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ABSTRACT 

 

In this paper we study the existence and uniqueness solution of fractional integro-differential equation, by using 

both methods Picard approximation and Banach fixed point theorem. Also we extend the results of Butris.  
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I.  INTRODUCTION 

 

Fractional  differential equations have been of great interest recently. It is caused both by the intensive development of 

theory of fractional calculus itself and by application of such constructions in various sciences such as physics, 

chemistry, mechanics, engineering, For details, 
[2, 4, 5, 6, 7]

. As for the theory, the investigations in clued the existence, 

uniqueness of solution, asymptotic behavior, stability, etc. for example 
[2, 5, 7, 8]

. Butris has study a solution of integro-

differential equation of fractional order which has the form: 
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  Where:   TDx ,0
   and  1

D  is a closed and bounded domain. 

 

    Our work we extended the results of Butris[3] and 
D  is the standard Riemann – Liouville fractional derivative. 

 

Definition 1.   

 

   Let  f  be a function which is defined a. e. (almost every where) on  ba , . For 0 , we   define: 
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Provided that this integral (Lebesgue) exists. 

 

Definition 2.[2]. 

    If 0 , then Gamma's function is denote by )( and defined by the form:   dsse
s
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Lemma 1
[1]

.  
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    If    


1nn
f   is a sequences of functions is defined on the set RE   such that  

nn
Mf  , where 

n
M  is a 

positive number, then 


1n

n
f  is uniformaly convergent on   E   if   



1n

n
M   is convergent. 

 

Lemma 2
[1].
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 ,  where m = R ,  then: 

1. the series converges for  0x   and  0  . 

2. the series converges everywhere when 0  . 

3. if  0 ,  then  )exp(),(
1

mxxmE   . 

 

Lemma 3
[3]

. 

 

If  
1

K   and  
2

K   be a positive constant, and f be a continuous function on bta  , such that: 



t

a

dssfKKtf )()(
21

 

Then  
 

         )(exp)(
21
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This paper deals with the existence and uniqueness solution of fractional  integro-differential equation which has the 

form:- 
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                     … (1-1) 
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   The function     )(,)(,, tQtxthtxtf  is defined, continuous on the domain: 

 

 


DTxt  ,0),(                                                                         … … (1.2)  

Where:   TDx ,0
  , 

D  is a closed and bounded domain subset of R. 

We denote to   dttxthtxtPstG

t




)()(),(,),(   by  )( tQ , 

Suppose that the functions     )(,)(,, tQtxthtxtf  , )( th  satisfies the following inequalities: 

 

  MtQtxthtxtf )(),()(),(,     ,                                                                        … … (1.3) 

     
21212121222111

)(,,,)(,,, xxNLxxLKxxNLxxLtQhxxtftQhxxtf   … (1.4)  

                                                                                                   …                                                                        

  For all   Tt ,0  , and 
Dxxx 

21
,, , where KNML ,,, , are positive constants. Here h(t)  is a 

continuous function in  t  provided that:  

Nth )(   ,     N>0                                                                                         … … (1.5) 

Also the matrix G(t,s) is nonnegative, continuous in  t , s  and satisfies the following inequalities: 
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Where:   Tts0   ,  0,  . 

 

We define the non-empty sets as follows: 
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Moreover, we suppose the value of the following equation: 
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II. EXISTENCE OF SOLUTION 

 

Theorem 1. 

 

Let the vector function     )(,)(,, tQtxthtxtf  be defined in the domain (1.2), continuous in xt ,  and 

satisfy the inequalities (1.3), (1.4), and (1.5), then the function: 
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is a solution of  (1.1). 

 

Proof: 
 
Let 
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With: 
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be a sequence of functions which is defined on the domain: 

 

 
f
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 ,0),(
0                                                                                                       … … (2.2)  

     We will divide the proof as follows: 

(i)   


Dxtx
m
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 ,  for all   Tt ,0  , 
f
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0 . 

(ii) 


Dxtx
m

),(
0

 , is uniformly convergent to the function ),(
0

xtx  on the domain (2.2), for all   Tt ,0  , 

f
Dx




0 . 

(iii)  


Dxtx ),(
0

 ,  for all   Tt ,0  , 
f

Dx



0 .  

 

proof  (i): 

 

         Set  m=0  and use (2.1), we get: 
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That is  
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By mathematical induction we have:  
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proof  (ii): 

  

Now, we shall prove that the sequence of functions (2.2) is uniformly convergent on (2.2). From (2.1), when m=1 we 

get: 
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And hence: 
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Now when m=2  in (2.1) we get: 
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Then by mathematical induction we have: 
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For all m=0,1,2,… . 

Now from (2.4), and for 1p , we get:  
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We note that the right hand from (2.6) is bounded with the convergent geometric series and  its summation to equals 
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But the inequality (1.8) is less than unity, then 
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III. UNIQUENESS OF SOLUTION 

 

   The study of the uniqueness solution of (1.1), will be introduced by the following: 

 

Theorem 2. 
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Let when  m=0  in  (2.1) and from  (3.1)  we find: 
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and when  m=1  in  (2.1) and from  (3.1)  we find: 
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Thus we find that the inequality (3.2) is satisfying when m=0,1,2,… . 

Then by a condition (2.8) we get: 
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V. Banach method[1]. 

 

In this section, we use the Banach fixed point theorem to prove the existence and uniqueness solution. 
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