝜇)𝑇  of Equation (6) denotes the separation distance among the mean of 𝑖th class  𝜇𝑖  

and total mean 𝜇 , or simply it signifies the between-class variance for the 𝑖th class 𝑆𝐵𝑖 . Substituting  𝑆𝐵𝑖  into 

Equation (6) gives us equation (9) 

 

(𝑚𝑖 −𝑚)2 =  𝑊𝑇𝑆𝐵𝑖𝑊                                (9)                 

 

The overall between-class variance is determined as follows, 

 

 𝑆𝐵 =   𝑐
𝑖=1 𝑛𝑖  𝑆𝐵𝑖 . 

 

This is how the between-class matrix for the first class  𝑆𝐵𝑖  can be calculated and then total between-class matrix 

 𝑆𝐵  is computed by adding all these between-class matrices.  

                                                                            

RESULTS 

 

Evaluation of the PCA & LDA models is carried out on the basis of accuracy, R
2
, Root Mean Square Error 

(RMSE).  

 

  
 Based on confusion matrix shown in figure,  

 

The closeness of the proposed fruit identification method to the actual value is referred as accuracy and is expressed 

as 

           
 

Where, the true positive and negative is denoted as and  False negative and positive is expressed as 

and respectively. Accuracy for PCA & LDA for various training percentage is observed as follows. 
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The future prediction is evaluated using the metric R2 concerning the variability proportion and is expressed as, 

 

Where, refers to the calculated value, and  refers to the average value respectively.  R-squared is a 

statistical quantity that signifies the goodness of fit for the model. R-square for PCA & LDA for various training 

percentage is observed as follows. 
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The most frequently used metric for ML evaluation is RMSE (root-mean-square error). ―This is defined as the square 

root of the average squared distance between the actual score and the predicted score‖ And mathematically 

represented as  

 
Where yi denotes the true score if ith data point, whereas ŷi represents the predicted value. RMSE is a measure to 

custom when it is required to assess the standard deviation σ for observed value from model‘s prediction. RMSE for 

PCA & LDA for various training percentage is observed as follows. 
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CONCLUSION 

 

The primary distinction between the two algorithms is in the fundamental learning strategy. Both techniques depend 

on deconstructing matrices of eigenvalues and eigenvectors. LDA is supervised whereas PCA is unsupervised. By 

examining the association between various characteristics, PCA decreases dimensionality. In order to achieve this, a 

new subspace with orthogonal axes—or principal components—with the direction of maximum variance is created. 

 

In essence, PCA creates components based on the direction in which the data has the most variance, for example, 

when the data is spread out the maximum. Principals and eigenvectors are two names for the same component, which 

is a subset of the data that contains the majority of the information or variance of our data. On the other hand, LDA 

accomplishes nearly the same thing, but it also includes a "pre-processing" step that determines mean vectors from 

class labels before extracting the eigenvalues.                                           
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