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ABSTRACT 

 

In this paper we investigate the existence and uniqueness of solution of fractional differential equation with 

boundary conditions by using Banach, Schaefer's and Leray-Schauder nonlinear alternative fixed point 

theorems respectively, also these investigation leads us to extend the work of Ravip. AGARWAL 1. 
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1. INTRODUCTION: 

 

  This paper studies the existence and uniqueness of solutions of fractional differential equation with boundary 

conditions, 
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Where RJxRf :  is a continuous function and 
12210

,,......,,,
 nn

yyyyy  are real constants, 


D
c

 is the Caputo 

fractional derivative. RAVIP. AGARWAL et al [1] Studied the existence and uniqueness of solution for boundary value 

problems, for fractional differential equations. 
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Fractional differential equation can be extensively applied to various disciplines such as Physics, mechanics, and 

engineering see [8,10]. Indeed, we can find numerous applications in viscoelasticity, electro chemistry, contro, porous 

media, electromagnetic etc. see [7,9,11,12,13]. Hence, in recent years fractional differential equations have been of 

great interest, and there have been many results on existence and uniqueness of the solution of boundary value problems 

for fractional differential equations, see [14,15]. There has been a significant progress in the investigation of fractional 

differential and partial differential equations in recent years; see the monographs of kilbas et al [2], [4]. 

Our work is to extend the existence and uniqueness solution of the problem where given by [1]. 
 

In this paper, we give some theorems, firstly Banach fixed point theorem, secondly Schaefer's fixed point theorem, and 

thirdly Leray – Schauder nonlinear alternative. Finally, we present an example illustrating the applicability of the 

imposed conditions. 

 

2- PRELIMINARIES 

 

In this section, we introduce the notation, definitions, and preliminary facts which are used in this paper. By C(J,R) we 

denote the Banach space of all continuous functions from J into R with the norm  
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Definition 2.1. [2,3].  

  The fractional (arbitrary) order  integral  of  the function 

bydefinedisRorderofRbaLh
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where   is the gamma function. When a=0, we write 
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Definition 2.2. [2,3]. 

   For a function h defined on the interval [a,b], the th  Riemann-Liouville fractional-order derivative of h, is defined 

by  
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Here n=[ ]+1 and [ ] denotes the integer part of  . 

 

Definition 2.3. [4].  

 

For a function h defined on the interval [a,b], the Caputo fractional-order derivative of order   of h, is defined by  
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3. EXISTENCE OF SOLUTIONS 

 

In the section, we give some definitions, lemmas which is useful in our work. 

 

Definition 3.1:  

A function ),,(
1

RJCy
n 

  with its  - derivative existing on J is said to be a solution of (1.1) – (1.2) if y satisfies 

the equation ))(,()( tytftyD
c




 on J and the conditions  
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For the existence of the solutions for the problem (1.1) – (1.2), we need the following lemmas: 

 

Lemma 3.1. [5]: 

 Let α >0, then the differential equation 0)( thD
c 

 has a solution 
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Lemma 3.2 [5]: 

 Let  >0, then 
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consequence of lemmas 3.1 and 3.2 we have the following result. 

 

Lemma 3.3:  

Let RJhletandNnnn  :,2,1-n   be continuous. A function y is a solution of the fractional 

integral equation  
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if and only if y is a solution of the fractional BVP  
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Proof: 

 Assume y satisfies (3.2), then by lemma 3.2 we have  
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By (3.3), all after a simple calculation we obtain 
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Hence we get equation (3.1). Conversely, it is clear that if y satisfies equation (3.1), then equations (3.2) – (3.3) hold. 

Our first result is based on the Banach fixed point theorem. 

 

Theorem 3.1  
Assume that  

 

(I1) There exists a constant k>0 and RRJf :  continuous function such that  
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Then the BVP (1.1) – (1.2) has a unique solution on J. 

 
Proof: 

Consider the operator  

),(),(: RJCRJCF   

defined by 
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Clearly,  the fixed points of the operator F are solutions of the problem (1.1) –(1.2). We shall use the Banach 

contraction principle to prove that F is a contraction. 
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Let x,y   C(J, R). Then for each t   J we have 
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Consequently, by (3.4) F is a contraction mapping. As consequence of the Banach fixed Point theorem, we deduce that 

F has a fixed point which is a solution of the problem (1.1) – (1.2). 

The second result is based on Schaefer's fixed point theorem. 

 

Theorem 3.2:  

Assume that  

(I2) The function RRxJf :  is continuous. 

(I3) There exists a constant M > 0 such that 

 .|),(| RzallandJteachforMztf   

Then the BVP (1.1) – (1.2) has at least one solution on J. 

Proof:  
  We shall use Schaefer's fixed point theorem to prove that F defined by (*) has  a fixed point. The proof will be given 

in several steps. 

Step1: F is continuous  

Let {yn} be a sequence such that yy
n
  in C(J,R). Then for each t   J. 
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Since f is continuous, we have 
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Step2: F maps the bounded sets into bounded sets in C(J,R). 

Indeed, it is enough to show that for any η>0 there exists a positive constant   such that for each 
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 By (I3) we have for each t   J 
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Step 3: F maps the bounded sets into the equicontinuos sets of C(J,R). 
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As 
21

tt  , the right-hand side of the above inequality tends to zero. As a consequence of steps 1 to 3 together with 

the Arzela-Ascoli theorem, we can conclude that ),(),(: RJCRJCF   is completely continuous. 

 

Step4: A priori bounds 

Now it remains to show that the set 
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This shows that the set E is bounded. As a consequence of Schaefer's fixed point theorem, we deduce that F has a fixed 

point which is a solution of the problem (1.1) – (1.2). 

 

In the following theorem we shall give an existence result for the problem (1.1) – (1.2) by means of an application of a 

Leray-Schauder type nonlinear alternative, where the condition (I3) is weakened. 

 
Theorem 3.3:  

 

Assume that (I2) and the following conditions hold 
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(I5) There exists a number M > 0 such that  

)5.3(1

)!1(

||
...||||)())((

)!1(
)(||||

1

1

10

1

1

1















n

Ty
TyyMTI

n

T
MI

M

n

n

f

n

n

Lf




 

Then BVP (1.1) – (1.2) has at least one solution on J  

 

Proof: Consider the operator F defined in theorem 3.1 and 3.2. It can easily shown that F is continuous and completely 

continuous. For ]1,0[ let y be such that for each Jt   we have ))(()( tFyty  . Then from (I4) – (I5) we have 

for each Jt   
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Then by condition (I5), there exists M such that .|||| My 


 

Let }||:||),({ MyRJCyV 


 

The operator ),(: RJCVF 



 is continuous and completely continuous. By the choice of 


V , there exists no 

Vy   such that )( yFy   for some ).1,0(  

As a consequence of the nonlinear alternative of Leray-Schauder type [6], we deduce that F has a fixed point y in 


V , 

which is a solution of the problem (1.1)-(1.2). 
This completes the proof. 

 

4. EXAMPLE 

 

In this article we give an example [1] to illustrate the usefulness of our main results. Let us consider the following BVP 
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Hence the condition (I1) holds with k=
10

1
. We shall check that condition (3.4) is satisfied with T=1. Indeed  
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for an appropriately chosen constant C that will be specified (4.3) – (4.5) imply that 
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Thus from (4.6) the positive constant C must satisfy 
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From (4.5) we get 
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Which is satisfied for some ].,1( nn   

Then by theorem 3.1 the problem (4.1) – (4.2) has a unique solution on [0,1] for the values of   satisfying (4.7). 

Remark: if 1 , we get the result of [16] 
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