Automorphisms of non-abelian metabelian groups of order upto 24

Muniya ${ }^{1}$, Harsha Arora ${ }^{2}$
${ }^{1}$ Shri Jagdishprasad Jhabarmal Tibrewala University, Rajasthan
${ }^{2}$ Govt. College for Women, Hisar

Abstract

In this paper, G be the non-abelian metabelian group and $\operatorname{Aut}(G)$ denotes the automorphism group of group G. A group is metabelian group if its commutator group is abelian or if it has an abelian normal subgroupin which the factor group is also abelian.There are 35 non-Abelian metabelian groups of order less than or equal to 24. In this study, we investigate the automorphism groups of all non-abelian metabelian groups of order less than or equal to 24 andthe verification has beenmade through GAP(Groups Algorithm Programming) software.

Keywords: Metabelian Groups, Automorphism, Order.

INTRODUCTION

Let \boldsymbol{G} be a finite metabelian group, $\boldsymbol{Z}_{\boldsymbol{n}}$ denotes the cyclic group of order $\boldsymbol{n}, \boldsymbol{S}_{\boldsymbol{n}}$ denotes the permutation group of degree $\boldsymbol{n}, \boldsymbol{D}_{\boldsymbol{n}}$ denotes the dihedral group of order $\mathbf{2 n}, \boldsymbol{Q}_{\boldsymbol{n}}$ denotes quatornion group. A group \boldsymbol{G} is said to be metabelian if \boldsymbol{G}^{\prime}, the derived subgroup of \boldsymbol{G} is abelian. Much has been investigated about the properties of metabelian groups in the literature. In paper [3], structure of metabelian groups of order upto 24 has been described. In paper [4], the authors studied about the conjugacy classes of metabelian groups of order less than 24.In paper [1], [2], automorphisms of some non-abelian groups of order \boldsymbol{p}^{4} are computed. In the present paper, we shall find the automorphisms of metabelian groups of order less than equal to $\mathbf{2 4}$.

In [3], Rehman Abdul described the metabelian groups of order less than or equal to 24.

> (1) $D_{3} \cong S_{3} \cong\left\langle a, b ; a^{3}=b^{2}=1, b a b=a^{-1}\right\rangle$.
> (2) $D_{4} \cong\left\langle a, b ; a^{4}=b^{2}=1, b a b=a^{-1}\right\rangle$.
> (3) $Q_{3} \cong\left\langle a, b: a^{4}=1, b^{2}=a^{2}, a b a=b\right\rangle$.
> (4) $D_{5} \cong\left\langle a, b: a^{5}=b^{2}=1, b a b=a^{-1}\right\rangle$.
> (5) $Z_{3} \rtimes Z_{4} \cong<a, b: a^{3}=b^{4}=1, b^{-1} a b=a^{2}>$.
> (6) $A_{4} \cong\left\langle a, b, c: a^{2}=b^{2}=c^{3}=1, b a=a b, c a=a b c, c b=a c\right\rangle$.
> (7) $D_{6} \cong\left\langle a, b: a^{6}=b^{2}=1, b a b=a^{-1}\right\rangle$.
> (8) $D_{7} \cong\left\langle a, b: a^{7}=b^{2}=1, b a b=a^{-1}\right\rangle$.
> (9) $D_{8} \cong\left\langle a, b: a^{8}=b^{2}=1, b a b=a^{-1}\right\rangle$.
> (10) $G \cong\left\langle a, b: a^{8}=b^{2}=1, b a b=a^{3}\right\rangle$.
> (11) $Q_{16} \cong\left\langle a, b: a^{8}=1, \quad a^{4}=b^{2}, \quad a b a=b\right\rangle$.
> (12) $\left.D_{4} \times Z_{2} \cong<a, b, c: a^{4}=b^{2}=c^{2}=1, a c=c a, b c=c b, b a b=a^{-1}\right\rangle$. (13) $Q_{3} \times Z_{2} \cong<a, b, c: a^{4}=b^{4}=c^{2}=1, b^{2}=a^{2}, b a=a^{3} b, a c=c a, b c=c b>$.
> (14)Modular $-16=G \cong\left\langle a, b: a^{8}=b^{2}=1, a b=b a^{5}>\right.$.
> (15) $B \cong\left\langle a, b: a^{4}=b^{4}=1, a b=b a^{3}\right\rangle$.
> (16) $K \cong\left\langle a, b, c: a^{4}=b^{2}=c^{2}=1, a b=b a, a c=c a, c b=a^{2} b c\right\rangle$.
> (17) $G_{4,4} \cong<a, b: a^{4}=b^{4}=(a b)^{2}=1, a b^{3}=b a^{3}>$.
> (18) $D_{9} \cong\left\langle a, b: a^{9}=b^{2}=1, b a b=a^{-1}\right\rangle$.
> (19) $\left.S_{3} \times Z_{3} \cong<a, b, c: a^{3}=b^{2}=c^{3}=1, b a=a^{-1} b, a c=c a, b c=c b\right\rangle$.
> $(20)\left(Z_{3} \times Z_{3}\right) \rtimes Z_{2} \cong<a, b, c: a^{2}=b^{3}=c^{3}=1, b c=c b, b a b=a, c a c=a>$.
> (21) $D_{10} \cong\left\langle a, b: a^{10}=b^{2}=1, b a b=a^{-1}\right\rangle$.
> (22) $F r_{20} \cong Z_{5} \rtimes Z_{4} \cong\left\langle a, b: a^{4}=b^{5}=1, b a=a b^{2}\right\rangle$.
> (23) $Z_{5} \rtimes Z_{4} \cong\left\langle a, b: a^{4}=b^{5}=1, b a b=a\right\rangle$.

$$
\begin{gathered}
\text { (24) } F r_{21} \cong Z_{7} \rtimes Z_{3} \cong<a, b: a^{3}=b^{7}=1, b a=a b^{2}>. \\
\text { (25) } D_{11} \cong<a, b: a^{11}=b^{2}=1, b a b=a^{-1}>.
\end{gathered}
$$

$$
\text { (26) } S_{3} \times Z_{4} \cong<a, b, c: a^{3}=b^{2}=c^{4}=1, a^{b}=a^{-1}, a c=c a, b c=c b>
$$

(27) $S_{3} \times Z_{2} \times Z_{2} \cong<a, b, c, d: a^{3}=b^{2}=c^{2}=d^{2}=1, a^{b}=a^{-1}, a c=c a, a d=d a, b c=c b, b d=d b, c d$ $=d c>$.

$$
(28) D_{4} \times Z_{3} \cong<a, b, c: a^{3}=b^{4}=c^{2}=1, b^{c}=b^{-1}, a b=b a, a c=c a>
$$

(29) $Q \times Z_{3} \cong<a, b, c: a^{4}=c^{3}=1, a^{2}=b^{2}, a^{b}=a^{-1}, b c=c b, a c=c a>$.
(30) $A_{4} \times Z_{2} \cong<a, b, c, d: a^{2}=b^{2}=c^{3}=d^{2}=1, a b=b a, c a=a b c, a d=d a, a c=c b, b d=d b, c d$ $=d c>$.
(31) $Q_{12} \cong<a, b: a^{12}=1, a^{6}=b^{2}, b^{-1} a b=a^{-1}>$.
(32) $D_{12} \cong<a, b: a^{12}=b^{2}=1, b a b=a^{-1}>$.
(33) $Z_{6} \rtimes Z_{4} \cong<a, b: a^{4}=b^{6}=1, b a b=a>$.
(34) $Z_{3} \rtimes Z_{8} \cong<a, b: a^{3}=b^{8}=1, b a b^{-1}=a^{-1}>$.
$(35) Z_{3} \rtimes Q \cong<a, b, c: a^{2}=b^{6}=c^{2}=1, a b=b a, \quad a c=c a,(c b)^{2}=1>$.
Automorphisms of all non-abelian metabelian groups of order less than equal to 24

Automorphisms of groups of order 6

Automorphisms of $\boldsymbol{D}_{\mathbf{3}}$:

$$
D_{3} \cong S_{3} \cong<a, b ; a^{3}=b^{2}=1, b a b=a^{-1}>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(D_{3}\right)$ sends the generators of D_{3} as

$$
\begin{gathered}
a \rightarrow a^{i} ;(i, 3)=1 \\
b \rightarrow a^{i} b ; 1 \leq i \leq 3
\end{gathered}
$$

Thus,

$$
\left|A u t\left(D_{3}\right)\right|=6 .
$$

Automorphisms of \boldsymbol{Q}_{3} :

Automorphisms of groups of order 8

Automorphisms of $\boldsymbol{D}_{\mathbf{4}}$:

$$
D_{4} \cong<a, b ; a^{4}=b^{2}=1, b a b=a^{-1}>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(D_{4}\right)$ sends the generators of D_{4} as

$$
\begin{gathered}
a \rightarrow a^{i} ;(i, 2)=1,1 \leq i \leq 4 \\
\quad b \rightarrow a^{j} b ; 1 \leq i \leq 4
\end{gathered}
$$

Hence

$$
\left|A u t\left(D_{4}\right)\right|=8 .
$$

$$
Q_{3} \cong<a, b: a^{4}=1, b^{2}=a^{2}, a b a=b>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(Q_{3}\right)$ sends the generators of Q_{3} as

$$
\begin{array}{lll}
a \rightarrow a^{i} b^{j} ; & i \in\{0,1,3\}, & j \in\{0,1,3\}, \\
b \rightarrow a^{i} b^{j} ; & i \in\{0,1,3\}, & j \in\{0,1,3\}, \\
i+j \neq 0 .
\end{array}
$$

Therefore,

$$
\left|A u t\left(Q_{3}\right)\right|=24
$$

Automorphisms of groups of order 10

Automorphisms of \boldsymbol{D}_{5} :

$$
D_{5} \cong<a, b: a^{5}=b^{2}=1, b a b=a^{-1}>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(D_{5}\right)$ sends the generators of D_{5} as

$$
\begin{gathered}
a \rightarrow a^{i} ;(i, 5)=1 \\
b \rightarrow a^{j} b ; 1 \leq j \leq 5
\end{gathered}
$$

Thus,

$$
\left|\operatorname{Aut}\left(D_{5}\right)\right|=20
$$

$Z_{3} \rtimes Z_{4} \cong<a, b: a^{3}=b^{4}=1, b^{-1} a b=$
Any automorphism $\psi \in \operatorname{Aut}\left(Z_{3} \rtimes Z_{4}\right)$ sends the generators of $Z_{3} \rtimes Z_{4}$ as

$$
a \rightarrow a^{i} ; 1 \leq i<3
$$

$$
b \rightarrow a^{i} b^{j} ; 2 \nmid j, 0 \leq i \leq 2,1 \leq j \leq 3
$$

Thus,

$$
\left|\operatorname{Aut}\left(Z_{3} \rtimes Z_{4}\right)\right|=12
$$

Automorphisms of \boldsymbol{A}_{4} :

$$
A_{4} \cong<a, b, c: a^{2}=b^{2}=c^{3}=1, b a=a b, c a=a b c, c b=a c>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(A_{4}\right)$ sends the generators of A_{4} as

$$
\begin{aligned}
a \rightarrow a^{i} b^{j} ; 0 \leq i, j \leq 1, & i+j \neq 0 \\
b \rightarrow a^{i} b^{j} ; 0 \leq i, j \leq 1, & i+j \neq 0 \\
c \rightarrow a^{i} b^{j} c^{k} ; 0 \leq i, j \leq 1, & k \in\{1,2\} .
\end{aligned}
$$

So

$$
\left|A u t\left(A_{4}\right)\right|=24
$$

Automorphisms of $\boldsymbol{D}_{\mathbf{6}}$:

$$
D_{6} \cong<a, b: a^{6}=b^{2}=1, b a b=a^{-1}>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(D_{6}\right)$ sends the generators as

$$
\begin{gathered}
a \rightarrow a^{i} ; \quad i \in\{1,5\} \\
b \rightarrow a^{i} b ; 0 \leq i \leq 5 .
\end{gathered}
$$

So

$$
\left|\operatorname{Aut}\left(D_{6}\right)\right|=12
$$

Automorphisms of groups of order 14

Automorphisms of $\boldsymbol{D}_{\mathbf{7}}$:

$$
D_{7}=<a, b: a^{7}=b^{2}=1, b a b=a^{-1}>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(D_{7}\right)$ sends the generators of D_{7} as

$$
\begin{gathered}
a \rightarrow a^{i} ; 1 \leq i \leq 6 \\
b \rightarrow a^{j} b ; 0 \leq j \leq 6
\end{gathered}
$$

So

$$
\left|A u t\left(D_{7}\right)\right|=42
$$

Automorphisms of groups of order 16

Automorphisms of $\boldsymbol{D}_{\mathbf{8}}$:

Any automorphism $\psi \in \operatorname{Aut}\left(D_{8}\right)$ sends the generators of D_{8} as

$$
\begin{aligned}
a \rightarrow a^{i} & ;(i, 2)=1,1 \leq i<8 \\
& b \rightarrow a^{j} b ; 0 \leq i \leq 7
\end{aligned}
$$

So

$$
\left|A u t\left(D_{8}\right)\right|=32
$$

Automorphisms of \boldsymbol{G} :

$$
G \cong<a, b: a^{8}=b^{2}=1, b a b=a^{3}>
$$

Any automorphism $\psi \in \operatorname{Aut}(G)$ sends the generators of G as

$$
\begin{gathered}
a \rightarrow a^{i} ;(2, i)=1,1 \leq i \leq 8 \\
b \rightarrow a^{i} b ; 2 / i, 0 \leq i<8
\end{gathered}
$$

Thus,

$$
|\operatorname{Aut}(G)|=16
$$

Automorphisms of \boldsymbol{Q}_{16} :

$$
Q_{16} \cong<a, b: a^{8}=1, a^{4}=b^{2}, \quad a b a=b>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(Q_{16}\right)$ sends the generators of Q_{16} as

$$
a \rightarrow a^{i} ;(2, i)=1,1 \leq i \leq 8
$$

$$
b \rightarrow a^{i} b^{j} ; 0 \leq i \leq 3, \quad j \in\{1,3\}
$$

Thus,

$$
\left|\operatorname{Aut}\left(Q_{16}\right)\right|=32
$$

Automorphisms of $D_{4} \times Z_{2}$:

$$
D_{4} \times Z_{2} \cong<a, b, c: a^{4}=b^{2}=c^{2}=1, a c=c a, b c=c b, b a b=a^{-1}>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(D_{4} \times Z_{2}\right)$ sends the generators of $D_{4} \times Z_{2}$ as

$$
\begin{aligned}
& a \rightarrow a^{i} c^{j} ; \quad i \in\{1,3\}, \quad j \in\{0,1\} \\
& b \rightarrow a^{k} b c^{l} ; 0 \leq k \leq 3, \quad l \in\{0,1\} \\
& c \rightarrow a^{m} c ; \quad m \in\{0,2\} .
\end{aligned}
$$

Hence

$$
\left|\operatorname{Aut}\left(D_{4} \times Z_{2}\right)\right|=64
$$

Automorphisms of $\boldsymbol{Q}_{\mathbf{3}} \times \boldsymbol{Z}_{2}$:

$$
Q_{3} \times Z_{2} \cong<a, b, c: a^{4}=b^{4}=c^{2}=1, b^{2}=a^{2}, b a=a^{3} b, a c=c a, b c=c b>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(Q_{3} \times Z_{2}\right)$ sends the generators of $Q_{3} \times Z_{2}$ as

$$
\begin{aligned}
a \rightarrow a^{i} b^{j} c^{k} ; & i, j \in\{0,1,3\}, \quad k \in\{0,1\}, \quad i+j \neq 0, \\
b \rightarrow a^{l} b^{m} c^{n} ; & l, m \in\{0,1,3\}, \quad n \in\{0,1\}, \quad i+j \neq 0, \\
& c \rightarrow a^{q} c ; \quad q \in\{0,2\} .
\end{aligned}
$$

So

$$
\left|\operatorname{Aut}\left(Q_{3} \times Z_{2}\right)\right|=96
$$

Automorphisms of Modular - 16:

$$
\text { Modular }-16=G \cong<a, b: a^{8}=b^{2}=1, a b=b a^{5}>
$$

Any automorphism $\psi \in \operatorname{Aut}(G)$ sends the generators of G as

$$
\begin{gathered}
a \rightarrow a^{i} b^{j} ; 2 \nmid i, 1 \leq i \leq 8, \quad j \in\{0,1\}, \\
b \rightarrow a^{r} b ; \quad r \in\{0,4\} .
\end{gathered}
$$

So

$$
|\operatorname{Aut}(G)|=16
$$

Automorphisms of B:

$$
B \cong<a, b: a^{4}=b^{4}=1, a b=b a^{3}>
$$

Any automorphism $\psi \in \operatorname{Aut}(B)$ sends the generators of B as

$$
\begin{aligned}
& a \rightarrow a^{i} b^{j} ; \quad i \in\{1,3\}, \quad j \in\{0,2\}, \\
& b \rightarrow a^{l} b^{m} ; 0 \leq l \leq 3, \quad m \in\{1,3\} .
\end{aligned}
$$

Thus,

$$
|A u t(B)|=32
$$

Automorphisms of K :

$$
K \cong<a, b, c: a^{4}=b^{2}=c^{2}=1, a b=b a, a c=c a, c b=a^{2} b c>
$$

Any automorphism $\psi \in \operatorname{Aut}(K)$ sends the generators of K as

$$
\begin{aligned}
& a \rightarrow a^{i} ; \quad i \in\{1,3\} \\
& b \rightarrow b, c, a^{2} b, a^{2} c, a b c, a^{3} b c, \\
& c \rightarrow b, c, a^{2} b, a^{2} c, a b c, a^{3} b c .
\end{aligned}
$$

So

$$
|A u t(K)|=48
$$

Automorphisms of $\boldsymbol{G}_{\mathbf{4 , 4}}$:

$$
G_{4,4} \cong<a, b: a^{4}=b^{4}=(a b)^{2}=1, a b^{3}=b a^{3}>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(G_{4,4}\right)$ sends the generators of $G_{4,4}$ as

$$
\begin{aligned}
& a \rightarrow a, a^{3}, b, b^{3}, a b^{2}, a^{2} b, a^{2} b^{3}, a^{3} b^{2} \\
& b \rightarrow a, a^{3}, b, b^{3}, a b^{2}, a^{2} b, a^{2} b^{3}, a^{3} b^{2}
\end{aligned}
$$

Thus,

$$
\left|\operatorname{Aut}\left(G_{4,4}\right)\right|=32
$$

Automorphisms of groups of order 18

Automorphisms of $\boldsymbol{D}_{\mathbf{9}}$

$$
D_{9} \cong<a, b: a^{9}=b^{2}=1, b a b=a^{-1}>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(D_{9}\right)$ sends the generators as

$$
\begin{gathered}
a \rightarrow a^{i} ; 3 \nmid i, 1 \leq i \leq 8 \\
b \rightarrow a^{j} b ; 0 \leq j \leq 8
\end{gathered}
$$

So

$$
\left|\operatorname{Aut}\left(D_{9}\right)\right|=54
$$

Automorphisms of $\boldsymbol{S}_{3} \times \boldsymbol{Z}_{3}$:

$$
S_{3} \times Z_{3} \cong<a, b, c: a^{3}=b^{2}=c^{3}=1, b a=a^{-1} b, a c=c a, b c=c b>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(S_{3} \times Z_{3}\right)$ sends the generators of $S_{3} \times Z_{3}$ as

$$
\begin{gathered}
a \rightarrow a^{i} ; 1 \leq i \leq 2 \\
b \rightarrow a^{j} b ; 0 \leq j \leq 2 \\
c \rightarrow c^{k} ; 1 \leq k \leq 2
\end{gathered}
$$

So

$$
\left|\operatorname{Aut}\left(S_{3} \times Z_{3}\right)\right|=12
$$

Automorphisms of $\left(Z_{3} \times Z_{3}\right) \rtimes Z_{2}$:

$$
\left(Z_{3} \times Z_{3}\right) \rtimes Z_{2} \cong<a, b, c: a^{2}=b^{3}=c^{3}=1, b c=c b, b a b=a, c a c=a>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(\left(Z_{3} \times Z_{3}\right) \rtimes Z_{2}\right)$ sends the generators of $\left(Z_{3} \times Z_{3}\right) \rtimes Z_{2}$ as

$$
\begin{gathered}
a \rightarrow a b^{i} c^{j} ; 0 \leq i, j \leq 2, \\
b \rightarrow b^{k} c^{l} ; 0 \leq k, l \leq 2, \quad k+l \neq 0, \\
c \rightarrow b^{m} c^{n} ; 0 \leq m, n \leq 2, \quad m+n \neq 0 .
\end{gathered}
$$

So

$$
\left|\operatorname{Aut}\left(\left(Z_{3} \times Z_{3}\right) \rtimes Z_{2}\right)\right|=432
$$

Automorphisms of groups of order 20

Automorphisms of \boldsymbol{D}_{10} :

$$
D_{10} \cong<a, b: a^{10}=b^{2}=1, b a b=a^{-1}>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(D_{10}\right)$ sends the generators as

$$
\begin{aligned}
& a \rightarrow a^{i} ; 2 \nmid i, 5 \nmid i, 1 \leq i<10 \\
& b \rightarrow a^{j} b ; 1 \leq j \leq 10 .
\end{aligned}
$$

So

$$
\left|\operatorname{Aut}\left(D_{10}\right)\right|=40
$$

Automorphisms of $\boldsymbol{F r}_{20}$:

$$
F r_{20} \cong Z_{5} \rtimes Z_{4} \cong<a, b: a^{4}=b^{5}=1, b a=a b^{2}>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(F r_{20}\right)$ sends the generators of $F r_{20}$ as

$$
\begin{gathered}
a \rightarrow a b^{i} ; 0 \leq i \leq 4 \\
b \rightarrow b^{j} ; 1 \leq j \leq 4
\end{gathered}
$$

Thus,

$$
\left|A u t\left(F r_{20}\right)\right|=20
$$

Automorphisms of $Z_{5} \rtimes Z_{4}$:

$$
Z_{5} \rtimes Z_{4} \cong<a, b: a^{4}=b^{5}=1, b a b=a>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(Z_{5} \rtimes Z_{4}\right)$ sends the generators of $Z_{5} \rtimes Z_{4}$ as

$$
\begin{gathered}
a \rightarrow a^{i} b^{j} ; \quad i \in\{1,3\} 0 \leq j \leq 4 \\
b \rightarrow b^{k} ; 1 \leq k \leq 4
\end{gathered}
$$

Thus,

$$
\left|\operatorname{Aut}\left(Z_{5} \rtimes Z_{4}\right)\right|=40 .
$$

Automorphisms of $\boldsymbol{F r}_{21}$:

$$
F r_{21} \cong Z_{7} \rtimes Z_{3} \cong<a, b: a^{3}=b^{7}=1, b a=a b^{2}>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(F r_{21}\right)$ sends the generators of $F r_{21}$ as

$$
\begin{gathered}
a \rightarrow a b^{i} ; 0 \leq i \leq 6 \\
b \rightarrow b^{j} ; 1 \leq j \leq 6
\end{gathered}
$$

Thus,

$$
\left|A u t\left(F r_{21}\right)\right|=42
$$

Automorphisms of groups of order 22
Automorphisms of $\boldsymbol{D}_{\mathbf{1 1}}$:

$$
D_{11}=<a, b: a^{11}=b^{2}=1, b a b=a^{-1}>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(D_{11}\right)$ sends the generators of D_{11} as

$$
\begin{gathered}
a \rightarrow a^{i} ; 1 \leq i \leq 10 \\
b \rightarrow a^{j} b ; 0 \leq j \leq 10
\end{gathered}
$$

So

$$
\left|A u t\left(D_{11}\right)\right|=110
$$

Automorphisms of groups of order 24

Automorphisms of $S_{3} \times Z_{4}$:

$$
S_{3} \times Z_{4} \cong<x, y, z: x^{3}=y^{2}=z^{4}=1, x^{y}=x^{-1}, x z=z x, y z=z y>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(S_{3} \times Z_{4}\right)$ sends the generators of $S_{3} \times Z_{4}$ as

$$
\begin{gathered}
x \rightarrow x^{i} ; 1 \leq i \leq 2, \\
y \rightarrow x^{j} y z^{k} ; 0 \leq j \leq 2, \quad k \in\{0,2\}, \\
z \rightarrow z^{l} ; \quad l \in\{1,3\} .
\end{gathered}
$$

So

$$
\left|A u t\left(S_{3} \times Z_{4}\right)\right|=24
$$

Automorphisms of $S_{3} \times Z_{2} \times Z_{2}$:

$S_{3} \times Z_{2} \times Z_{2} \xlongequal{\cong} \underset{>}{x, y, z, w: x^{3}=y^{2}=z^{2}=w^{2}=1, x^{y}=x^{-1}, x z=z x, x w=w x, y z=z y, y w=w y, z w=w z .}$
Any automorphism $\psi \in \operatorname{Aut}\left(S_{3} \times Z_{2} \times Z_{2}\right)$ sends the generators of $S_{3} \times Z_{2} \times Z_{2}$ as

$$
x \rightarrow x^{i} ; 1 \leq i \leq 2
$$

$$
y \rightarrow x^{j} y z^{k} w^{l} ; 0 \leq j \leq 2,0 \leq k, l \leq 1
$$

$$
z \rightarrow z^{u} w^{v} ; 0 \leq u, v \leq 1, \quad u+v \neq 0
$$

So

$$
\left|\operatorname{Aut}\left(S_{3} \times Z_{2} \times Z_{2}\right)\right|=144
$$

Automorphisms of $D_{4} \times Z_{3}$:

$$
D_{4} \times Z_{3} \cong<x, y, z: x^{3}=y^{4}=z^{2}=1, y^{z}=y^{-1}, x y=y x, x z=z x>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(D_{4} \times Z_{3}\right)$ sends the generators of $D_{4} \times Z_{3}$ as

$$
\begin{gathered}
x \rightarrow x^{i} ; 1 \leq i \leq 2, \\
y \rightarrow y^{j} ; \quad j \in\{1,3\}, \\
z \rightarrow y^{k} z ; 0 \leq k \leq 3 .
\end{gathered}
$$

So

$$
\left|\operatorname{Aut}\left(D_{4} \times Z_{3}\right)\right|=16
$$

Automorphisms of $Q \times \boldsymbol{Z}_{3}$:

$$
Q \times Z_{3} \cong<x, y, z: x^{4}=z^{3}=1, x^{2}=y^{2}, x^{y}=x^{-1}, y z=z y, x z=z x>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(Q \times Z_{3}\right)$ sends the generators of $Q \times Z_{3}$ as

$$
\begin{gathered}
x \rightarrow x^{i} y^{j} ; 0 \leq i \leq 3,0 \leq j \leq 1 \\
y \rightarrow x^{l} y^{m} ; 0 \leq l \leq 3,0 \leq m \leq 1 \\
z \rightarrow z^{k} ; 1 \leq k \leq 2
\end{gathered}
$$

So

$$
\left|A u t\left(Q \times Z_{3}\right)\right|=48
$$

Automorphisms of $\boldsymbol{A}_{\mathbf{4}} \times \boldsymbol{Z}_{2}$:

$$
A_{4} \times Z_{2} \cong<x, y, z, w: x^{2}=y^{2}=z^{3}=w^{2}=1, x y=y x, z x=x y z, x w=w x, x z=z y, y w=w y, z w=w z>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(A_{4} \times Z_{2}\right)$ sends the generators of $A_{4} \times Z_{2}$ as

$$
\begin{gathered}
x \rightarrow x^{i} y^{j} ; 0 \leq i, j \leq 1, \quad i+j \neq 0, \\
y \rightarrow x^{k} y^{l} ; 0 \leq k, l \leq 1, k+l \neq 0 \\
z \rightarrow x^{l} y^{m} z^{n} ; 0 \leq l, m \leq 1,1 \leq n \leq 2, \\
w \rightarrow w .
\end{gathered}
$$

So

$$
\left|\operatorname{Aut}\left(A_{4} \times Z_{2}\right)\right|=24
$$

Automorphisms of \boldsymbol{D}_{12} :

$$
D_{12}=<a, b: a^{12}=b^{2}=1, b a b=a^{-1}>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(D_{12}\right)$ sends the generators of D_{12} as

$$
\begin{aligned}
a \rightarrow & a^{i} ; 1 \leq i \leq 12,(i, 12)=1 \\
& b \rightarrow a^{j} b ; 0 \leq j \leq 11
\end{aligned}
$$

So

$$
\left|\operatorname{Aut}\left(D_{12}\right)\right|=48
$$

Automorphisms of \boldsymbol{Q}_{12} :

$$
Q_{12}=<a, b: a^{12}=1, a^{6}=b^{2}, b^{-1} a b=a^{-1}>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(Q_{12}\right)$ sends the generators of Q_{12} as

$$
\begin{gathered}
a \rightarrow a^{i} ; 1 \leq i \leq 12,(i, 12)=1 \\
b \rightarrow a^{j} b ; 0 \leq j \leq 11
\end{gathered}
$$

So

$$
\left|A u t\left(Q_{12}\right)\right|=48
$$

Automorphisms of $Z_{6} \rtimes Z_{4}$:

$$
Z_{6} \rtimes Z_{4} \cong<x, y: x^{4}=y^{6}=1, y x y=x>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(Z_{6} \rtimes Z_{4}\right)$ sends the generators of $Z_{6} \rtimes Z_{4}$ as

$$
\begin{array}{cc}
x \rightarrow x^{i} y^{j} ; & i \in\{1,3\}, 0 \leq j \leq 5, \\
y \rightarrow x^{k} y^{l} ; & k \in\{0,2\}, \quad l \in\{1,5\} .
\end{array}
$$

So

$$
\left|\operatorname{Aut}\left(Z_{6} \rtimes Z_{4}\right)\right|=48
$$

Automorphisms of $Z_{3} \rtimes Z_{8}$:

$$
Z_{3} \rtimes Z_{8} \cong<x, y: x^{3}=y^{8}=1, y x y^{-1}=x^{-1}>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(Z_{3} \rtimes Z_{8}\right)$ sends the generators of $Z_{3} \rtimes Z_{8}$ as

$$
x \rightarrow x^{i} ; 1 \leq i \leq 2
$$

$$
y \rightarrow x^{k} y^{l} ; 0 \leq k \leq 2,(2, l)=1,1 \leq l \leq 8
$$

So

$$
\left|\operatorname{Aut}\left(Z_{6} \rtimes Z_{4}\right)\right|=24 .
$$

Automorphisms of $Z_{3} \rtimes Q$:

$$
Z_{3} \rtimes Q \cong<x, y, z: x^{2}=y^{6}=z^{2}=1, x y=y x, x z=z x,(z y)^{2}=1>
$$

Any automorphism $\psi \in \operatorname{Aut}\left(Z_{3} \rtimes Q\right)$ sends the generators of $Z_{3} \rtimes Q$ as

$$
x \rightarrow x
$$

$$
\begin{gathered}
y \rightarrow x^{l} y^{m} ; 0 \leq l \leq 1, \quad m \in\{1,5\} \\
z \rightarrow x^{i} y^{j} z ; 0 \leq i \leq 1,0 \leq j \leq 5
\end{gathered}
$$

So

$$
\left|A u t\left(Z_{3} \rtimes Q\right)\right|=48
$$

REFERENCES

[1]. Muniya, Harsha Arora, Mahender Singh. Automorphisms of some $p-$ groups of order p^{4}. International Journal of Innovative Science and Research Technology, 7(7), 56-62(2022).
[2]. Muniya, Harsha Arora, Mahender Singh. Number of Automorphisms of some Non-Abelian $p-$ groups of order p^{4}. Applications and Applied Mathematics(AAM), 17(3), 83-96(2022)
[3]. Rahman, S. F. A., \& Sarmin, N. H. (2012). Metabelian groups of order at most 24. Menemui Matematik (Discovering Mathematics), 34(1), 77-94.
[4]. Sarmin, N. H., Gambo, I., and Omer, S. M. S. (2015). The conjugacy classes of metabelian groups of order at most 24. Jurnal Teknologi, 77(1):139-143.

