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ABSTRACT 

 

In today’s digital era, cybersecurity threats represent a critical global challenge that must be addressed with 

urgency. With the widespread use of smart devices and the constant sharing of personal information through social 

media platforms, individuals are increasingly vulnerable to cyberattacks. Malicious URLs and malware are among 

the most common threats that can significantly harm everyday users. For the research community, the emergence of 

new attack types creates continuous difficulties in detection. Traditional approaches have largely focused on 

surveying malicious activity, while more recent advancements highlight the role of Artificial Intelligence (AI) in 

strengthening cybersecurity. AI-powered classification models, particularly those based on machine learning, are 

widely applied to identify and categorize cyberattacks with greater precision. Yet, beyond detection, one of the 

pressing challenges is understanding how these AI models arrive at their decisions. Model interpretability is crucial 

for ensuring trust, transparency, and actionable insights. In this regard, SHAP (Shapley Additive Explanations) 

methods—Tree SHAP, Deep SHAP, and Kernel SHAP—are increasingly recognized for their effectiveness in 

explaining AI-driven outcomes. In this study, two five-class cybersecurity datasets are analyzed using advanced AI 

algorithms, including Random Forest, XGBoost, and Keras Sequential models. To enhance explainability, three 

SHAP techniques are employed to interpret and validate the outputs of these AI-based models, ultimately providing 

a deeper understanding of cybersecurity threats and supporting more reliable defense mechanisms. 

 

Index Terms—SHAP, XGBoost, RFC, Sequential, Explain, TreeShap, KernelShap, DeepShap 

 

 

 

INTRODUCTION 

 

The rapid evolution of the web has introduced remarkable advancements in digital communication. However, despite this 

exponential growth, the online environment continues to encounter persistent challenges, most notably cyber threats. 

Reports of financial fraud are increasingly common, with hackers exploiting personal data often extracted from social 

media platforms to facilitate criminal activities [1]. As technology advances, cybercriminals develop increasingly 

sophisticated penetration strategies, constantly experimenting with innovative attack techniques. This dynamic landscape 

compels information technology specialists and digital users to remain vigilant, yet such vigilance demands substantial time 

and resources. Consequently, there is a pressing need for artificial intelligence–driven protective mechanisms capable of 

proactively safeguarding online users from malicious attacks [2]. Given the fluidity of technological change, organizations 

and individuals must adopt continuous, AI-enhanced defensive measures to secure their digital assets. 

 

One of the major challenges for cybersecurity researchers is predicting attack risks with precision. Developing AI-powered, 

reliable, and secure analysis systems is critical to fortifying digital infrastructures. Proactive prevention strategies, such as 

automated scans, have already demonstrated their value in minimizing the impact of cybercrime [3]. For instance, Mamun 

et al. [4] proposed AI-based approaches that detect and classify malicious URLs according to attack types using lexical 

analysis. Similarly, researchers have concentrated on leveraging AI in malware detection, such as identifying Android 

malware variants [5]. In the highly dynamic Android ecosystem, AIdriven safeguards are increasingly essential to block 

malicious code infiltration. Nevertheless, without a comprehensive understanding of malware infection patterns, building 

effective AI-based mitigation solutions remains challenging. A lack of structured defenses inevitably compromises the 

security of online databases and sensitive information. 
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This study focuses on two widely recognized datasets of cyber-attacks: malicious URLs and Android malware. To enhance 

transparency in AI-driven cybersecurity, explainable artificial intelligence (XAI) is integrated using Shapley Additive 

Explanations (SHAP). Three Machine Learning (ML) models—Random Forest Classifier (RFC), XGBoost Classification, 

and a Keras Sequential algorithm—are implemented to predict, analyze, and assess performance against these datasets. 

Through this AI-centric systemic analysis, researchers can identify critical infiltration patterns and gain insight into the 

underlying causes of attacks. 

 

Equally important is the interpretability of AI predictions, which helps distinguish the strengths and weaknesses of different 

models. SHAP facilitates this by quantifying the contribution of each feature to the model’s decision, thereby offering 

deeper clarity into AI-driven outcomes. Furthermore, SHAP enables the removal of irrelevant information from the vast and 

complex intelligence processed by ML systems. Using TreeShap, KernelShap, and DeepShap, this study provides detailed 

explanations of model outputs across five attack categories, with features representing the causal factors behind these 

threats. 

 

The remainder of this paper is structured as follows. Section II reviews related studies, particularly AI-driven approaches to 

cybersecurity. Section III describes the proposed methodology, highlighting the ML algorithms applied in conjunction with 

SHAP. Section IV presents the experimental setup, results, and SHAP-based interpretability analysis. Finally, Section V 

summarizes the study’s contributions, emphasizing the role of AI and explainability in strengthening cybersecurity 

defenses. 

 

RELATED WORK 

 

Most studies in the cybersecurity domain have traditionally emphasized identifying risks, reporting cybercrime incidents, 

and assessing their broader impacts on individuals and organizations. Nurse [2] introduced a conceptual framework to 

understand cybercrime and the associated societal challenges, highlighting the recurring risks across digital platforms. 

Different attack strategies used by cybercriminals, such as malware deployment, account hijacking, and malicious URL 

injections, were discussed in detail. In [6], Artificial Intelligence (AI) was integrated into cybersecurity through machine 

learning (ML), where models based on Random Forest and Decision Tree algorithms were applied to detect attacks in real-

time, achieving superior performance. 

 

In [7], the authors explored Explainable AI (XAI) by applying Ontology Graphs (OG) and transfer learning to simulate 

human cognitive processes and thereby enhance the interpretability of model outputs. Their findings suggested that the 

primary challenge lies in ensuring explainability within AI systems, which is fundamental for future applications. This work 

demonstrated that reliable interpretability enables more accurate decision-making while strengthening both validity and 

reliability of outcomes. Similarly, Fernando et al. [8] implemented two XAI techniques, DeepSHAP and LIME, to explain 

Neural Retrieval Models (NRMs) in text-based ad hoc search tasks. Their results indicated that DeepSHAP offered more 

precise term-level insights, whereas LIME concentrated on highlighting only the most prominent features. 

 

Further advancement was reported by Ibor et al. [9], who applied unsupervised and supervised AI-driven learning 

techniques to detect threats through hyper-alert mapping into class based risk categories. According to [10], 

Lakshmanaprabu et al. used Random Forest Classifiers (RFC) for e-health data classification, reaching a precision of 94.2 

Chen et al. [12] introduced the use of XGBoost, an AI model that incrementally improves classification by focusing on 

prior errors, thereby addressing large-scale real-world problems with minimal resource consumption. Complementary work 

by Ho [13] highlighted KernelSHAP as a method to interpret RNN predictions, where the computational efficiency allowed 
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explanations to be generated in under ten minutes. Importantly, these explanations aligned with clinical expectations across 

multiple analysis scales (individuals, cohorts, and populations). 

 

Building on these contributions, this paper applies three SHAP-based AI methods (TreeSHAP, KernelSHAP, and 

DeepSHAP) to interpret the predictions of RFC, XGBoost, and Sequential models. These explainability strategies not only 

enhance the transparency of AI-based cybersecurity models but also enable the mapping of threat alerts across web and 

social media platforms. Additionally, the comparative performance and accuracy of these models are systematically 

evaluated. 

 

PROPOSED APPROACH 

 

In this section, Artificial Intelligence (AI) techniques are emphasized through the use of Machine Learning (ML) models 

and the application of the SHAP explainability method. Specifically, RFC, XGBOOST, and SEQUENTIAL AI-driven 

models are introduced and described. Following this, the SHAP approach is detailed, highlighting how it is applied to 

interpret the outcomes of these AI models when executed on two cybersecurity data sets. 

 

A. Random Forest Classifier 

In the context of Artificial Intelligence–based cybersecurity analytics, the Random Forest Classifier (RFC) is applied 

together with the TreeShap explanation method, which is one of the ensemble approaches widely recognized for enhancing 

the interpretability of AI-driven predictions [14]. Within RFC, three key parameters guide the decision-making process. The 

first is the splitting criterion, where gini evaluates the quality of a split using the Gini index as expressed in Equation (1). 

This index leverages class probabilities to calculate the Gini value for each node branch, thereby indicating which outcome 

is more likely to occur. Here, Pi denotes the relative frequency of a class in the dataset, and C refers to the total number of 

classes. Alternatively, the entropy criterion uses the probability distribution to determine branching in decision trees, as 

described in Equation (2). For the AI model optimization, Gini was selected due to its bounded range (0 to 0.5), which 

offers greater interpretability compared to Entropy (0 to 1) [11]. The other important hyperparameters include ―max depth‖, 

which regulates the depth of the decision trees, and ―n estimators‖, which defines the number of trees used in the forest, 

directly influencing the strength and stability of the AI ensemble model. 

C 

Gini = 1 − 
X
(Pi)

2
 

                     i=1 

(1) 

C 

Entropy = 
X
−Pi ∗ log2(Pi) (2) 

                                              i=1 

 

In Artificial Intelligence, the Random Forest Classifier (RFC) represents a learning approach that builds predictive models 

by drawing random subsets from a dataset. For each subset, an individual decision tree is constructed, and AI algorithms 

then generate prediction outcomes from these trees. The final classification is determined through an ensemble mechanism, 

where the prediction with the highest number of votes across all decision trees is selected as the output result [15]. 

 

B. XGBoost Classification 

Artificial Intelligence methods are applied by utilizing XGBoost classification in combination with KernelSHAP for 

interpretability. XGBoost, an advanced ensemble learning algorithm, operates within the gradient boosting framework and 

is widely recognized in AI applications for its high efficiency and scalability [16]. As an evolution of extreme gradient 

boosting, XGBoost leverages second-order gradients along with advanced regularization techniques to enhance predictive 

accuracy. This makes it a powerful AI-driven model capable of handling complex datasets and generating precise 

approximations. In the boosting process, initial predictions and corresponding errors are iteratively refined, where AI 

models are trained using independent variables and residual errors to produce improved predictions [12]. The approach 

involves optimizing three key parameters: 

 

1) binary logistic: logistic regression is used for binary classification 

2) output probability is max depth =10 is the maximum depth of a tree 

3) n estimators=800 is the number of boosting rounds [16] 

The model undergoes training and evaluation, producing predictions. 
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C. Sequential Model 

In the Artificial Intelligence framework, a sequential deep learning model is implemented as a classifier, structured as a 

linear stack of interconnected layers. Each layer processes an input tensor and generates an output tensor, enabling 

hierarchical feature learning. 

 

The initial layer employs the ReLU (Rectified Linear Unit) activation function, which enhances non-linearity and 

accelerates training performance [17]. ReLU is formally expressed in Equation (3). At the final stage of the network, the 

softmax activation function is applied, allowing the model to perform probabilistic multi-class classification by extending 

the effect of the initial transformation [17]. Softmax is represented in Equation (4). 

 

Once the AI-driven architecture is established, the system specifies the loss function, optimizer, and evaluation metrics that 

guide the training process and improve prediction accuracy. 

 F(x) = (0,x) (3) 

  (4) 

D. Introduction to SHAP 

Shapley values were utilized as the foundation of SHapley Additive exPlanations (SHAP) to quantify the influence of 

individual features in AI-driven predictions. By design, Shapley values evaluate all possible prediction outcomes for a 

given instance across every possible subset of input features. This exhaustive computation ensures that SHAP inherits 

desirable theoretical properties such as consistency and local accuracy [18]. The formal definition of the Shapley value is 

expressed in Equation (5) where s⊆F represents all feature subsets, F is the set of all features, f S∪i is trained with that 

feature present, f S is trained with the feature withheld. Then, predictions from the two models are compared based on the 

current input 

 

[f S∪i(x S∪i) − f S(x S)], where (x S) represents the values of the input features in set S [19]. 

(5) 

 

SHAP takes three steps [20] which are: (1) computation of Shapley value explanations, (2) capture feature interactions by 

extending local explanations, and (3) interpreting global model structure based on many local explanations by defining 

desirable properties. 

 

E. TreeExplainer of SHAP 

In this study, Artificial Intelligence techniques are integrated through the use of the TreeExplainer in conjunction with the 

Machine Learning Random Forest Classifier (RFC). This combination enables efficient and interpretable computation of 

optimal local explanations by leveraging the explainability framework defined by SHAP. Within this AI-driven process, the 

decision path is decomposed into feature-level components, allowing each attribute’s influence on the prediction to be 

clarified. Consequently, the model’s prediction y is explained as the cumulative additive contributions of features along the 

decision path, with the explanation formally represented in Equation (6). 

 

M 

y = bias + 
X 

feature contribution{m,x} (6) m=1 where bias is the contribution of root node and feature contribution, 

{m,x} is the contribution of feature m in predicting the outcome corresponding to an input x [21]. 

 

F. KernelExplainer of SHAP 

The AI-powered KernelExplainer is applied to the machine learning XGBOOST classifier model. It leverages artificial 

intelligence techniques to perform a local regression, utilizing the model’s prediction method and the underlying data in 

order to generate SHAP values, which represent the contribution and importance of each feature as Shapley values. Within 

this AI-driven process, the KernelExplainer relies on two key parameters: (1) predict proba() is used to retrieve the 

probabilities of each target class; (2) link = Logit is a function to make the feature importance values have logodds units 

[22]. The approximation in Equation (7) is used to evaluate the conditional expectation [23]. 

  (7) 

where x
k
T , k=1,...,K are samples from xT. 
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G. DeepExplainer of SHAP 

In the context of Artificial Intelligence, the DeepExplainer is employed alongside the ML Sequential model as an advanced 

interpretability technique. It builds upon the DeepLIFT algorithm (Deep SHAP), enhancing explainability by approximating 

the conditional expectations of SHAP values through the use of diverse background samples [19]. This AI-driven method 

integrates across numerous background datasets, enabling more reliable estimation. Specifically, DeepExplainer computes 

approximate SHAP values by measuring the difference between the expected model outputs on the selected background 

samples and the actual outputs of the current AI model, as expressed in Equation (8). 

 

 Difference = f(x) − Exp(f(x)) (8) 

where f(x) is current outputs, and Exp(f(x)) is the expected output. 

 

EXPERIMENTS AND RESULTS 

 

In this section, the two data sets are used and described followed by the explanation of the outputs of the different SHAP 

explainer algorithm that are used based on the ML models. Furthermore, the accuracy of the resulting models are analyzed. 

 

A. Data Set Description 

Two cybersecurity data sets were obtained from the Canadian Institute for Cybersecurity (UNB) [24], and both were 

employed to evaluate the role of Artificial Intelligence in enhancing explainability and detection of threats. 

 

The first dataset, ―URL data set (ISCX-URL2016)‖, is labeled as malicious URLs. It consists of 36,707 records with 80 

attributes (79 input features and one target column). The target column represents five URL attack categories: Benign, 

Spam, Phishing, Malware, and Defacement. AI-driven analysis and classification of these features enabled the identification 

and explanation of the behavioral patterns behind malicious URLs across the five classes. 

 

The second dataset, ―CICMalDroid 2020‖, referred to as the Android Malware dataset, contains 11,598 APK samples with 

470 attributes (469 extracted features plus one target column). The target column categorizes the data into Adware, Banking 

malware, SMS malware, Riskware, and Benign classes. The features encompass system calls, binders, and composite 

behaviors, which are critical in modeling Android malware. 

 

AI-based experiments were conducted to interpret and detect obfuscation techniques impacting each URL attack type and to 

recognize Android malware by analyzing system calls, binders, and behavioral patterns. Leveraging AI explainability 

techniques allowed the results to be presented in a transparent and user-friendly manner, ensuring that end users could 

clearly understand the underlying factors driving each threat. 

 

B. Results - Tree-Model Explanation 

A SHAP bar chart is utilized to illustrate the features that affect the classification within the dataset. The importance of 

features is arranged in descending order according to their influence on the prediction of each class. Consequently, the 

primary function of the Tree-Explainer is to provide interpretation by clarifying how each feature contributes to the model’s 

output for the target classes, based on the test sets of both datasets. 

 

1) Malicious URLs Data Set: Figure 1 illustrates the key SHAP features that influence different classes of attack-type 

URLs. As depicted, the colors indicate the obfuscation technique features represented by the SHAP values. For instance, 

the obfuscation feature named domain token count,‖ which appears at the upper portion of the plot, has a stronger 

association with the Benign‖ and Spam‖ URL classes compared to the other categories. In contrast, features shown at the 

lower portion of the plot, such as fileNameLen,‖ predominantly impact the Malware URLs‖ class more than the remaining 

URL categories. Similarly, the urlLen‖ attribute also exerts greater influence on the Malware‖ class compared to the others. 

Overall, based on the relative impact of the features, the Spam‖ class, represented by the blue color, emerged as the most 

frequently identified. 

 

2) Android Malware Data Set: Figure 2 illustrates the SHAP values used to determine which features contributed to 

malware classification across the different classes, each represented by distinct colors. For instance, the feature pread64,‖ 

positioned at the top of the plot, had a stronger influence on the SMS malware‖ class compared to the others. Conversely, 

the getSubscriberld‖ feature, found toward the lower portion of the plot, was more influential in classifying Riskware‖ than 

in other malware categories. Overall, the plot highlights that the class ―SMS malware,‖ depicted in blue, appeared as the 

most frequent outcome. 

 



International Journal of Enhanced Research in Science, Technology & Engineering 

ISSN: 2319-7463, Vol. 13 Issue 9, September-2024, Impact Factor: 8.375 

Page | 60 

 
 

Figure 1. Five-Class Tree-SHAP of Malicious URLs 

 

 
Figure 2. Five-Class Tree-SHAP of Android Malware 

 

C. Results - Kernel-Model Explainer 

In the subsequent experiments, SHAP is applied to interpret a single class using the Dot-SHAP approach. This technique 

 

 
Figure 3. Five-Class Kernel SHAP of Malicious URLs 
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illustrates the outcomes through a visualization that blends scatter plotting with density estimation, where dots accumulate 

when they overlap or fail to fit. The color of the dots indicates the mean feature value at that location: red dots generally 

denote higher feature values, whereas blue dots indicate lower values, depending on whether the dots fall to the left or right 

of the vertical axis. Through this visualization, Dot-SHAP conveys both the positive and 

 

 
 

Figure 4. Five-Class Kernel-SHAP of Android Malware 

 

are represented in red, while the "positive" effect is indicated along the horizontal axis. The horizontal placement 

demonstrates how this impact corresponds to either an increase or decrease in prediction, depending on the scale. In 

contrast, the feature "avgdomaintonkelen" exhibits a negative correlation with the "Spam" class. Likewise, larger values of 

"EntropyDirectoryName" markedly elevate the probability of a "Spam" prediction, whereas greater values of 

"fileNamemLen" contribute to a lower likelihood of predicting "Spam". 

 

Android Malware Data: Figure 4 illustrates that the feature "clock" exerts a strong positive influence on the class SMS 

malware," as indicated by the red color along the horizontal axis, thereby increasing the probability of predicting SMS 

malware." In contrast, higher values of the feature "pread64" reduce the likelihood of classifying an instance as SMS 

malware." Similarly, the features "getSubscribed" and "writev" contribute to a greater probability of predicting the class 

SMS malware." On the other hand, the features "sigprocmask" and "getinstallerPackageName" have the opposite effect, 

lowering the chances of predicting the class "SMS malware." negative associations between predictors and the target class, 

grounded in the training data. Furthermore, features are ordered in descending importance according to the magnitude of 

their influence on predicting the class. 

 

1) Malicious URLs Data Set: Figure 3 illustrates that the feature ―domain token count‖ exerts a strong positive influence 

on predicting the class ―Spam‖. Higher values of this feature significantly raise the likelihood of classifying an instance as 

―Spam‖. In the visualization, ―high‖ values 

 

D. Results - Deep-Model Explainer 

In the next section, SHAP is applied to interpret a single class through the Force Plots-SHAP technique. This visualization 

illustrates how each feature contributes to shifting the model output from the base value prediction—defined as the average 

predicted result across the full training dataset—towards the actual output of the target class. The x-axis is centered on the 

expected feature’s contribution, which directly impacts the target class. Features that push the prediction upward are 

highlighted in red, whereas those that decrease the prediction are displayed in blue. The direction of influence, whether 

towards higher or lower values, depends on the comparison between the output value (f(x)) and the base value. When the 

output value exceeds the base value, red features move the prediction further to the right (higher), and the opposite occurs if 

it is less. Additionally, the most significant feature effects are displayed at the bottom of the plot. 
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1) Malicious URLs Data Set: Figure 5 illustrates how various features contribute to shifting the model’s output toward 

the class Spam‖ relative to the base value. The output value (f(x)) is 0.73, which exceeds the base value of 0.5647. As a 

result, the red-colored features associated with the Spam‖ class push the prediction to the right (towards higher values). For 

instance, the feature Querylength‖ positively influences the Spam‖ prediction, as indicated by its placement in the red area, 

thereby driving the output further right. In contrast, the feature charcompvowels,‖ represented in the blue area, has a 

negative effect on the Spam‖ class, shifting the prediction left (towards lower values). Nonetheless, the overall force 

pushing the output to the right is stronger, since the magnitude of the red-area feature contributions outweighs that of the 

blue-area features. 

2) Android Malware Data Set: Figure 6 illustrates the contribution of each feature in shifting the model’s prediction for 

the class SMS malware‖ away from the base value. The output value (f(x)) is 0.72, which exceeds the base value of 0.5881. 

Features highlighted in red, associated with the class SMS malware,‖ push the prediction toward the right (indicating a 

higher value). For instance, the feature FS ACCESS(READ) ‖ in the red zone exerts a force that drives the prediction of 

SMS malware‖ to the right (higher value). In contrast, the feature ―FS ACCESS(CAREATE APPEND) ‖ in the blue zone 

pulls the prediction leftward (toward a lower value). However, the stronger influence comes from the red region, as its 

feature values dominate those in the blue region, thereby driving the prediction more strongly toward the right (higher 

value). 

E. ML Model Performance 

In the following section, the confusion matrix of each model is discussed, along with the classification result tables of the 

ML models and their corresponding ROC curves. This is then followed by a consolidated summary of the outcomes of all 

applied ML models. 

1) Confusion Matrix: The confusion matrices corresponding to the five classes across all ML models for both datasets are 

presented in Figures 7 through 12. 

 

• Confusion Matrices of Malicious URLs Data Set: 

The confusion matrix in Figure 7 illustrates that a total of 3,677 instances were accurately classified across all five 

categories by the RFC model applied to the Malicious URLs data set. Among these, the Spam category recorded the highest 

correct classifications with 1,091 samples. This was followed by the Malware category with 854 correctly identified 

samples, the Phishing category with 781, the Benign category with 508, and the Defacement category with 443. The matrix 

also indicates that each class contained a small number of misclassified instances. 

 

Figure 8 presents the Confusion Matrix of the XGBOOST model on the Malicious URLs dataset. The model successfully 

identified 3,722 instances across all five categories. Specifically, the Spam class recorded 1,108 correct predictions, while 

the Defacement class had the fewest with 449 accurate classifications. The remaining results were 868 correct samples for 

Malware, 787 for Phishing, and 510 for Benign. 

 

Similarly, Figure 9 illustrates the Confusion Matrix of the Sequential model on the Malicious URLs dataset. This model 

correctly classified a total of 3,546 instances across the five categories. The distribution of correct predictions was as 

follows: Spam with 1,095 samples, Malware with 814, Phishing with 722, Benign with 482, and Defacement with 433 

correctly classified cases. 

 

Overall, the XGBOOST model demonstrated superior performance by achieving the highest number of correct 

classifications (3,722) among all tested ML models. Additionally, it is noteworthy that the Spam class consistently achieved 

the largest number of accurate classifications when compared across all models applied to the dataset. 

 

• Confusion Matrices of Android Malware Data Set: 

In Figure 10, the confusion matrix illustrates that 2,183 samples were accurately identified across all five categories of the 

RFC model applied to the Android Malware data set. The SMS malware class recorded the largest number of correct 

classifications with 807 samples, followed by the Riskware class with 467, the Bank malware class with 373, and the 

Benign class with 307. The Adware class had the smallest number of correct classifications, totaling 229 samples. 

 

The confusion matrix in Figure 11 illustrates that the XGBOOST model correctly identified 2,197 samples across all five 

categories of the Android Malware dataset, as shown along the diagonal. Specifically, it classified 810 instances of the 

SMS malware class, 473 instances of the Riskware class, 381 instances of the banking malware class, 306 instances of the 

Benign class, and 227 instances of the Adware class. 
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Similarly, Figure 12 presents the confusion matrix for the Sequential model applied to the Android Malware dataset, 

showing that a total of 1,986 samples were correctly classified. These include 790 for SMS malware, 407 for Riskware, 351 

for banking malware, 240 for Benign, and 198 for Adware. 

 

From these results, it is evident that the XGBOOST model achieved the best performance, as it produced the highest 

number of correct classifications (2,197 samples) compared 

 

 
 

Figure 5. Five-Class Deep-Malicious URLs 

 

 

Figure 6. Five-Class Deep-SHAP of Android Malware 

 

 
 

Figure 7. Confusion Matrix for RFC model of Malicious URLs Figure 8. Confusion Matrix for XGBOOST model of Malicious URLs 

 
Figure 9. Confusion Matrix for Sequential model Malicious URLs 
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Figure 10. Confusion Matrix of RFC model of Android Malware 

 

 
Figure 11. Confusion Matrix of XGBOOST model of Android Malware 

 

 
 

Figure 12. Confusion Matrix of Sequential model of Android Malware 

 

(ML) model, both the ROC curve and the accuracy score for each class under every ML model were analyzed. 
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Figure 13 presents the ROC curve for the XGBOOST ML model applied to the Malicious URLs dataset, demonstrating 

superior performance compared to the other models. Table I provides a summary of the ROC results across all ML models 

tested on the Malicious URLs dataset. 

 
Figure 13. ROC Curve of 5-class to XGBOOST model of Malicious URLs 

 

Furthermore, Tables II through IV report the precision, recall, f1-score, and support metrics for the five-class dataset, based 

on the performance of all ML models applied to the Malicious URLs dataset. 

 

3) ROC and Classification Tables of Android Malware Data Set: Firstly,an analysis of the ROC values and the accuracy 

rates across all classes for each ML model revealed that XGBOOST outperformed the other models. Figure 14 illustrates 

the ROC curve of the XGBOOST model, while Table V presents the ROC results of all ML models applied to evaluate the 

five classes of the Android Malware dataset. 

 

Table V presents the ROC results for all machine learning 

 

Table I : ROC OF ML MODELS FOR MALICIOUS URLS 

 

class Sequential XGBOOST RFC 

Benign 0.9873 0.9992 0.9988 

Spam 0.9942 0.9999 0.9996 

Phishing 0.9765 0.9979 0.9958 

Malware 0.9928 0.9997 0.9996 

Defacement 0.9896 0.9992 0.9988 

 

Table II: RFC MODEL OF MALICIOUS URLS 

 

 Precision Recall f1-Score Support 

Benign 0.96 0.97 0.96 526 

Spam 0.99 0.98 0.98 1113 

Phishing 0.92 0.95 0.94 821 

Malware 0.99 0.98 0.98 875 

Defacement 0.97 0.96 0.97 462 

accuracy   0.97 3797 

macro avg 0.97 0.97 0.97 3797 

weighted avg 0.97 0.97 0.97 3797 

 

models evaluated on the testing subset of the Android Malware dataset. 

In addition, Tables VI to VIII provide the precision, recall, f1-score, and support metrics for the 5-Class data derived from 

the application of all machine learning models to the Malicious URLs dataset. 

 

 

4) Summary of Results: Table IX presents a summary of the conducted experiments, outlining and comparing the two data 

sets employed. Both are considered relatively large 
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Table III XGBO OST MODEL OF MALI CIOUS URLS 

 

 
Table IV: SEQUENTIAL MODEL OF MALICIOUS URLS 

 

 Precision Recall f1-Score Support 

Benign 0.94 0.92 0.93 526 

Spam 0.96 0.98 0.97 1113 

Phishing 0.86 0.88 0.87 821 

Malware 0.98 0.93 0.95 875 

Defacement 0.93 0.94 0.93 462 

accuracy   0.93 3797 

macro avg 0.93 0.93 0.93 3797 

weighted avg 0.93 0.93 0.93 3797 

 
Figure 14. ROC Curve of 5-Class to XGBOOST model of Android Malware 

 

Table V: ROC OF ML MODELS FOR ANDROID MALWARE 

 

Class Sequential XGBOOST RFC 

Adware 0.8901 0.9952 0.9946 

Banking 

malware 

0.9068 0.9900 0.9890 

SMS 

malware 

0.9662 0.9993 0.9985 

Riskware 0.8862 0.9916 0.9929 

Benign 0.8661 0.9962 0.9943 

 

Table VI: RFC MODEL OF ANDROID MALWARE 

 

 Precision Recall f1-Score Support 

Adware 0.85 0.93 0.89 246 



International Journal of Enhanced Research in Science, Technology & Engineering 

ISSN: 2319-7463, Vol. 13 Issue 9, September-2024, Impact Factor: 8.375 

Page | 67 

Banking 

malware 

0.96 0.89 0.92 418 

SMS malware 0.98 0.99 0.98 817 

Riskware 0.94 0.91 0.92 511 

Benign 0.90 0.94 0.92 328 

Accuracy   0.94 2320 

macro avg 0.93 0.93 0.93 2320 

weighted avg 0.94 0.94 0.94 2320 

 

in scale. The Malicious URLs data set consists of 36,707 samples with 79 features, whereas the Android Malware data set 

comprises 11,598 samples with 469 features. The features from both sets were examined and categorized into five classes 

using their respective test portions. Overall, the classification models demonstrated strong performance for the 5-Class 

tasks. For instance, the RFC model achieved 97% accuracy on the Malicious URLs data set and 94% on the Android 

Malware data set. Similarly, the XGBOOST model attained 98% accu- 

 

Table VII: XGBOOST MODEL OF ANDROID MALWARE 

 

 Precision Recall f1-Score Support 

Adware 0.86 0.92 0.89 246 

Banking 

malware 

0.94 0.91 0.92 418 

SMS malware 0.99 0.99 0.99 817 

Riskware 0.96 0.93 0.94 511 

Benign 0.92 0.93 0.93 328 

Accuracy   0.95 2320 

macro avg 0.93 0.94 0.93 2320 

weighted avg 0.95 0.95 0.95 2320 

 

Table VIII: SEQUENTIAL MODEL OF ANDROID MALWARE 

 

 Precision Recall f1-Score Support 

Adware 0.70 0.80 0.75 246 

Banking 

malware 

0.82 0.84 0.83 418 

SMS malware 0.92 0.97 0.94 817 

Riskware 0.85 0.80 0.82 511 

Benign 0.88 0.73 0.80 328 

Accuracy   0.86 2320 

macro avg 0.83 0.83 0.83 2320 

weighted avg 0.86 0.86 0.86 2320 

 

Table IX SUMMARY OF COMPARISON OF BOTH DATA SETS 

 

Comparison URLs Data Set Android Malware 

Data Set 

Samples 36707 11598 

Support 3797 2320 

Features 79 469 

Classes 5 5 

RFC accuracy 97% 94% 

XGBOOST accuracy 98% 95% 

Sequential accuracy 92% 86% 

High Correct 

Classified 

XGBOOST 

model 

XGBOOST model 
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racy on the Malicious URLs data set and 95% on the Android Malware data set. In contrast, the Sequential model obtained 

92% accuracy for the Malicious URLs data set and 86% for the Android Malware data set. In conclusion, among the tested 

ML approaches, the XGBOOST model delivered the best results, as it correctly identified the largest proportion of samples 

in both data sets. 

 

CONCLUSION 

 

The study utilized Artificial Intelligence to analyze two large-scale cybersecurity datasets, namely Malicious URLs and 

Android Malware, both obtained from the UNB repository. Each dataset contained five distinct classes. Several AIdriven 

machine learning algorithms were applied, including Random Forest Classifier (RFC), XGBOOST, and a Sequential model. 

To enhance explainability, three SHAP-based methods were employed: Bar-SHAP, Dot-SHAP, and Force Plot-SHAP. 

Model performance was assessed using key evaluation metrics such as accuracy, ROC curves, classification tables, and 

confusion matrices. 

 

AI-powered explainability through SHAP enabled the identification of features with the greatest influence on model 

predictions. The SHAP visualizations highlighted the relative contribution of individual features across different models 

and classes. Specifically, Bar-SHAP effectively illustrated the feature importance across all classes in both datasets, 

assigning them distinct colors for clarity. The analysis revealed that the feature-driven predictions were most successful in 

identifying the ―Spam‖ class in the Malicious URLs dataset and the ―SMS malware‖ class in the Android Malware dataset. 

These findings were further validated by classification tables and confusion matrices, while the other SHAP approaches 

provided detailed class-specific feature insights. 

 

In terms of AI model performance, the RFC achieved an accuracy of 94.0% on the Android Malware dataset and 96.7% on 

the Malicious URLs dataset. XGBOOST performed even better, with 98.0% accuracy on the Malicious URLs dataset and 

94.7% on the Android Malware dataset. The Sequential model attained 93.3% accuracy for the Malicious URLs dataset and 

85.6% for the Android Malware dataset. Overall, the integration of SHAP with AI-based algorithms delivered highly 

efficient explanations, aligning with the strong accuracy results achieved across the models. 
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