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ABSTRACT 

 

Efficient data retrieval is a cornerstone of modern database systems, particularly in an era where data 

generation is exponentially increasing. SQL query optimization plays a crucial role in ensuring high-speed access 

to relevant data while minimizing execution time and resource consumption. This paper explores various SQL 

query optimization techniques, including indexing, execution plan analysis, partitioning, and sharing, along with 

concurrency control mechanisms. It evaluates cost-based and heuristic-based optimization strategies, examines 

the role of AI in query optimization, and presents benchmarking methodologies for performance tuning. 

Through empirical data and technical insights, this research provides an in-depth analysis of optimizing SQL 

queries for large-scale applications. 

 

Keywords: SQL Query Optimization, Indexing, Execution Plan, Query Profiling, Partitioning, Concurrency 
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INTRODUCTION 

 

1.1 Overview of SQL Query Optimization 

SQL query optimization is the method of improving query execution performance by reducing the computational 

complexity, memory accesses, and I/O operations (Abourezq & Idrissi, 2016). The database query optimizer chooses 

one of several possible execution plans based on several cost estimates and optimization strategies. 

 

1.2 Importance of Efficient Data Retrieval 

Tuned queries improve application responsiveness, user satisfaction, and infrastructure costs. Effective data retrieval is 

extremely critical in transactional systems (OLTP) and analytical processing systems (OLAP), where performance 

bottlenecks can significantly impact operations (Baumann et al., 2015). 

 

1.3 Objectives of Query Optimization 

 

1. Minimize query response time. 

2. Reduce CPU and I/O costs. 

3. Optimize memory and storage usage. 

4. Improve database scalability and reliability. 

 

1.4 Scope and Limitations of the Study 

This study is specifically focused on relational database optimization methods like MySQL, PostgreSQL, and SQL 

Server (Baumann, Misev, Merticariu, & Huu, 2021). It is not focused on NoSQL databases but does call for hybrid 

methods. 

 

FUNDAMENTALS OF SQL QUERY PROCESSING 

 

2.1 SQL Query Execution Workflow 

Execution of an SQL query is an accurate process by which the query is executed to fetch the desired data from a 

relational database in an efficient way. When user-submitted SQL query is being executed, the database management 

system (DBMS) initially executes the query to identify any syntax errors or verify the structure of the query. The query 

is then converted to an internal representation, and optimized and analysed by the query optimizer (Brahim, Drira, 

Filali, & Hamdi, 2016). The optimizer selects the optimal executing plan based on some cost-related aspects like data 

volume, whether there is an available index, and join conditions. 

 

Once a plan of best execution is selected, the query is run by the database engine, that is, data are fetched from disk and 

necessary computations done. Disk I/O activities, memory handling, and concurrency control operations also constitute 
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the execution of the query for its smooth and efficient execution. The last operation in the workflow is returning the 

result set to the user, usually performing formatting and sort operations prior to displaying the data (Briscoe et al., 

2014). With an understanding of this workflow, database developers and administrators can make educated decisions to 

improve query performance. 

 
Figure 1 How to Optimize SQL Queries for Faster(KD nuggets, 2021) 

 

2.2 Role of the Query Optimizer 

The query optimizer is an essential component of SQL query processing that identifies the most effective method for a 

query execution. Contemporary relational database management systems (RDBMS) implement rule-based or cost-

based optimization approaches to optimize query performance. A rule-based optimizer depends on predefined 

heuristics, for instance, rearrange join conditions or employing an index if it exists (Calheiros, Ranjan, Beloglazov, De 

Rose, &Buyya, 2010). Conversely, a cost-based optimizer estimates the computational cost of different plans of 

execution using statistical data, such as table cardinality, data distribution, and index selectivity. 

 

Choosing the optimal plan for execution out of queries that use joins, subqueries, and aggregation is one of the 

important responsibilities of an optimizer. For instance, when there are multiple join conditions, depending on cost 

estimation, the optimizer might choose between nested loop join, hash join, or merge join. Similarly, the optimizer 

determines whether it is beneficial to push a filter condition before or after a join operation, a technique known as 

predicate pushdown. The efficiency of the optimizer directly impacts query execution speed, and therefore it is a 

critical component of SQL performance tuning. 

 

2.3 Execution Plans and Cost Estimation 

An execution plan is a set of instructions on how a query will be carried out by the database engine. Execution plans 

are constructed by the optimizer and inform about query performance by defining operations like table scans, use of 

indexes, and join plans. Execution plans can be beneficial to database administrators in understanding to optimize 

inefficient query patterns and optimize them to execute quickly. 

 

Cost estimation is a component of query optimization because the optimizer chooses between execution plans based on 

estimated cost (Graefe, 2012).  

 

The optimizer is normally founded on the cost model which typically takes into account the number of disk reads (I/O 

cost), CPU cycles for the processing operations, and the memory overhead of hash and sort operations. For example, 

look at the following table comparing various query execution approaches and their estimated costs: 
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Execution 

Strategy 
Disk I/O Cost CPU Cost 

Memory 

Overhead 
Best Use Case 

Full Table Scan High Low Low 
Small tables or when 

no index is available 

Index Scan Medium Medium Medium 

When filtering data 

using indexed 

columns 

Nested Loop Join Medium High Low 

When one table is 

significantly smaller 

than the other 

Hash Join Low High High 

When large tables 

are joined with no 

indexing 

Merge Join Medium Medium Medium 

When joining sorted 

data with range 

filtering 

 

By analyzing execution plans and cost estimates, database administrators can determine whether to add indexes, rewrite 

queries, or adjust database configurations to improve performance. 

 

 
                          Source: Graefe, 2012. 

 

Figure 2 Comparison of query execution strategies based on CPU, memory, and disk I/O costs.  

 

2.4 Factors Affecting Query Performance 

There are several factors that influence the performance of an SQL query, ranging from database design choices to 

system-level constraints. The most significant is likely indexing, as the presence or absence of indexes can have a 

profound impact on query performance (Guo & Engler, 2011). A good indexing strategy reduces the number of rows 

that must be scanned when running a query, whereas the lack of indexes results in costly full-table scans. 

 

Query complexity is also a driver of performance. Queries with more than one join, nested subqueries, or complex 

aggregates have higher execution times due to higher computational burdens. These queries are typically optimized 

using query rewriting techniques such as substituting correlated subqueries with joins or employing common table 

expressions (CTEs) for readability and improved performance. Data distribution and cardinality affect query execution. 

Cardinality is the count of unique values in a column and affects how indexes work. Indexes on high-cardinality 

columns, such as primary keys, are superior to indexes on low-cardinality columns with lots of duplicate values (Hor, 
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Sohn, Claudio, Jadidi, & Afnan, 2018). The optimizer bases decisions about which execution plan to use on column 

cardinality statistics. 

 

Transaction processing and concurrency also play a role in query performance. When several users run queries at the 

same time, contention over system resources like locks on data pages impacts performance. Isolation levels within a 

transaction, including READ COMMITTED and SERIALIZABLE, also impact query execution, with more isolation 

decreasing performance due to additional locking overhead. 

 

The query performance is affected by database parameter settings such as buffer pool size, memory assignment to 

cache, and execution of queries in parallel. Parameter tuning based on workload maximizes efficiency (Kim et al., 

2015). For example, a high buffer pool size in MySQL or SQL Server reduces disk I/O operations as frequent access 

data stays in memory. 

 

Determining and fixing these causes enables database administrators and developers to optimize SQL query 

performance by employing some mix of database tuning, execution plan examination, query rewrites, and indexing 

methods. 

 

INDEXING STRATEGIES FOR FASTER DATA RETRIEVAL 

 

3.1 Introduction to Indexing in SQL 

Indexing probably is the most straightforward method of SQL query optimization and enhancing data retrieval 

performance. An index is a data structure that allows the database to search for particular rows more quickly with less 

full-table scanning. The database has to scan all the rows in a table to obtain the desired information without indexes, 

which can be very slow for large tables (Klösgen& May, 2002). By putting data in a highly structured form, indexes 

significantly speed up SELECT operations, especially for filtering or sorting. 

 

However, while indexes simplify reading performance, they do incur overhead in the INSERT, UPDATE, and DELETE 

operations because the database must maintain index structures. Effective indexing strategy optimizes retrieval speed 

and write performance so that the right index type based on query pattern should be selected. 

 

3.2 Types of Indexes: Clustered vs. Non-Clustered 

SQL databases accommodate different kinds of indexes, the most popular being clustered and non-clustered indexes. 

A clustered index orders the physical row order of a table and is normally created on a primary key of a table. As data 

in the table is physically sorted based on the clustered index, it is possible to create only a single clustered index for a 

table. Select statements that scan a range of values or ORDER BY qualifiers are greatly helped by clustered indexes 

because the data is already ordered (Kotidis&Roussopoulos, 1998). 

 

A non-clustered index does not specify the physical order of storage of the data. It forms an independent structure with 

references to the actual rows. Non-clustered indexes enable quicker lookups on columns used constantly in the 

WHERE clause but not included in the primary key. 

 

The following table compares clustered and non-clustered indexes: 

 

Feature Clustered Index 
Non-Clustered 

Index 

Determines physical row 

order 
Yes No 

Number of indexes per 

table 
One Multiple 

Ideal for range queries Yes No 

Storage overhead Higher Lower 

Write performance 

impact 
Higher Lower 

 

Both clustered and non-clustered indexes play crucial roles in SQL query optimization, and choosing the right type 

depends on workload characteristics and access patterns. 
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Figure 3 Impact of different indexing strategies on SQL query execution time. Source: Kotidis&Roussopoulos, 1998. 

 

3.3 B-Trees, Hash Indexes, and Bitmap Indexes 

There exist different indexing structures to support different types of queries. The most common index structures used 

in RDBMS are B-Trees (Balanced Trees), which offer logarithmic time complexity (O(log n)) for searching, insertion, 

and deletion (Neilson, Indratmo, Daniel, & Tjandra, 2019). B-Trees organize data in a hierarchical way, making it easy 

to scan through sorted values. They are especially suitable for range queries, ORDER BY queries, and indexing high-

cardinality columns. 

 

Hash indexes contain key-value pairs and use hash functions to map the search keys into their locations. Hash indexes, 

unlike B-Trees, use O(1) lookup but are not well-suited to range searching. Hash indexes assist in exact-match queries, 

where rows are needed based on distinct identifiers. 

 

Bitmap indexes keep presence of data in the form of bit arrays, and therefore they are effective for multi-column 

queries on low-cardinality columns like gender (Male/Female) or status flags (Active/Inactive). Rather than keeping 

pointers, bitmap indexes keep bitmaps for each value, conserving storage and enhancing query performance in multiple 

AND/OR conditions (Pizzi, Cepellotti, Sabatini, Marzari, &Kozinsky, 2015). 

 

3.4 Composite Indexes and Covering Indexes 

Composite index is an index on two or more columns, which enhances query performance when two or more columns 

are used together in WHERE or JOIN clauses. Composite indexes prevent the use of multiple single-column indexes 

and enhance queries by minimizing disk I/O operations (Rivera et al., 2015). Column position in composite indexes is 

important because queries need to reference the leading column first for optimal use. 

 

A covering index is a powerful composite index where the database caches all columns necessary for a query inside the 

index. As the data is already present in the index, the actual table will never be referenced by the database engine and 

therefore enhanced performance. Covering indexes are applicable for read-intensive programs where reducing disk 

usage is of extreme importance. 

 

3.5 Index Maintenance and Performance Considerations 

Though indexes optimize query processing, they have to be kept in check lest their performance suffers. As the tables 

increase and new records are inserted, altered, or deleted, indexes fragment and hence get executed inefficiently. Index 

fragmentation takes place when data pages are non-contiguously stored and thus more disk I/O operations become 

necessary. Database administrators utilize index rebuilding and index reorganization tasks to resist fragmentation (Ta-

Shma et al., 2017). 

 

In addition, over-indexing a table reduces write performance because each insert or update would mean more index 

updates. For the sake of balance in performance, indexing policies need to be constantly re-examined against query 

execution patterns. Profiling tools such as EXPLAIN ANALYZE (PostgreSQL), SQL Server Profiler, and MySQL 

EXPLAIN help identify unused or redundant indexes so that database administrators can drop unnecessary indexes and 

maintain optimal performance. 
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QUERY OPTIMIZATION TECHNIQUES 

 

4.1 Heuristic vs. Cost-Based Optimization 

Query optimization methods may be generally classified into cost-based and heuristic-based optimization. Heuristic-

based optimization is based on precomputed rules and heuristics for query optimization without regard to run-time cost 

or actual data distribution. Typical heuristics are rearranging join operations so that the intermediate results are as small 

as possible, reordering filter operations so that high row counts are not processed prematurely, and using indexes when 

they are present. It is fast and easy but not always producing the most optimal plan of execution (Yang, Li, Fang, & 

Wei, 2020). 

 

Cost-based optimization (CBO) does employ statistical metadata like data distribution, table cardinality, and index 

selectivity in order to estimate the cost of various execution plans. The optimizer examines various query execution 

approaches and selects the one that has the least estimated cost. Cost-based optimization is computationally more costly 

than heuristic-based optimization but generates more efficient execution plans. Today's relational databases like 

PostgreSQL, MySQL, and SQL Server depend heavily on cost-based optimization with the aid of advanced query 

planning and execution statistics. 

 

4.2 Query Rewriting and Refactoring 

Query rewriting and refactoring consist of rewriting SQL queries to make them run faster without altering their 

purpose. One popular method is substituting subqueries with joins to avoid repeated computation. For instance, 

correlated subqueries that run repeatedly can frequently be rewritten in the form of JOIN operations, which enable the 

optimizer to run them more optimally (Yu, Lakshmanan, & Amer-Yahia, 2009). 

 

Another refactoring method is eliminating unnecessary SELECT * statements. Selecting only the required columns 

instead of selecting all columns reduces data transferred and processed, resulting in quicker query execution. Common 

Table Expressions (CTEs) and temporary tables can also be utilized to enhance readability and performance for 

complex queries by breaking them into smaller pieces. 

 

Query Rewriting Example: 
Inefficient Query (Using Correlated Subquery): 

SELECT emp_id, emp_name 

FROM employees  

WHERE department_id IN ( 

    SELECT department_id FROM departments WHERE location = 'New York' 

); 

Optimized Query (Using JOIN): 

SELECT e.emp_id, e.emp_name 

FROM employees e 

JOIN departments d ON e.department_id = d.department_id 

WHERE d.location = 'New York'; 

 

The rewritten query eliminates the correlated subquery and allows the optimizer to utilize index-based joins, leading to 

faster execution. 

 

4.3 Predicate Pushdown and Filter Optimization 

Predicate pushdown is a method by which filter conditions are pushed as early as possible during query execution to 

minimize the number of rows processed. Whenever a filter in a WHERE clause can be pushed ahead of a JOIN or an 

aggregation, there is a tremendous savings in computation overhead (Zhang, Chen, Ooi, Tan, & Zhang, 2015). It is 

especially beneficial in analytical workloads and distributed query processing where data movement and intermediate 

results need to be minimized. 

 

For example, if a large dataset is queried for specific records before the join operation, filtering after the join may lead 

to processing unnecessary rows and, as a result, execution time. Filtering before the join, however, guarantees only the 

required rows are taken into account, hence making the process more efficient. 

 

4.4 Optimizing Joins: Nested Loop, Hash Join, and Merge Join 

Joins are among the most performance-intensive operations in SQL queries, and optimizing them is crucial for 

improving query speed (Abourezq& Idrissi, 2016). There are three primary types of join algorithms: 

 

1. Nested Loop Join – This method iterates through one table and searches for matching rows in another, 

making it efficient for small datasets but expensive for large tables. Indexing on the join key improves nested 

loop join performance by reducing lookups. 
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2. Hash Join – This method creates a hash table of one dataset and probes it with another dataset, making it 

efficient for large datasets with no indexing. Hash joins work well for equality-based joins but are memory-

intensive. 

3. Merge Join – This method sorts both datasets and merges them in order, making it optimal for pre-sorted or 

indexed data. Merge joins are highly efficient for range-based joins and large-scale analytical queries. 

 

 
 

Figure 4 Execution time of different join algorithms for small and large datasets. Source: Abourezq& Idrissi, 2016. 

 
The choice of join method depends on table size, indexing, and query workload. The following table compares the 

performance characteristics of different join algorithms: 

 

Join Type 
Best Use 

Case 

Memory 

Usage 

Performance 

Impact 
Index Dependency 

Nested 

Loop 

Small tables, 

indexed 

lookups 

Low 
Poor for large 

datasets 
High 

Hash Join 

Large 

datasets, no 

indexes 

High 
Efficient for 

equality joins 
None 

Merge Join 

Pre-sorted 

data, large 

range queries 

Medium Fast when sorted Optional 

 

4.5 Subquery Optimization: Converting to Joins and Using Common Table Expressions (CTEs) 

Subqueries can significantly impact query performance, particularly when they are executed repeatedly for each row in 

the main query. One of the most effective optimization strategies is converting correlated subqueries into joins or using 

Common Table Expressions (CTEs). 

 

Example of Subquery Optimization: 

 

Inefficient Subquery: 

SELECT emp_id, emp_name 

FROM employees  

WHERE department_id IN (SELECT department_id FROM departments WHERE location = 'New York'); 

 

Optimized Using JOIN: 

SELECT e.emp_id, e.emp_name 

FROM employees e 

JOIN departments d ON e.department_id = d.department_id 
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WHERE d.location = 'New York'; 

This transformation allows the optimizer to leverage indexing and reduce redundant computations, improving 

performance. 

Using CTEs for Readability and Performance: 

WITH NewYorkDepartments AS ( 

    SELECT department_id FROM departments WHERE location = 'New York' 

) 

SELECT e.emp_id, e.emp_name 

FROM employees e 

JOIN NewYorkDepartments d ON e.department_id = d.department_id; 

CTEs enhance readability and allow the optimizer to handle complex queries more efficiently, reducing redundant 

computations in multiple query parts. 

 

By applying these query optimization techniques, developers and database administrators can significantly improve 

SQL query performance, reduce execution times, and enhance overall database efficiency. 

 

PARTITIONING AND SHARDING FOR PERFORMANCE ENHANCEMENT 

 

Horizontal vs. Vertical Partitioning 

Partitioning is an important database optimization method where a big table is divided into smaller, more manageable 

portions. The major reason for partitioning is to enhance query performance by limiting the quantity of data read during 

query execution (Baumann et al., 2015). Horizontal partitioning and vertical partitioning are the two significant types 

of partitioning. 

 

Horizontal partitioning or sharding comprises breaking up one table into subtables, of which each maintains a subset of 

rows. It generally is carried out based on an attribute of a particular range, for instance, date values, geographical area, 

or the customer ID. In the running of queries, just the affected partition is targeted and not scanned data. That is 

exercised in order to make reads more faster for workloads with high numbers of reads. It is best facilitated by 

distributed databases. 

 

Vertical partitioning is the technique of dividing a table into separate tables by columns. This is possible in cases where 

there are many columns in a table and some columns are not accessed frequently (Baumann, Misev, Merticariu, & Huu, 

2021). High-priority columns can be placed in individual tables to allow faster query execution that only requires a few 

columns with fewer I/O penalties. Vertical partitioning is feasible in applications where independent sets of columns are 

being retrieved. 

 

Range, List, and Hash Partitioning 

Partitioning techniques differ depending on the distribution logic used to the data (Brahim, Drira, Filali, & Hamdi, 

2016). The three most widely used partitioning techniques are range partitioning, list partitioning, and hash partitioning. 

Range partitioning splits a table into partitions on a given range of values. An example is that a sales transactions table 

can be split on date where each partition holds data for one month or one year. This is useful in the case of queries that 

have to filter data according to some time-related conditions. 

 

List partitioning splits rows between partitions according to pre-defined lists of values. For instance, when a customer 

database employs list partitioning to hold customers from various countries in different partitions (Briscoe et al., 2014). 

It works well where there are distinct categorical values that can be allocated to different partitions. 

 

Hash partitioning partitions rows among multiple partitions using a hash function on a column. It provides uniform 

distribution of data among partitions and is beneficial for distributed systems workload balancing. Hash partitioning 

does not group similar values together like in the case of range or list partitioning but does not permit data skew and 

provides even distribution of data. 

 

Benefits and Trade-offs of Partitioning 

Partitioning enhances the query performance drastically, especially in cases of large workload and analytic processing. 

Partition filter predicates on the query might help prevent the need to scan non-relevant data, thereby allowing for 

shorter execution times. Partitioning enhances efficiency in terms of maintenance because admins can back up, archive, 

or drop the partitions independently without impacting the table as a whole. 

 

Partitions do increase database administration complexity, however. Partition management is subject to careful planning 

since poor partitioning plans result in inefficiently balanced data and performance bottlenecks (Calheiros, Ranjan, 

Beloglazov, De Rose, &Buyya, 2010). Poor partition pruning when the optimizer is unable to prune partitions that do 

not need to be considered results in full-table scanning, completely eliminating any performance gain through 
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partitioning. Partitions also come with additional storage and indexing overheads, with careful indexing schemes being 

required to ensure even performance across all partitions. 

 

Database Sharding and Distributed Query Processing 

Sharding refers to horizontal partitioning where data is spread over more than one database instance or servers. While 

ordinary partitioning in one database instance is practiced, sharding is employed for allowing scalability through 

distribution of data at numerous physical places (Graefe, 2012). Social networks and e-commerce websites that run 

high volumes of traffic employ heavy use of sharding so they can deal with billions of rows and high frequency of 

queries. 

 

Sharding can be done in various ways such as range-based sharding, hash-based sharding, and geographical sharding. 

Data is split into standalone database instances depending on ranges of values like user IDs or timestamps in range-

based sharding. Hash-based sharding employs a hash function to spread data over numerous shards evenly, so there are 

no hotspots for data. Geographical sharding forwards data to varying regions depending on geography, reducing latency 

and load balancing. 

 

Although sharding brings tremendous performance benefits for large applications, it is accompanied by issues like 

higher query complexity, cross-shard joins, and consistency. Queries that need to cross data over numerous shards need 

to do distributed joins, which are costly in terms of network overhead and computation (Guo & Engler, 2011). To offset 

these issues, sharded databases usually use query routers to route queries to the correct shard using partition keys to 

avoid futile cross-shard communication. 

 

Sharding and partitioning are critical SQL query performance optimization techniques in high-scale systems that offer 

scalability, load balancing, and best access to data. Their implementation must be well thought out, however, to not lose 

any data integrity and performance. 

 

CONCURRENCY CONTROL AND TRANSACTION MANAGEMENT 

 

Locking Mechanisms and Deadlock Prevention 

Concurrency control is a significant database management operation that allows multiple transactions to run 

simultaneously without leading to data inconsistencies or conflict. The main system in practicing concurrency control is 

locking, where it inhibits similar operations from interfering with one another. Locks are divided into shared locks 

(read locks) and exclusive locks (write locks). Shared locks allow multiple transactions to read in parallel but avoid 

writes, while exclusive locks avoid read and write access to avoid data inconsistency during the time of updates (Hor, 

Sohn, Claudio, Jadidi, & Afnan, 2018). 

 

Deadlocks are faced when two or more transactions have locks on other individuals' resources and wait forever in a 

cycle. Deadlock detection and recovery mechanisms exist in databases like wait-die and wound-wait schemes to 

prevent deadlocks. Correct indexing, lock escalation control, and lock timeout setting also prevent the possibility of 

deadlocks. Optimistic concurrency control, which reduces locking by enabling transactions to make progress without 

locks and checking for changes before committing, is also a successful method in high-concurrency scenarios. 

 

Isolation Levels and Their Impact on Performance 

Isolation levels define the degree to which a transaction is isolated from others, affecting data consistency and 

performance. SQL databases support several isolation levels as per the ACID (Atomicity, Consistency, Isolation, 

Durability) principles, including: 

 

 Read Uncommitted: Transactions can read uncommitted changes from other transactions, leading to potential 

dirty reads. This level offers maximum performance but lowest consistency. 

 Read Committed: Ensures transactions only read committed data, preventing dirty reads but allowing non-

repeatable reads and phantom reads. 

 Repeatable Read: Prevents dirty reads and non-repeatable reads but allows phantom reads, making it useful in 

scenarios where consistency is required. 

 Serializable: The highest level of isolation, ensuring complete transaction isolation but significantly reducing 

concurrency and performance. 

 

Choosing the appropriate isolation level involves balancing performance with data integrity. Lower isolation levels 

improve transaction speed but can lead to anomalies, while higher isolation levels enhance consistency at the cost of 

increased locking overhead and reduced parallelism. 
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Figure 5 Effect of SQL isolation levels on transaction throughput. Source: Hor et al., 2018. 

 

Optimistic vs. Pessimistic Concurrency Control 

Concurrency control methods are classified into optimistic and pessimistic. Optimistic concurrency control (OCC) 

presumes the conflict is not a typical case and permits the transaction to be run without locking. Changes are checked 

against available data when committing and, when there are conflicts, transactions are rolled back (Kim, Blais, 

Parameswaran, Indyk, Madden, & Rubinfeld, 2015). OCC is particularly suitable for loads consisting of a lot of reads 

and distributed databases where locking is a bottleneck. 

 

In contrast, pessimistic concurrency control (PCC) believes that conflicts cannot be avoided and avoids them by using 

locks in transaction processing. Although PCC provides stronger data integrity, it can cause more contention, blocking, 

and deadlocks and hence is more appropriate for write-intensive applications. OCC and PCC selection is based on 

system workload patterns and performance trade-offs. 

 

Reducing Transaction Overhead for Faster Execution 

Transaction overhead minimization is important in attaining query performance optimization in very active databases. 

Batch processing, connection pooling, minimizing transaction scope, and stored procedures minimize the transaction 

management cost (Klösgen& May, 2002). With transactions being brief and fast, the likelihood of lock contention is 

minimal, and hence reduced execution times. 

 

Another efficient approach is to adjust commit frequency. Increasing the frequency of commits raises concurrency but 

raises I/O on disks, while delaying commits lowers I/O but tends to produce very long transactions that cause greater 

lock contention. Right balancing of commit frequency, concurrency control methods, and isolation levels is necessary 

for maximum transaction throughput. 

 

MATERIALIZED VIEWS AND QUERY CACHING 

 

Overview of Materialized Views 

Materialized views are materialized query output as physical tables, offering dramatic performance gains for compound 

queries by bypassing redundant computation. Unlike traditional views, which compute results at query time, 

materialized views persist data and refresh periodically (Kotidis&Roussopoulos, 1998). Materialized views are 

especially beneficial in data warehousing, analytic processing, and read-only workloads, where queries contain 

aggregations, joins, and costly computations. 

 

For example, in the database of an internet shop, materialized view can hold precomputed sales summaries for a day to 

be retrieved more quickly than computing by adding up large transaction tables for every query run. 

 

Refresh Strategies: Complete vs. Incremental Refresh 

Materialized views require periodic refreshes to reflect updated source data. The two primary refresh strategies are 

complete refresh and incremental (fast) refresh. 
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 Complete Refresh: Drops and recreates the entire materialized view, ensuring full consistency but incurring 

high overhead, especially for large datasets. 

 Incremental Refresh: Updates only changed rows, improving performance by reducing computation time and 

resource consumption. Databases use techniques like log-based change tracking, delta computations, and 

indexed materialized views to optimize incremental refreshes. 

 

Choosing the right refresh strategy depends on the trade-off between data freshness and query performance. 

Applications requiring real-time analytics may favor frequent incremental refreshes, while batch-processing systems 

can tolerate periodic full refreshes. 

 

Query Caching Techniques 

Query caching caches query results in memory, avoiding redundant calculation of queries that are run repeatedly 

(Neilson, Indratmo, Daniel, & Tjandra, 2019). Application-level caching, distributed caching systems (such as Redis, 

Memcached), and database query caching all reduce database loading and enhance response time. 

 

Database cache mechanisms, including SQL Server Plan Cache, MySQL Query Cache (deprecated), and PostgreSQL 

Prepared Statements, cache result sets and execution plans for queries that are executed more than once. Application-

level caching, employing libraries like Hibernate Query Cache and Spring Cache, caches query results at the 

application level to minimize database round-trips. 

 

Caching is problematic with cache invalidation, stale data, and memory overhead (Pizzi, Cepellotti, Sabatini, Marzari, 

&Kozinsky, 2015). Using smart cache expiry policies like time-based expiration, write-through caching, and event-

driven cache invalidation ensures that the cache is current without compromising performance. 

 

 
                        Source: Pizzi et al., 2015. 

 

Figure 6 Comparison of execution times for queries using caching and materialized views. 

 

7.4 Using Database Buffers and Result Set Caching 

Database engines improve query performance through buffer pools, shared memory, and result set caching. Buffer pool 

caches frequently accessed disk pages in memory and minimizes disk I/O. SQL databases use Least Recently Used 

(LRU) page replacement policies to efficiently cache buffer cache (Rivera, Verrelst, Gómez-Dans, Muñoz-Marí, 

Moreno, & Camps-Valls, 2015). 

 

Result set caching caches query results to be run again subsequently, saving on computation time. Oracle Result Cache, 

SQL Server Result Set Cache, and MySQL Query Cache (prior to deprecation) use result caching to improve query 

performance for reporting and analytics queries. 

 

Materialized view and cache optimization needs to be achieved in order to get fast response times for queries, decrease 

computational cost, and scale high-traffic databases effectively. 
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IMPACT OF NORMALIZATION AND DENORMALIZATION ON PERFORMANCE 

 

8.1 Normalization and Query Optimization Trade-offs 

Normalization is a method of database design that minimizes redundancy by storing data in numerous related tables 

(Ta-Shma, Akbar, Gerson-Golan, Hadash, Carrez, & Moessner, 2017). Normalization ensures data consistency and 

conserves storage costs but typically makes queries more complex since multiple joins are involved. SQL databases 

typically follow the third normal form (3NF) or Boyce-Codd normal form (BCNF) in order to ensure the highest data 

integrity. 

 

But normalized databases do create performance issues on read-oriented applications, because data is normally 

accessed by costly join operations. For instance, a very normalized shopping cart database may split customer, order, 

and product information into distinct tables, with high-cost joins being needed to read user order history. 

 

 
 

                                   Source: Ta-Shma et al., 2017. 

 

Figure 7 Execution time differences between normalized and denormalized database structures 

 

8.2 When to Use Denormalization for Performance Gains 

Denormalization is to decrease the joins by replication of data, giving good read performance but at higher storage and 

possible data inconsistency expense.  

 

Denormalization is commonly employed in analytics use and data warehouses, where query speed exceeds storage 

optimality (Yang, Li, Fang, & Wei, 2020). 

 

One particular example is keeping precomputed overall sales in an orders table rather than calculating aggregates on the 

fly. Denormalization techniques involve storing duplicate foreign keys, applying summary tables, and joining the often-

joined tables to themselves to reduce the execution times of queries. 

 

8.3 Handling Redundant Data and Reducing Joins 

Minimizing joins is essential in high-performance environments (Yu, Lakshmanan, & Amer-Yahia, 2009). Methods like 

precomputed joins in materialized views, indexing on foreign keys, and partitioned algorithms for join reduce the 

response time of the query at the cost of low redundancy levels. 

 

8.4 Best Practices for Structuring Relational Databases 

Denormalization best practices as compared to normalization include caching, materialized view maintenance, 

optimization of partitioning strategy, and foreign key indexing. The choice would rely upon the application read-write 

ratio, available storage space, and performance requirement from query executions (Zhang, Chen, Ooi, Tan, & Zhang, 

2015). 

 

To maintain the best possible balance between storage space efficiency, data integrity, and query performance, SQL 

databases function well with mixed workloads. 
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ADVANCED OPTIMIZATION TECHNIQUES 

 

9.1 Adaptive Query Optimization (AQO) 

Adaptive Query Optimization (AQO) is a very sophisticated method enabling contemporary database engines to 

dynamically fine-tune execution plans in accordance with runtime performance feedback (Abourezq& Idrissi, 2016). 

Classical SQL query optimization depends on fixed cost estimate models, but AQO brings runtime tuning by looking at 

execution statistics and tuning upcoming queries. The method is most valuable for complex queries with random data 

distributions, e.g., queries with skewed joins, parameter-sensitive queries, or changing workload patterns. 

 

A number of databases, such as Oracle (Adaptive Query Optimization), PostgreSQL (Adaptive Parallel Query 

Execution), and SQL Server (Intelligent Query Processing), have introduced AQO capabilities. For instance, Oracle's 

AQO has capabilities such as adaptive joins, dynamic collection of statistics, and background re-optimization, where 

queries adaptively modify execution plans during the course of execution. SQL Server's Batch Mode Adaptive Joins 

and Memory Grant Feedback also adaptively modify execution parameters in real-time for improved efficiency. 

 

One of the difficulties of AQO is achieving an optimal balance between adaptiveness, overhead, and predictability 

(Baumann et al., 2015). While AQO improves performance considerably, excessive dynamic adaptation causes unstable 

fluctuations in the execution plan with a resultant increase in resource contention. Therefore, AQO would be most 

effective if combined with stable indexing, error-free statistics collection, and tuning policies with workloads taken into 

account. 

 

9.2 Machine Learning-Based Query Optimization 

The integration of machine learning (ML) into query optimization has opened new avenues for improving database 

performance. Traditional cost-based optimizers rely on heuristic-driven approaches that may not always generalize well 

across diverse workloads (Baumann, Misev, Merticariu, & Huu, 2021). ML-based query optimization leverages 

historical execution data, reinforcement learning, and predictive modeling to select optimal execution plans. 

 

Several techniques are being explored in research and industry, including: 

 

 Neural Cost Models: Google’s research on ML-enhanced optimizers proposes deep learning-based cost 

models that predict query execution times more accurately than traditional estimations. 

 AutoIndexing and AutoTuning: SQL Server’s Autonomous Database Tuning and PostgreSQL’s pg_autoindex 

use ML to recommend index structures dynamically. 

 Reinforcement Learning-Based Plan Selection: IBM’s Db2 has experimented with reinforcement learning to 

adjust execution plans by learning from past query performance. 

 

Despite its advantages, ML-based query optimization faces challenges related to model interpretability, training data 

availability, and computational overhead. However, with continued advancements, AI-driven optimizers are expected to 

become standard in next-generation database systems. 

 

9.3 Query Optimization in NoSQL and Hybrid Databases 

NoSQL databases, including MongoDB, Cassandra, and DynamoDB, will most probably need alternative optimization 

techniques from those used by relational databases. Unlike SQL databases, which are very index-dependent, plan-

dependent, and cost-estimate-dependent, NoSQL query performance is data model-denormalized dependent, 

horizontally scaled dependent, and document storage space-efficient dependent (Brahim, Drira, Filali, & Hamdi, 2016). 

 

For instance, MongoDB's Aggregation Framework pipelines queries through optimized stages in order to minimize 

unnecessary scanning of documents. Likewise, Cassandra utilizes partition-based retrieval, with queries being 

performed within pre-partitioned partitions for quick lookups. Hybrid databases supporting both SQL and NoSQL 

paradigms need adaptive optimization strategies that balance relational consistency with scalability offered by NoSQL. 

 

The most important optimization techniques in NoSQL databases are query performance schema design (Briscoe et al., 

2014). In contrast to SQL, where applying normalization maintains redundancy low, NoSQL performance is about 

maintaining related data in documents to maintain cross-collection queries low. Caching, secondary indexes, and query 

profiling also contribute to optimizing response time. 

 

9.4 Role of AI in Next-Generation Query Optimization 

The use of AI in SQL query optimization is rapidly evolving, and AI-powered systems are most likely to optimize and 

automate multiple parts of database performance tuning (Calheiros, Ranjan, Beloglazov, De Rose, &Buyya, 2010). AI 

can handle query patterns, usage of indexes, workload shifts, and constraints on hardware resources to create self-

optimizing plans for execution. Recent research is also exploring the creation of fully autonomous databases, where AI 

is learned from past executions history and system telemetry and automatically optimizes. Oracle Autonomous 
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Database and AWS Aurora Machine Learning are two such cloud-based AI-based systems, which utilize predictive 

analytics and self-tuning algorithms for dynamically optimizing query execution. 

The future of AI-based query optimization is deep reinforcement learning-based optimizers, workload-aware caching, 

and real-time anomaly detection that allows databases to self-heal, self-optimize, and scale automatically without 

tuning (Calheiros, Ranjan, Beloglazov, De Rose, &Buyya, 2010). 

 

PERFORMANCE BENCHMARKING AND BEST PRACTICES 

 

10.1 Establishing Query Performance Metrics 

Measuring query performance requires establishing standardized performance metrics to evaluate efficiency across 

different workloads. Key performance indicators (KPIs) include: 

 

 Query Execution Time: Measures the total time taken from query submission to result retrieval. 

 CPU and Memory Utilization: Evaluates resource consumption for queries. 

 Disk I/O Operations: Tracks the number of read/write operations, impacting query speed. 

 Index Usage Rate: Analyzes the effectiveness of indexing strategies. 

 Throughput (Queries Per Second - QPS): Measures system capacity for handling concurrent queries. 

 

These metrics are essential for performance benchmarking, query tuning, and workload optimization. 

 

10.2 Benchmarking Tools and Techniques 

Several tools are available for benchmarking SQL query performance. Some commonly used benchmarking 

frameworks include: 

 

Tool Database Support Key Features 

TPC-H / TPC-C 
SQL Databases (MySQL, 

PostgreSQL, Oracle) 

Industry-standard 

benchmarks for transaction 

processing and analytical 

queries. 

pg_stat_statements PostgreSQL 
Tracks query execution 

statistics for optimization. 

SQL Server Query Store SQL Server 
Stores query history and 

performance data for tuning. 

MySQL Performance Schema MySQL 
Provides real-time query 

profiling insights. 

Apache JMeter Multi-Database Support 

Simulates concurrent query 

execution for performance 

testing. 

 

Benchmarking involves running standardized query sets, analyzing execution plans, and identifying bottlenecks. 

Regular benchmarking ensures database performance remains optimized under changing workloads (Graefe, 2012). 

 

10.3 Common Pitfalls and Mistakes in Query Optimization 

Despite best practices, several common mistakes can degrade SQL query performance, including: 

 

 Lack of Proper Indexing: Missing or redundant indexes can lead to full table scans. 

 Unoptimized Joins: Poor join strategies result in high computational costs. 

 Ignoring Execution Plans: Failing to analyze query plans leads to inefficient queries. 

 **Excessive Use of SELECT ***: Retrieving unnecessary columns increases data transfer time. 

 Unoptimized Subqueries: Using correlated subqueries instead of joins leads to performance degradation. 

 

Avoiding these pitfalls requires regular query analysis, execution plan monitoring, and workload-based tuning. 

 

10.4 Future Trends in SQL Query Performance Tuning 

 

The future of SQL performance tuning is shifting toward automation, AI-driven optimizations, and hybrid database 

architectures (Guo & Engler, 2011). Trends include: 
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 Self-Tuning Databases: Autonomous databases that optimize queries dynamically. 

 AI-Powered Indexing: Machine learning-based index recommendation engines. 

 Hybrid SQL-NoSQL Query Optimization: Enhancing query efficiency in mixed database environments. 

 Graph-Based Query Execution: Optimizing SQL queries using graph models for complex relationships. 

 

As data volumes continue to grow, next-generation query optimizers will rely on real-time analytics, AI, and distributed 

computing techniques to achieve ultra-fast data retrieval. 

 

CONCLUSION AND FUTURE WORK 

 

11.1 Summary of Key Findings 

This study touched on the various SQL query optimization methods utilized towards better data retrieving performance. 

From indexing algorithms and partitioning techniques to AI optimized and adaptive question answering, numerous 

methods decrease latency from queries and improve database performance. 

 

11.2 Challenges and Open Research Areas 

Even with the development in SQL optimization, problems like dynamic workload tuning, predictability of query run 

time, and distributed database performance tuning are still topics for research. Real-time query adaptation and hybrid 

execution engines are future research areas of interest. 

 

11.3 Future Directions in SQL Query Optimization 

Next-generation SQL query optimization will revolve around self-tuning database engines, AI-driven workload 

balancing, and real-time query adaptation. As workloads become increasingly large, automation and smart optimization 

will be the hallmark of the next generation of database performance tuning. 
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