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ABSTRACT 

 

Medium plays an important role while studying about seismic wave. Medium is a particular type of material having 

unvarying properties. Medium transfers energy from one location to another location. It works as transporter which 

transfer any form of energy like signal, light, sound. Any types of waves need a medium to propagate. The 

properties of wave are highly influenced by the nature of material In this paper, unsaturated poro-thermoelastic 

medium is reduced in elastic solid by using reduction algorithm. The wave equation is generalized for unsaturated 

poro-thermoelastic medium, unsaturated porous medium and elastic medium. 

 

Keywords: Unsaturated, porous, wave, velocity. 

 

 

 

INTRODUCTION 

 

Seismic wave propagation in fluid unsaturated porous solid has been the subject of explorations by many analyzers in 

different fields like earth sciences, geophysics, earthquake engineering etc. One of the most prominent ways of information 

about interior of earth is called seismic activity. Seismic activity is also helpful in the study and prediction of earthquake 

and tsunamis. The concept of waves is an integral part of our scientific culture and has nourished physicists and 

mathematicians, pure and applied alike, for centuries. Many important discoveries in physics, including quantum 

mechanics, have involved wave phenomena. The wave concept owes some of its scientific success to its mathematical 

tractability. Thermoelasticity is concerned with dynamical systems that interact with their surroundings by exchanging heat 

in addition to mechanical work and external work. Biot (1956) was the first to develop the thermoelasticity theory, which is 

based on the standard Fourier heat conduction rule, to explain the relation among variations in temperature and elastic 

deformation. Because of the parabolic nature of the energy equation, this theory conveyed that thermal signals would move 

at an infinite speed. Another theory of thermoelasticity presented by Coleman and Noll (1963) and Coleman (1964). To 

formulate a hyperbolic heat conduction equation, they modified the Fourier law of heat conduction by including two 

relaxation times. Sharma, M.D. (2008) modified Biot’s theory, to demonstrate the presence of three longitudinal and one 

transverse waves in an isotropic, porous, thermoelastic material that has been saturated with a non-viscous fluid.  

 

The velocities and attenuation of the three longitudinal waves are examined using numerical examples. Kumar et.al. (2018)  

presented a study that examines the reflection of plane seismic waves at a material's double-porosity dual-permeability 

plane surface under stress-free conditions. It is taken into account when the P1 and SV waves interact. Three longitudinal 

and one shear waves are found in the medium as a result of the incident waves' reflections. A non-singular system of linear 

equations is used to derive the expressions for the reflection coefficients for a given incident wave. An energy matrix is 

used to calculate the energy shares of reflected waves. Sharma, M.D. (2013) A mathematical model that describes how 

harmonic plane waves propagate through a material with two types of pores and a viscous fluid inside of it. In the 

composite porous medium, an Eigen-system of order four implies the presence of three longitudinal waves and one 

transverse wave. Barak et al. (2018) examines the acoustic wave propagation at the water/double-porosity sediment 

interface with a uniform elastic solid substrate. This study examines the acoustic wave propagation at the water/double-

porosity sediment interface with a uniform elastic solid substrate. They constituted a mathematical model through three 

layers with distinct elastic properties. Theoretically, under suitable boundary conditions, the closed form analytical 

equations for the coefficients of reflection and transmission are derived. This set of non-singular linear algebraic equations 

is used to calculate these expressions. The non-singular system is dependent on many different types of material 

parameters.  Therefore, a numerical example is used to determine the effects of various properties of sandwiched layer on 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/elasticity
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reflection and transmission coefficients. It proves that the existence of a double-porosity layer significantly affects the 

coefficients of reflection and transmission. Kumari, Manjeet(2022) investigated a theory which incorporates LS (Lord–

Shulman) and GL (Green–Lindsay) theories.  

 

The four dilatational waves and one shear wave are predicted by the generalized equations of motion when they are solved 

using the potential functions approach .The incidence of the P1 (or SV) wave generates the five reflected waves. Based on 

the permeable and impermeable boundary constraints, a system of five linear non-homogeneous equations is used to 

calculate the reflection coefficients. These reflection coefficients are then used to compute the distribution of incident 

energy. The mathematical derivations introduced in this study can investigate the impact of subsurface features (liquid 

saturation, porosity, surface pores characteristics, thermal expansion coefficients, and wave frequency) on the propagation 

characteristics (propagation and attenuation directions, phase shift, energy ratio) of reflected waves. Additionally, energy 

conservation is demonstrated at the unsaturated porothermoelastic media's stress-free surface. Sharma, M. D. (2018) 

presented a study of a reflection–refraction problem at an interface between two dissimilar dissipative media. Complex 

amplitude coefficients for reflected/refracted waves that are resolved to determine their amplitude ratios and phase shifts 

satisfy boundary conditions at the interface.  

 

These complex coefficients are then used to determine how incident energy is distributed between reflected and refracted 

waves. The propagation properties of waves that are reflected and refracted from the inhomogeneous incidence of 

attenuated waves are explored by using a numerical example. Sharma, M. D(2006) developed a mathematical model  for 

wave propagation in an anisotropic generalized thermoelastic media .A comparison between poroelastic and thermoelastic 

propagation in the general anisotropic media is made. Kumar, Manjeet et al. (2022) purposed a study to study the 

propagation of inhomogeneous waves in a partially saturated poro-thermoelastic media through the examples of the free 

surface of such media. The Helmholtz decomposition theorem is used to solve the mathematical model developed by Zhou 

et al. Using the potential, the propagation velocities of bulk waves in partially saturated poro-thermoelastic media are 

calculated.. Here we are studied about the different type of medium such as unsaturated thermoelastic, unsaturated elastic, 

and elastic mediums. One medium can be reduced in other medium by eliminating some particular parameter. In present 

study, a reduction algorithm is used to reduce unsaturated porothermoelastic medium to elastic solid.  Unsaturated 

porothermoelastic medium is reduced to unsaturated porous elastic medium by removing thermal effect further it is reduced 

to elastic solid by removing porosity. For each of the medium equation of motion, constitution relation and wave equations 

are explained. 

 

Unsaturated porothermoelastic medium 

The unsaturated porothermoelastic medium contains the three component pore liquid, pore gas and solid grains. The void 

volume fraction preoccupied by liquid and gas phase are measured by the degree of saturation of liquid and gas 

respectively.   

 

The Basic Equations  

The equation of motion for unsaturated porothermoelastic medium following Wang at al. (2021) in the absence of external 

forces  

𝜎𝑖𝑗 ,𝑗  = ρ  𝑢 𝑖
𝑠 + 𝜌𝑙  𝑢 𝑖

𝑙  + 𝜌𝑔  𝑢 𝑖
𝑔

 

(− 𝑝𝑙),𝑗= 𝜌𝑙  𝑢 𝑗
𝑠 + 

𝜌𝑙

𝛷𝑆𝑙
 𝑢 𝑗

𝑙  +  
𝜇 𝑙

𝑘𝑟
𝑙  𝑘

 𝑢 𝑗
𝑙                                 

 − 𝑝𝑔 ,𝑗
= 𝜌𝑔 𝑢 𝑗

𝑠 + 
𝜌𝑔

𝛷𝑆𝑙
 𝑢 𝑗

𝑔
 +  

𝜇𝑔

𝑘𝑟
𝑔

 𝑘
 𝑢 𝑗

𝑔
  

K 𝑇,𝑗𝑗 +𝜔2cT=-𝜔2𝜏 𝑞 [𝑑2𝑢𝒋,𝒋
𝒔 + 𝑑3𝑢𝒋,𝒋

𝒍 + 𝑑4𝑢𝒋,𝒋
𝒈

]    

 

Constitutive Relation       

Following Wang et al. (2021), in the absence of external forces, and ε =1 the constitutive relations for unsaturated 

porothermoelastic media are: 

σ𝑖𝑗  = { 𝜆  𝑢𝒌,𝒌
𝒔 + 𝐷1𝑢𝒌,𝒌

𝒍  + 𝐷2𝑢𝒌,𝒌
𝒈

+   𝐷3 T} 𝛿𝑖𝑗  + µ (𝑢𝒊,𝒋
𝒔 + 𝑢𝒋,𝒊

𝒔 ) 

(− 𝑝𝑙)𝑗  = 𝐵1𝑢𝒌,𝒌𝒋
𝒔   +  𝐵2𝑢𝒌,𝒌𝒋

𝒍  +  𝐵3𝑢𝒌,𝒌𝒋
𝒈

 +  𝐵4𝑻,𝒋                                                 

(− 𝑝𝑔)𝑗  = 𝐵5𝑢𝒌,𝒌𝒋
𝒔   +  𝐵6𝑢𝒌,𝒌𝒋

𝒍  +  𝐵7𝑢𝒌,𝒌𝒋
𝒈

 +  𝐵8𝑻,𝒋 

Where 𝛿𝑖𝑗   denotes knocker symbol. Dot over a variable implies partial derivative with time and comma before an index 

implies partial space differentiation. 

 

Where 𝑢𝑠, 𝑢𝑙 , 𝑢𝑔  define the component of the particle displacement of the frame liquid and gas relative to solid 

respectively. µ is the shear modulus of the drained matrix. σ𝑖𝑗  is the component of the total stress tensor, 𝑝𝑙  and 𝑝𝑔 are the 
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liquid and gas pressures, and  T is the increment of temperature above a reference absolute temperature 𝑇0and 𝛿𝑖𝑗  is the 

knocker symbol. Where 𝑢𝑠,𝑢𝑙 , 𝑢𝑔  define the component of the particle displacement of the frame liquid and gas relative to 

solid respectively. σ𝑖𝑗  is the component of the total stress tensor, 𝑝𝑙  and 𝑝𝑔 are the liquid and gas pressures. 𝜌𝑙  and 

𝜌𝑔 denotes the density of iquid and gas and 𝜌 denotes the density of composite. Porosity is denoted by 𝛷. 𝑆𝑙  and 𝑆𝑔  

identifies the saturation of liquid and gas respectively.𝜇𝑙   and 𝜇𝑔 identifies the dynamical viscosity of liquid and 

gas. 𝑘𝑟
𝑙 , 𝑘𝑟

𝑔
 are used for relative permeability of iquid and gas, and 𝑘  denotes the intrinsic permeability. 𝜏 𝑞 is heat flux phase 

lag. c is specific heat per unit volume . K is thermal conductivity 

  

The other elastic coefficients [Wang et al. 2021] used in the above equations are: 

𝜆   = 𝜆 + 𝛼 [ϒ𝑎11 + (1 − ϒ)𝑎21], 

𝐷1 = 𝛼 [ϒ𝑎12 + (1 − ϒ)𝑎22], 

𝐷2 = 𝛼 [ϒ𝑎13 + (1 − ϒ)𝑎23],  

𝐷3 = 𝛼 [ϒ𝑎14 + (1 − ϒ)𝑎24]-𝛽𝑠     
𝑑1=𝑇0𝛽𝑇[ϒ𝑎14 + (1 − ϒ)𝑎24] 

𝑑2=𝑇0[𝛽𝑠 + 𝛽𝑇(ϒ𝑎11 + (1 − ϒ)𝑎21)] 

𝑑3=𝑇0𝛽𝑇[ϒ𝑎12 + (1 − ϒ)𝑎22] 

𝑑4=𝑇0𝛽𝑇[ϒ𝑎13 + (1 − ϒ)𝑎23] 

𝐵1  =  𝑎11  , 𝐵2= 𝑎12  , 𝐵3= 𝑎13  , 𝐵4= 𝑎14   ,  

𝐵5  =  𝑎21  ,   𝐵6  =  𝑎22  , 𝐵7  =  𝑎23  , 𝐵8= 𝑎24   

 𝑎11  =𝐴22 /G , 

 𝑎12=(𝐴22 𝐴14  - 𝐴12 𝐴24 )/ 𝛷𝑆
𝑙G  

 𝑎23=(𝐴22 𝐴15  - 𝐴12 𝐴25)/ 𝛷𝑆𝑔G 

 𝑎14=(𝐴22 𝐴16  - 𝐴12 𝐴26 )/ G 

  𝑎21= -𝐴21 /G 

  𝑎22=(𝐴11 𝐴24  - 𝐴21 𝐴14 )/ 𝛷𝑆
𝑙G 

 𝑎23=(𝐴11 𝐴25  - 𝐴21 𝐴15 )/ 𝛷𝑆
𝑔G 

  𝑎24=(𝐴11 𝐴16  - 𝐴21 𝐴26 )/ G 

G = 𝐴11 𝐴22  - 𝐴21 𝐴12  

𝐴11 = 𝛷𝑆𝑙𝛽𝜔𝑝  

𝐴12 = 𝛷𝑆𝑔𝑀𝑎 /R𝜌𝑔𝑇𝑏  

𝐴13=1- 𝛷 , 𝐴14 = 𝛷𝑆𝑙 , 𝐴15 = 𝛷𝑆𝑔𝑆𝑙  

𝐴16= -[(1- 𝛷) 𝛽𝑠𝑇 + 𝛷𝑆𝑙𝛽𝜔𝑇 + (𝛷𝑆𝑔𝑀𝑎𝑝𝑔
∗/R𝜌𝑔𝑇𝑏

2)]    

    𝐴21   =   𝛷 [𝑆𝑔𝑆𝑙𝛽𝜔𝑝 − 𝐴𝑠 ] 

 𝐴22 = 𝛷[𝐴𝑠 -𝑆
𝑔𝑆𝑙𝑀𝑎 / R𝜌𝑔𝑇𝑏 ] 

𝐴23 =0, 𝐴24 =-𝐴25 = 𝛷𝑆𝑔𝑆𝑙  

𝐴26 = 𝛷𝛽𝛹𝐴𝑠 𝜒
−1(𝑆𝑒

−1/𝑚 − 1)1/𝑑+ 𝛷𝑆𝑔𝑆𝑙(
𝑀𝑎𝑝𝑔

∗

R𝜌𝑔𝑇𝑏
2 − 𝛽𝜔𝑇 ) 

m=1-1/d 

𝑆𝑒=
𝑆𝑙−𝑆𝑙𝑟𝑒𝑠

𝑆𝑙 𝑠𝑎𝑡 −𝑆
𝑙
𝑟𝑒𝑠

 , 

 𝐴𝑠 = −𝑚 𝜒𝑑(𝑆𝑙 𝑠𝑎𝑡 − 𝑆𝑙 𝑟𝑒𝑠 ) 𝑆𝑒
𝑚+1/𝑚 (𝑆𝑒

−1/𝑚 − 1)1−1/𝑑 . 

 

Where ϒ denotes the amount that constitutes the proportion of matrix suction that contributes the effective stress which is 

equivalent to saturation of liquid. 𝛽𝑇  be assign of coefficient of thermal. 𝑀𝑎 represents the dry air molar mass. Universal gas 

constant is represented by R.  𝑇𝑏  marks the internal temperature of gas which is expounded by Abed and Solowski’s ideal 

gas law [1] . 𝜒 , 𝑚 , 𝑑  stand for independent variables of Van Genuchten Model[2]. The pressure of gas marks by 𝑝𝑔
∗. 𝛽𝜔𝑝  

, 𝛽𝜔𝑇  are stand for the compressibility and thermal expansion coefficient of liquid. The thermal coefficient of solid is 

identified by 𝛽𝑠𝑇 . 𝑆𝑒  is effective water saturation. 𝛽𝛹  is stand for the coefficient of surface tension which is effective by 

temperature. 

 

Wave Equation 

The wave equations of unsaturated thermoelastic medium are 

(𝜆  +μ)  ∇ (∇.𝑢𝑠) + 𝐷1∇ (∇.𝑢𝑙) + 𝐷2∇ (∇.𝑢𝑔) + μ ∇2𝑢𝑠 + 𝐷3∇ T = ρ 𝑢 𝑠 + 𝜌𝑙𝑢 
𝑙  +𝜌𝑔𝑢 

𝑔  

𝐵1∇ (∇.𝑢𝑠)  + 𝐵2∇ (∇.𝑢𝑙)  + 𝐵3∇ (∇.𝑢𝑔)  + 𝐵4∇ T = 𝜌𝑙  𝑢 
𝑠 + 𝜈𝑙𝑢 

𝑙  +ῦ𝑙𝑢 
𝑙                       

𝐵5∇ (∇.𝑢𝑠)  + 𝐵6∇ (∇.𝑢𝑙)  + 𝐵7∇ (∇.𝑢𝑔)  + 𝐵8∇ T = 𝜌𝑔  𝑢 𝑠 + 𝜈𝑔𝑢 
𝑔  +ῦ𝑔𝑢 

𝑔  
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Velocity 

Solving equations we obtained an eight order partial differential equation for the propagation of longitudinal waves in 

unsaturated porothermoelastic media, given by 

[𝛾0 ∇8 + 𝛾1𝜔
2 ∇6  + 𝛾2𝜔

4 ∇4  + 𝛾3𝜔
6 ∇2  + 𝛾4𝜔

8 ] θ𝑠=0                                      

Where 

𝛾0 = 𝑓0𝑎0 + 𝑔0𝑏0   + 𝑕0𝑐0 

𝛾1 = 𝑓0𝑎1 + 𝑓1𝑎0  + 𝑔1𝑏0 + 𝑔0𝑏1 + 𝑕1𝑐0 + 𝑕0𝑐1 

𝛾2 = 𝑓1𝑎1 + 𝑓2𝑎0   + 𝑓0𝑎2 + 𝑔2𝑏0 + 𝑔1𝑏1 + 𝑔0𝑏2 + 𝑕2𝑐0 + 𝑕1𝑐1 + 𝑕0𝑐2 

𝛾3 = 𝑓2𝑎1 + 𝑓1𝑎2   + 𝑔2𝑏1 + 𝑔1𝑏2 + 𝑕2𝑐1 + 𝑕1𝑐2 

𝛾4 = 𝑓2𝑎2 + 𝑔2𝑏2   + 𝑕2𝑐2 

𝑓0= K (𝜆  + 2μ),     𝑓1=K ρ + c (𝜆  + 2μ) -𝐷3𝜏 𝑞𝑑2         𝑓2  = c ρ,  

𝑔0=   K𝐷1 , 𝑔1=   K𝜌𝑙+c𝐷1-𝐷3𝜏 𝑞𝑑3   ,         𝑔2  = c𝜌𝑙  ,  

𝑕0 =  K𝐷2 , 𝑕1 =   K𝜌𝑔+c𝐷2-𝐷3𝜏 𝑞𝑑4  ,        𝑕2  = c𝜌𝑔  , 

𝑎0  =  𝐴 2𝐶 3  −  𝐴 3𝐶 2 ,  𝑎1 = 𝐴 2𝐷 3  −  𝐴 3𝐷 2  +𝐵 2𝐶 3  −  𝐵 3𝐶 2 , 𝑎2  =  𝐵 2𝐷 3  −  𝐵 3𝐷 2 

𝑏0 =  𝐴 3𝐶 1  −  𝐴 1𝐶 3 ,  𝑏1 = 𝐴 3𝐷 1  −  𝐴 1𝐷 3  +𝐵 3𝐶 1  −  𝐵 1𝐶 3 , 𝑎2  =  𝐵 3𝐷 1  −  𝐵 1𝐷 3 

𝑐0  =  𝐴 1𝐶 2  −  𝐴 2𝐶 1 ,  𝑐1 = 𝐴 1𝐷 2  −  𝐴 2𝐷 1  +𝐵 1𝐶 2  −  𝐵 2𝐶 1 , 𝑐2 =  𝐵 1𝐷 2  −  𝐵 2𝐷 1 

𝐴 1=𝐵1 𝐷3 − (𝜆  + 2μ)𝐵4 , 𝐴 2 =  𝐵2 𝐷3 − 𝐷1𝐵4  , 𝐴 3 = 𝐵3 𝐷3 − 𝐷2𝐵4  ,   
𝐵 1 =𝜌𝑙𝐷3 −  ρ𝐵4 , 𝐵 2= 𝜌𝑙𝐷3 − 𝜌𝑙𝐵4 ,  𝐵 3 = -𝜌𝑔𝐵4 

𝐶 1=𝐵5 𝐷3 − (𝜆  + 2μ)𝐵8 , 𝐶 2 =  𝐵6 𝐷3 − 𝐷1𝐵8  , 𝐶 3 = 𝐵7 𝐷3 − 𝐷2𝐵8  , 

𝐷 1 =𝜌𝐺𝐷3 −  ρ𝐵8 , 𝐷 2 = -𝜌𝑙𝐵8  , 𝐷 3= 𝜌𝑔𝐷3 − 𝜌𝑔𝐵8 ,   

 

By decomposing the partial differential equation we have obtained four Helmholtz equations given by 

( ∇2 + 
𝜔2

𝑣𝑖
2 ) 𝛷i =0 ,   i=1,2,3,4                        

This implies that existence of four compressional waves, each with its own set of scalar potentials 𝛷i and complex 

velocities 𝑣𝑖                                                                      
𝛾4 ν8 - 𝛾3 ν6  + 𝛾2𝑣

4 - 𝛾1 ν2  + 𝛾0 = 0 

The velocities 𝑣𝑖  are defined by the four roots of the above eight order equation with positive real components.  

 

Unsaturated Porous Elastic Solid 
The unsaturated thermoelastic medium reduced to unsaturated porous   elastic solid if we make this medium free from 

temperature effect. To remove temperature effect we put 𝑇0=0 , 𝑇𝑏=0 ,K=0  

Then dynamic equations of unsaturated elastic medium are given by 

𝜎𝑖𝑗 ,𝑗  = ρ  𝑢 𝑖
𝑠 + 𝜌𝑙  𝑢 𝑖

𝑙  + 𝜌𝑔  𝑢 𝑖
𝑔

 

(− 𝑝𝑙),𝑗= 𝜌𝑙  𝑢 𝑗
𝑠 + 

𝜌𝑙

𝛷𝑆𝑙
 𝑢 𝑗

𝑙  +  
𝜇 𝑙

𝑘𝑟
𝑙  𝑘

 𝑢 𝑗
𝑙                                 

 − 𝑝𝑔 ,𝑗
= 𝜌𝑔 𝑢 𝑗

𝑠 + 
𝜌𝑔

𝛷𝑆𝑙
 𝑢 𝑗

𝑔
 +  

𝜇𝑔

𝑘𝑟
𝑔

 𝑘
 𝑢 𝑗

𝑔
  

The   constitutive equation are given by 

σ𝑖𝑗  = { 𝜆  𝑢𝒌,𝒌
𝒔 + 𝐷1𝑢𝒌,𝒌

𝒍  + 𝐷2𝑢𝒌,𝒌
𝒈

  } 𝛿𝑖𝑗  + µ (𝑢𝒊,𝒋
𝒔 + 𝑢𝒋,𝒊

𝒔 ) 

(− 𝑝𝑙)𝑗  = 𝐵1𝑢𝒌,𝒌𝒋
𝒔   +  𝐵2𝑢𝒌,𝒌𝒋

𝒍  +  𝐵3𝑢𝒌,𝒌𝒋
𝒈

                                                 

(− 𝑝𝑔)𝑗  = 𝐵5𝑢𝒌,𝒌𝒋
𝒔   +  𝐵6𝑢𝒌,𝒌𝒋

𝒍  +  𝐵7𝑢𝒌,𝒌𝒋
𝒈

  

Coefficients in terms of measurable quantities are given by 

𝜆   = 𝜆 + 𝛼 [ϒ𝑎11 + (1 − ϒ)𝑎21], 

𝐷1 = 𝛼 [ϒ𝑎12 + (1 − ϒ)𝑎22], 

𝐷2 = 𝛼 [ϒ𝑎13 + (1 − ϒ)𝑎23],  

𝐵1  =  𝑎11  , 𝐵2= 𝑎12  , 𝐵3= 𝑎13  ,  

𝐵5  =  𝑎21  ,   𝐵6  =  𝑎22  , 𝐵7  =  𝑎23  ,  

 𝑎11  =𝐴22 /G , 

 𝑎12=𝐴22 𝐴14  / 𝛷𝑆
𝑙G ,  

 𝑎13=𝐴22 𝐴15  / 𝛷𝑆
𝑔G 

  𝑎21= -𝐴21 /G,  𝑎22=(𝐴11 𝐴24  - 𝐴21 𝐴14 )/ 𝛷𝑆
𝑙G 

 𝑎23=(𝐴11 𝐴25  - 𝐴21 𝐴15 )/ 𝛷𝑆
𝑔G,  

G = 𝐴11 𝐴22   

𝐴11 = 𝛷𝑆𝑙𝛽𝜔𝑝  

𝐴13=1- 𝛷 , 𝐴14 = 𝛷𝑆𝑙 , 𝐴15 = 𝛷𝑆𝑔𝑆𝑙  
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𝐴21   =   𝛷 [𝑆𝑔𝑆𝑙𝛽𝜔𝑝 − 𝐴𝑠 ]  

𝐴22 = 𝛷𝐴𝑠  

𝐴24 =-𝐴25 = 𝛷𝑆𝑔𝑆𝑙  
m=1-1/d 

𝑆𝑒=
𝑆𝑙−𝑆𝑙𝑟𝑒𝑠

𝑆𝑙 𝑠𝑎𝑡 −𝑆
𝑙
𝑟𝑒𝑠

 , 

 𝐴𝑠 = −𝑚 𝜒𝑑(𝑆𝑙 𝑠𝑎𝑡 − 𝑆𝑙 𝑟𝑒𝑠 ) 𝑆𝑒
𝑚+1/𝑚 (𝑆𝑒

−1/𝑚 − 1)1−1/𝑑 . 

The wave equations of unsaturated porous elastic solid medium are given by: 

(𝜆  +μ)  ∇ (∇.𝑢𝑠) + 𝐷1∇ (∇.𝑢𝑙) + 𝐷2∇ (∇.𝑢𝑔) + μ ∇2𝑢𝑠   = ρ 𝑢 𝑠 + 𝜌𝑙𝑢 
𝑙  +𝜌𝑔𝑢 

𝑔  

𝐵1∇ (∇.𝑢𝑠)  + 𝐵2∇ (∇.𝑢𝑙)  + 𝐵3∇ (∇.𝑢𝑔)  = 𝜌𝑙  𝑢 
𝑠 + 𝜈𝑙𝑢 

𝑙  +ῦ𝑙𝑢 
𝑙                       

𝐵5∇ (∇.𝑢𝑠)  + 𝐵6∇ (∇.𝑢𝑙)  + 𝐵7∇ (∇.𝑢𝑔)    = 𝜌𝑔  𝑢 𝑠 + 𝜈𝑔𝑢 
𝑔  +ῦ𝑔𝑢 

𝑔  

By using the displacement expressions, the system of equations is resolved into two subsystems. The first one relates the 
scalar potentials (𝛷s , 𝛷l , 𝛷g ) . This  is a coupled system which connects the dilatation    ( θ𝑠  =∇2 𝛷𝑖  , i = s, l,g ) and 

temperature T . for the time harmonic variations   ( ~𝑒−𝑖𝜔𝑡  ) of 𝛷s  , 𝛷l  , 𝛷g   with angular frequency ω, this system is 

obtained as follows 

[(𝜆  + 2μ)∇2 + ρ 𝜔2] θ𝑠  + [ 𝐷1∇
2 + 𝜌𝑙𝜔

2] θ𝑙  +  [ 𝐷2∇
2 + 𝜌𝑔𝜔

2] θ𝑔  =0    

[ 𝐵1∇
2 + 𝜌𝑙𝜔

2] θ𝑠  + [ 𝐵2∇
2 + 𝜌𝑙𝜔

2] θ𝑙  + [ 𝐵3∇
2] θ𝑔   =0                           

[ 𝐵5∇
2 + 𝜌𝑙𝜔

2] θ𝑠  +[ 𝐵6∇
2] θ𝑙  +[ 𝐵7∇

2 + 𝜌𝑔𝜔
2] θ𝑔  =0     

Solving equations we obtained an eight order partial differential equation for the propagation of longitudinal waves in 

unsaturated porous media, given by 

[𝑃1∇
6  + 𝑃2𝜔

2 ∇4  +𝑃3𝜔
4 ∇2  + 𝑃4𝜔

6 ] θ𝑠=0    

Where 

𝑃1   = (𝜆  + 2μ)𝐾1+𝐷1𝐿1+𝐷2𝑀1 

𝑃2 =𝐾1ρ+(𝜆  + 2μ)𝐾2+𝐷1𝐿2+𝐿1𝜌𝑙+𝐷2𝑀2+𝑀1𝜌𝑙  
𝑃3  =  𝐾2ρ+(𝜆  + 2μ)𝐾3+𝐷1𝐿3+𝐿2𝜌𝑙+𝐷2𝑀3+𝑀2𝜌𝑔  

𝑃4  =  𝐾3ρ+(𝜆  + 2μ)𝐾3+𝐿3𝜌𝑙+𝑀3𝜌𝑔  

𝐾1 = 𝐵2𝐵7 - 𝐵6𝐵3  

𝐾2    = 𝐵2 𝜌𝑔  + 𝐵7 𝜌𝑙  

𝐾3 =𝜌𝑙𝜌𝑔  

𝐿1 = 𝐵3𝐵5 - 𝐵1𝐵7 

𝐿2 = 𝐵3𝜌𝑔  - 𝜌𝑔𝐵1 -𝜌𝑙𝐵7 

𝐿3 =−𝜌𝑙𝜌𝑔  

𝑀1 = 𝐵1𝐵6  - 𝐵2𝐵5 

𝑀2 = 𝐵6𝜌𝑙  - 𝜌𝑙𝐵5  -𝜌𝑔𝐵2 

𝑀3 =−𝜌𝑔𝜌𝑙  

By decomposing the partial differential equation we have obtained four Helmholtz equations given by 

( ∇2 + 
𝜔2

𝑣𝑖
2 ) 𝛷i =0 ,   i=1,2,3,                        

This implies that existence of three compressional waves, each with its own set of scalar potentials 𝛷i and complex 

velocities 𝑣𝑖                                                                      
𝑃4 ν6 - 𝑃3 ν4  + 𝑃2𝑣

2 - 𝑃1 = 0 

The velocities 𝑣𝑖  are defined by the four roots of the above six order equation with positive real components.                             

 

Elastic Medium  

The unsaturated porous elastic medium reduced to elastic medium if we remove porosity. The medium which changed its 

shape when any force is applied and when force is removed it come back its original form. 

The dynamic equation of elastic medium is given by 

𝜎𝑖𝑗 ,𝑗  = ρ  𝑢 𝑖
𝑠  

The constitutive equation are given by 

σ𝑖𝑗  =  𝜆  𝑢𝒌,𝒌
𝒔  + µ (𝑢𝒊,𝒋

𝒔 + 𝑢𝒋,𝒊
𝒔 ) 

The wave equation of elastic solid medium is 

(𝜆  +μ)  ∇ (∇.𝑢𝑠) + μ ∇2𝑢𝑠   = ρ 𝑢 𝑠   
By using the displacement expressions, the system of equation is resolved into two subsystems. The first one relates the 
scalar potential 𝛷s  . This  is a coupled system which connects the dilatation    ( θ𝑠  =∇2  𝛷𝑠  ,). For the time harmonic 

variations   ( ~𝑒−𝑖𝜔𝑡  ) of 𝛷s  with angular frequency ω, this system is obtained as follows 
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[(𝜆  + 2μ)∇2 + ρ 𝜔2] θ𝑠   =0    
Solving equation we obtained second order partial differential equation for the propagation of longitudinal waves in elastic 

solid medium, given by 

ρ 𝑣2-(𝜆  + 2μ)=0 
 

Concluding Observations 

In the presented study, we have reduced unsaturated poro-thermoelastic medium to elastic medium.. The wave equation in 

every medium is established by mass balance equation and momentum balance equation. As the medium reduced, the 

degree of equation for the propagation of longitude waves is also decreased. 

 

REFERENCES 

 

[1]. Carcione, J.M., Cavallini, F., Wang, E., Ba, J. and Fu, L. (2019a), “Physics and simulation of wave propagation in 

linear thermoporoelastic media”, Journal of Geophysical Research: Solid Earth,Vol. 124 No. 8, pp. 8147-8166. 

[2]. Carcione, J.M., Wang, Z., Ling, W., Salusti, E., Ba, J. and Fu, L. (2019b), “Simulation of wave propagation in linear 

thermoelastic media”, GEOPHYSICS, Vol. 84 No. 1 

[3]. Kumar, M., Barak, M.S. and Kumari, M. (2019), “Reflection and refraction of plane waves at the boundary of an 

elastic solid and double-porosity dual-permeability materials”, Petroleum Science, Vol. 16 No. 2, pp. 298-317. 

[4]. Kumar, M., Singh, A., Kumari, M. and Barak, M.S. (2021b), “Reflection and refraction of elastic waves at the 

interface of an elastic solid and partially saturated soils”, Acta Mechanica, Vol. 232 No. 1,pp. 33-55. 

[5].  Sharma, M.D. (2008), “Wave propagation in thermoelastic saturated porous medium”, Journal of Earth System 

Science, Vol. 117 No. 6, pp. 951-958. 

[6]. Zhou, F., Liu, H. and Li, S. (2019), “Propagation of thermoelastic waves in unsaturated porothermoelastic media”, 

Journal of Thermal Stresses, Vol. 42 No. 10, pp. 1256-1271.. 

[7]. Carcione, J.M., Cavallini, F., Wang, E., Ba, J. and Fu, L. (2019a)   Physics and simulation of wave propagation in 

linear thermoporoelastic media. Journal of Geophysical Research: Solid Earth, Vol. 124 No. 8, pp. 8147-8166 

[8]. Barak, M.S., Kumar, M., Kumari, M., & Singh, A. (2020). Inhomogeneous wave propagation in partially saturated 

soils. Wave Motion, 93, 102470. 

[9]. Carcione, J. M., Cavallini, F., Santos, J. E., Ravazzoli, C. L., & Gauzellino, P. M. (2004). Wave propagation in 

partially saturated porous media: simulation of a second slow wave. Wave Motion, 39(3), 227-240 

[10]. Wang, E., Carcione, J. M., Yuan, Y., & Ba, J. (2021). Reflection of inhomogeneous plane waves at the surface of a 

thermo-poroelastic medium. Geophysical Journal International, 224(3), 1621-1639. 

[11]. Sharma, M. D., & Kumar, M. (2011). Reflection of attenuated waves at the surface of a porous solid saturated with 

two immiscible viscous fluids. Geophysical Journal International, 184(1), 371-384. 

[12]. Kumar, M., & Saini, R. (2012). Reflection and refraction of attenuated waves at boundary of elastic solid and porous 

solid saturated with two immiscible viscous fluids. Applied Mathematics and Mechanics, 33(6), 797-816. 

[13]. Kumar, Manjeet, Manjeet Kumari, and Mahabir Singh Barak. "Reflection of plane seismic waves at the surface of 

double-porosity dual-permeability materials." Petroleum Science 15.3 (2018): 521-537.. 

[14]. Sharma, M. D. "Effect of local fluid flow on reflection of plane elastic waves at the boundary of a double-porosity 

medium." Advances in water resources 61 (2013): 62-73. 

[15]. Barak, M. S., M. Kumari, and M. Kumar. "Effect of local fluid flow on the propagation of plane waves at an 

interface of water/double-porosity solid with underlying uniform elastic solid." Ocean Engineering 147 (2018): 195-

205. 

[16]. Kumari, Manjeet, et al. "Reflection of inhomogeneous plane waves at the surface of an unsaturated 

porothermoelastic media." The European Physical Journal Plus 137.6 (2022): 729. 

[17]. Sharma, M. D. "Reflection–refraction of attenuated waves at the interface between a thermo-poroelastic medium and 

a thermoelastic medium." Waves in Random and Complex Media 28.3 (2018): 570-587. 

[18]. Sharma, M. D. "Wave propagation in anisotropic generalized thermoelastic media." Journal of Thermal 

Stresses 29.7 (2006): 629-642. 

[19]. Kumar, Manjeet, et al. "Inhomogeneous wave reflection from the surface of a partially saturated thermoelastic 

porous media." International Journal of Numerical Methods for Heat & Fluid Flow 32.6 (2022): 1911-1943 

[20]. Biot, M.A. (1956), “Thermoelasticity and irreversible thermodynamics”, Journal of Applied Physics, Vol. 27 No. 3, 

pp. 240-253. 

[21]. Coleman, B.D. (1964), “Thermodynamics of materials with memory”, Archive for Rational Mechanics and 

Analysis, Vol. 17 No. 1, pp. 1-46 

[22]. Coleman, B.D. and Noll, W. (1963), “The thermodynamics of elastic materials with heat conduction and viscosity”, 

Archive for Rational Mechanics and Analysis, Vol. 13 No. 1, pp. 167-178. 


