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ABSTRACT 

 

The study of fluid motions through porous medium has endured much attention due to its significance not only 

to the field of academics but also to the industry. Particularly heat and transfer through channel/ cylinder which 

are filled with porous medium. Many authors have studied the flows in presence of Magnetic field but with clear 

fluid i.e. without porous medium while others have taken the plates at rest. Considering all these things, in this 

Paper, a non-Darcy viscous dissipating MHD flow and heat transfer through a channel filled with porous 

medium with moving plates is considered. A simulation method called Differential Transform Method or Taylor 

Transform method is employed to solve the governing equation. The effects of the thermo physical properties of 

highly porous medium and of the fluid are considered to be constant. Analytical solutions for velocity and 

temperature are obtained to predict the flow and temperature field. A parametric study is conducted to discuss 

the influence of different factors on the flow and heat transfer performance. Skin friction coefficient and Nusselt 

Number is calculated whose tables are also incorporated with graphs. 
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INTRODUCTION 

 

The study of fluid motions through porous medium has endured much attention due to its significance not only to the 

field of academics but also to the industry. Fluid motions have many applications in many industrial and biological 

processes like food industry, irrigation problems, oil exploitation, motion of blood in the cardiovascular system 

,chemistry and bio-engineering, soap and cellulose solutions, and in biophysical sciences where the human lungs are 

considered as a porous layer, etc. Engineering problems like magneto hydrodynamics (MHD) generators, plasma 

studies, nuclear reactors, geothermal energy extraction, and the boundary layer control in the field of aerodynamics are 

many applications of the study of flow of an electrically conducting fluid. Vafai [1] studied the effects of variable 

porosity and inertial forces on convective flow and heat transfer in porous media and forced convection in packed beds 

in the vicinity of impermeable boundary. Thiyagaraja et al. [2] analyzed fluid flow and heat transfer at the interface 

region in deepness for three general and fundamental classes of problems in porous media. There are the interface 

regions between two different porous media, the interface region between a fluid region and a porous medium, and the 

interface region between an impermeable medium and a porous medium. Ettefagh et al. [3] discussed the significance 

and relevance of non Darcian   effects associated with the buoyancy driven convection in open ended cavities filled 

with fluid-saturated porous medium. Karimi et al.[4] explained   numerically double-diffusive natural convection in a 

square cavity filled with a porous medium and the effects of non-Darcian fluid are analyzed by investigating the 

average heat and mass transfer rates.. Marafie et al.[5] analyzed forced convection flow through a channel filled with 

porous medium and to represent  the fluid transport  within the porous medium  the Darcy- Forchheimer-Brinkman 

model  is used. 

  

A non- thermal equilibrium, two- equation model is used to represent the fluid and solid energy transport. Chakra borty 

[6] studied MHD flow and heat transfer of a dusty viscoelastic stratified fluid down an inclined channel in porous 

medium under variable viscosity. Chamkha [7] studied unsteady laminar hyderomagnetic flow and heat transfer in 

porous channels with temperature dependent properties. Nield et al.[8] studied the thermal development of forced 
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convection parallel plate channel filled by saturated porous medium with uniform temperature at wall and the effects of 

axial conduction and viscous dissipation. On foundation of Darcy model, Hooman et al.[9] discussed the effects of 

viscous dissipation on thermal entranced heat transfer in a parallel plate channel filled with a saturated porous medium. 

Mankinde et al.[10] discussed the collaborate effects of a transverse magnetic field and radiative heat transfer to 

unsteady flow of a conducting optically thin fluid through a channel filled with saturated porous medium and non-

uniform walls temperature.   

 

Figen Kangalgi et.al.[11] studied to obtain exact and approximate solutions for the nonlinear dispersive KdV and 

mKdV equations with initial profile. Rawat et al.[12] employed the Nakamura-Sawada rheological model to analyze 

the pulsatile hydro magnetic flow and heat transfer of a non-Newtonian biofluid through a saturated non-Darcian 

porous medium channel with viscous heating.  Taklifi et al.[13] studied the unsteady magneto hydrodynamic (MHD) 

periodic flow of a non-Newtonian fluid through a porous channel. The effects of the rheological behavior of fluid on 

velocity and shear stress profiles along channel width at different time periods have been also depicted. Sharma M. et 

al.[14] studied the steady magneto hydrodynamic (MHD) flow and heat transfer of electrically conducting viscous 

incompressible fluid through non-Darcian porous medium bounded between two horizontal infinite impermeable 

parallel plates with viscous and Joule dissipation effects.. Sepasgozar et al. [15] explained the solution of momentum 

and heat transfer equations of non-Newtonian fluid flow in an axisymmetric channel with porous wall by using 

differential transform method. Han Wei et al.[16] discussed about the effective thermal conductivities of composite 

material and porous media   by using machine learning methods which are very useful tools to fast predict the effective 

thermal conductivities of composite materials and porous media. H.J. Xu[17]  discussed about the fully developed 

forced convection heat transfer in a micro channel partially filled with a porous medium core   which is accomplished 

by assuming local thermal non equilibrium effect between   solid and liquid phases. Ganesan [18] studied the magnetic 

effect on an impulsively moving semi-infinite vertical cylinder in the presence of constant heat flux and magnetic field 

applied normal to the surface.  Aristov [19] discussed two-dimensional time-dependent viscous fluid flow between 

transversely and longitudinally moving rigid planes. Bhattacharya [20] investigated the effective  thermal conductivity, 

permeability and  inertial coefficient of   metal foam samples with different porosity.   

 

In the present study, we will apply Differential Transform Method (DTM) which is numerical method based on idea of 

Taylor series. The differential transform method was first proposed by Zhou JK.[21].Chen et al.[22] studied two-point 

boundary-value problems using the differential transformation method. Biazar J. [23] applied DTM to solve quadratic 

Riccati differential equations, Ali j [24] solved the fifth and sixth order boundary value problems along with two 

conditions in a finite domain and Mirzaee F [25] solved many linear and non- linear ordinary differential equations 

using differential transform method (DTM). This method is numerical technique to find approximate solutions of linear 

and non-linear intial value problems and Eigen value problems. Most of the methods are computationally intensive 

because they are trial-and-error in nature, or need complicated symbolic computations but it gives the  exact, 

approximate, and purely numerical  solution for the systems of differential equations and  it  reduces the size of 

computational domain and is applicable to many problems easily.  

 

As we have considered the research work of many authors, some have considered the flow through parallel plates but in 

rest, others have considered parallel moving plates. Some authors considered Non-Darcy fluid flow and some have 

considered Darcy fluid flow.  In the present study, we investigate heat and mass transfer through a channel filled with 

porous medium with moving plates & a non-Darcy viscous dissipation MHD flow in the presence of magnetic field. 

The equations which express MHD flow are a combination of continuity equation and Navier-Stokes equations of fluid 

dynamics and Maxwell’s equations of electromagnetism. After non-dimensional zing the governing equations, 

Differential method is used to find velocity profile and temperature profile and the effect of variation of various 

physical parameters is examined at velocity profile and temperature profile through graphs. 

 

FORMULATION OF PROBLEM 

 

 
 

Figure 1.Physical model of the problem 
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Consider two semi-infinite parallel plates which are parallel to the x-axis and kept at a distance 2d apart, the y-axis is 

normal to the channel filled with porous medium with moving plates. Temperature of lower plate and upper plate are 

T1and optimum at the middle of channel. At transverse to the flow direction, a static magnetic field of strength B0 is 

applied. The effects of the thermo physical properties of highly porous medium and of the fluid are supposed to be 

constant. In certain porous medium the porosity may not be uniform due to channeling close to the wall. But in the 

present study the porosity and permeability considered constant near the walls of the channel.  

 

The Maxwell equations for MHD flow are, Shercliff [26]  

Div𝐵  = 0          (1) 

Curl𝐵  =µm𝐽 , (Amper’s law)        (2) 

curl𝐸  =∂𝐵  /∂t(Faraday’s law)                                                                                     (3) 

 

Where E represents electric field, B denotes magnetic field, µm is the electric permeability and J is  the current density. 

The generalized Ohm’s law defines the current density as  

𝐽 =𝜎(𝐸  + 𝑉  × 𝐵  ) (Ohm’s law, without Hall Effect)    (4) 

 

Where 𝜎  is the electrical conductivity of the fluid 

The induced electromagnetic force F
 (em) 

is defined as 

𝐹 (em)
=𝐽 × 𝐵  = 𝜎 𝐸  + 𝑉  × 𝐵 × 𝐵         (5) 

Under the above considerations the governing equations may be defined as 

The equation of continuity for incompressible fluid is  

∇. 𝑞 = 0           (6) 

 

The momentum equation for the flow through a non-Darcy porous medium by Darcy –Brinkman –Forchheimer model, 

Nield and Bejan(1992) [27] in the presence of magnetic field takes the following form 

𝜌𝐷𝑞 /𝐷𝑡 = −∇𝑝 + 𝜇𝑒𝑓𝑓∇
2q  −  

μ

K
q  +

ρCd

 K
q   q    + J × B       (7) 

 

Where q represents  the velocity field for the flow of incompressible viscous electrically conducting fluid, 𝜌 denotes  

the density of fluid,  𝜇𝑒𝑓𝑓  denotes  the effective viscosity of fluid in the porous medium, 𝜇 represents  the viscosity of 

fluid, Cd denotes  the drag coefficient, K represents  the permeability ,B(0,B0,0) represents the magnetic field.  

 

Following Cowling (1957) and Gupta (1960) [28], there is no applied or polarization voltage so that 𝐸  =0. The resultant 

electromagnetic force 𝐹 (em)
 =𝐽 × 𝐵  = −𝜎 B0

2
u𝐽 .  

The energy equation with the consideration of viscous dissipation and joule’s dissipation can be written as 

𝜌𝐶𝑝
𝐷𝑇

𝐷𝑡
= 𝑘∇2𝑇 + ∅ +

𝐽2

𝜎
        (8) 

 

Where Cp represents the specific heat, T denotes the fluid temperature, ∅ represents viscous dissipation term. As the 

plate are of semi-infinite length therefore the variation along the x-direction are negligible in compare to variation 

along y-direction. Hence velocity and temperature are taken independent of x. Also, there is no flow along z-direction 

and plates are extended to semi-infinite length in z-direction, resulting w=0 and
𝜕

𝜕𝑧
 .  = 0. on incorporating these 

assumption and in view of the physical configuration of the problem, the equations (7) and (8) reduce to 

 

𝜇𝑒𝑓𝑓
𝜕2𝑢

𝜕𝑦2=
𝜕𝑝

𝜕𝑥
+ {

𝜇

𝐾
u+𝜌

𝐶𝑑

 𝐾
𝑢2} +𝜎𝐵0

2u      (9) 

k
𝜕2𝑇

𝜕𝑦 2 + 𝜎𝐵0
2𝑢2 + 𝜇(

𝜕𝑢

𝜕𝑦
)2 = 0       (10) 

 

 

The boundary conditions are: 

Y=0;           
𝜕𝑢

𝜕𝑦
=0                                    

𝜕𝑇

𝜕𝑦
= 0    (11) 

Y=d;             u=𝑣0                                    T=T1 

 

METHOD OF SOLUTION 

 

Introduce following dimensionless quantities which are used in equation of motion and equation of energy and 

boundary conditions  

x
*=𝑥

𝑑
      Y

*=𝑦

𝑑
u

*= 𝑢

𝑣0
𝜃 =

𝑇−T1

𝑇−T0
 

D=
𝐾

𝑑2      F=
𝜌𝐶𝑑𝐺𝑑4

𝜇2 𝐾
       P=

𝜇𝑒𝑓𝑓

𝜇
       H= 

𝜎𝑑2𝐵0
2

𝜇
      Bm =

𝐺2𝑑4

𝐾𝜇(𝑇1−𝑇0)
     R=

𝐺𝑑2

𝜇𝑣0
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Where G=−
𝜕𝑝

𝜕𝑥
  is the pressure gradient , D represents the Darcy number, F denotes  Forchheimer number, P is ratio of 

effective viscosity to the viscosity of the fluid, H denotes the Hartman number, Bm represents the brinkman number. 

The equation of motion and energy in dimensionless form are given by 

 
𝑑2𝑢∗

𝑑𝑦2 = −
𝑅

𝑃
+

1

𝑃
(

1

𝐷
+ 𝐻2)𝑢∗ −F/P𝑢∗2      (12) 

𝑑2𝜃

𝑑𝑦2 + 𝐵𝑚(
𝜕𝑢∗

𝜕𝑦
)2 + 𝐻2𝐵𝑚𝑢∗2 = 0       

(13) 

The corresponding boundary conditions are: 

𝑦∗=0                    
𝜕𝑢∗

𝜕𝑦
= 0                        𝜃 = 0 

𝑦∗=1                    𝑢∗=1                           𝜃=1       (14) 

There is no loss of generality taking variable without astrick from dimensionless form of the governing equations. 

Therefore, the equation of motion and energy in the dimensionless form are given by  
𝑑2𝑢

𝑑𝑦2 = −
𝑅

𝑃
+

1

𝑝
(

1

𝐷
+ 𝐻2)𝑢 −

𝐹

𝑃
𝑢2       (15) 

𝑑2𝜃

𝑑𝑦2 + 𝐵𝑚(
𝜕𝑢

𝜕𝑦
)2 + 𝐻2𝐵𝑚𝑢2 = 0       

(16) 

The corresponding boundary conditions are: 

y=0                    
𝜕𝑢

𝜕𝑦
= 0                𝜃 = 0 

y=1             u=1                  𝜃=1        (17) 

 

Solution for Velocity Profile 

 

The Differential Transform Method (DTM) is applied  for solving (non-linear ordinary differential equation) 

momentum equation (15). 

The differential transform(s) of the derivative 
𝑑𝑠𝑢(𝑥)

𝑑𝑥𝑠    is defined as 

U(s) =
1

𝑠!
[
𝑑𝑠𝑢(𝑥)

𝑑𝑢𝑠 ]𝑥=𝑥0
  

 

Table 1.The fundamental mathematical operation in DTM 

 

Function   Differential Transform 

u(y)=f(y)±g(y) U(s)=F(s)±G(s) 

u(y)=𝜆g(y)  U(s)=𝜆G(s)  

u(y)=
𝜕𝑔(𝑦)

𝜕𝑦
  U(s)=(s+1)G(s+1) 

u(y)=
𝜕𝑚 𝑔(𝑦

𝜕𝑦𝑚  U(s)=(s+1)…….(s+m)G(s+m) 

u(y)=𝑦𝑚  
U(s)=𝛿 𝑠 − 𝑚 =  

1, 𝑠 = 𝑚
0,  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

u(y)=f(y)g(y) U(s)= 𝐹 𝑟 𝐺(𝑠 − 𝑟)𝑠
𝑟=0  

u(y)=𝑓1(𝑦) 𝑓2(𝑦) ……𝑓𝑚(𝑦) U(s) = … .  𝐹1
𝑠2
𝑠𝑚−1=0

𝑠
𝑠1

 𝑠1 𝐹2(𝑠2 − 𝑠1)…….. 𝐹𝑚(𝑠 − 𝑠𝑚−1) 

 

        (18) 

And inverse differential transform of U(s) is defined as 

U(x) = 𝑈 𝑠 (𝑥 − 𝑥0
∞
𝑠=0 )𝑠        (19) 

On applying differential transform method, the momentum equation (15) with transform parameter ‘r’gives following 

recurrence relation 
 𝑟+2 !

𝑟!
𝑈 𝑟 + 2 = 𝑀𝑈 𝑟 + 𝑁 𝑈 𝑡 𝑈 𝑟 − 𝑡 + 𝑍𝛿(𝑟)𝑟

𝑡=0     (20) 

Where M = 
 1

𝑃
(

1

𝐷
+ 𝐻2)N=−

𝐹

𝑃
Z=-

𝑅

𝑃
 

𝛿 𝑟 =  
1     𝑟 = 0
0     𝑟 ≠ 0

          (21) 

DTM of the boundary condition for velocity at lower plate i.e.  
𝜕𝑢

𝜕𝑦
 
𝑦=0

=0 gives 

U (1) =0           (22) 

The intial value of u(0) is unknown ,therefore its DTM U(0) is also not known ,so taking u(0)=𝛼(constant)  

       (23) 

Where 𝛼 is an unknown constant to be determined under prescribed boundary conditions over the flow field. 
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Applying DTM on (23) gives 

U (0) =𝛼          (24)  

Put r=0, 1, 2,3,4,5 the recurrence relation (20) gives 

U (2) =
1

2
(𝑀𝛼 +N𝛼2 + 𝑍) 

U (3) =0 

U (4) =
N2𝛼3

12
+

𝑀𝑁𝛼2

8
+ (

𝑀2

24
+

𝑁𝑍

12
)𝛼+

𝑀𝑍

24
 

U (5) =0 

From equation (19), inverse differential transform of U(s) can be defined as  

U(y) = 𝑈(𝑠)𝑦𝑠5
𝑠=0          (25) 

Put value of U (0) to U (5) the solution of the problem up to 4
th

 order is given by 

U(y) =𝛼 +
1

2
(𝑀𝛼 +N𝛼2 + 𝑍)𝑦2 + (

N2𝛼3

12
+

𝑀𝑁𝛼2

8
+ (

𝑀2

24
+

𝑁𝑍

12
) 𝛼+

𝑀𝑍

24
)𝑦4  (26) 

At the boundary condition u (1) =1, the equation (26) provides a third degree   polynomial in 𝛼 as given by 
𝑁2

12
𝛼3 +  

𝑁

2
+

𝑀𝑁

8
 𝛼2 +  1 +

𝑀

2
+

𝑀2

24
+

𝑁𝑍

12
 𝛼 +  

𝑍

2
+

𝑀𝑍

24
− 1 = 0  (27) 

The fluid flow profile obtained from equation (27) by calculating value of 𝛼.The value of physical parameters P,D,F, H 

and R are obtained by computing the value  of 𝛼 through MATLAB  and the result for velocity profile are analyzed by 

graphs. 

 

Solution of Energy Equation 

The solution of the heat equation (16) is obtained by using differential transform method. 

The differential transform𝜑(s) of the derivative 
𝑑𝑠𝑢(𝑥)

𝑑𝑥𝑠    is defined as 

𝜑(s)=
1

𝑠!
[
𝑑𝑠𝑢(𝑥)

𝑑𝑢𝑠 ]𝑥=𝑥0
         (28) 

And inverse differential transform of 𝜃(s) is defined as 

𝜃(x)= 𝜑 𝑠 (𝑥 − 𝑥0
∞
𝑠=0 )𝑠        (29) 

On applying differential transform method, the Energy equation (16) with transform parameter ‘r’gives following 

recurrence relation 

 𝑟 + 2 !

𝑟!
𝜃 𝑟 + 2 = 𝐸  𝑢 𝑡 𝑢 𝑟 − 𝑡 + 𝐹  𝑡 + 1  𝑟 − 𝑡 + 1 𝑢 𝑡 + 1 𝑢(𝑟 − 𝑡 + 1)

𝑟

𝑡=0

𝑟

𝑡=0

 

           (30) 

Where E=-H
2
Bm,      F= -Bm 

DTM of the boundary condition for temperature   at lower plate i.e.  
𝜕𝜃

𝜕𝑦
 
𝑦=0

=0 gives 

𝜑(1)=0           (31) 

The intial value of 𝜃(0) is unknown, therefore its DTM 𝜑(0) is also not known, so taking  

𝜑(0) = 𝛽(constant)          (32) 

Where𝛽 is an unknown constant to be determined under prescribed boundary conditions over the flow field 

Putting   r= 0, 1, 2,3,4,5 the recurrence relation (30) gives 

𝜑(2)=
𝐸𝛼2

2
 

𝜑(3)=0 

𝜑(4)=
𝐸𝛼(𝑀𝛼 +N𝛼2+𝑍)

12
+
𝐹(𝑀𝛼 +N𝛼2+𝑍)2

12
 

𝜑(5)=0 

𝜑(6)= 
 𝐸𝛼

15
(

N2𝛼3

12
+

𝑀𝑁𝛼2

8
+ (

𝑀2

24
+

𝑁𝑍

12
)𝛼+

𝑀𝑍

24
)+

𝐸

120
(𝑀𝛼 + N𝛼2 + 𝑍)2+

4𝐸

15
 (𝑀𝛼 + N𝛼2 + 𝑍) (

N2𝛼3

12
+

𝑀𝑁𝛼2

8
+ (

𝑀2

24
+

𝑁𝑍

12
)𝛼+

𝑀𝑍

24
)       (33) 

From equation (29), inverse differential transform of 𝜑(s) can be defined as  

𝜃(y)= 𝜑(𝑠)𝑦𝑠5
𝑠=0          (34) 

Put value of 𝜑(0) to 𝜑(6) the solution of the problem upto 6
th

 order is given by 

𝜃(y)=𝛽 +
𝐸𝛼2

2
𝑦2 + (

𝐸𝛼(𝑀𝛼 +N𝛼2+𝑍)

12
+
𝐹(𝑀𝛼 +N𝛼2+𝑍)2

12
)𝑦4+(

𝐸𝛼

15
(

N2𝛼3

12
+

𝑀𝑁𝛼2

8
+ (

𝑀2

24
+

𝑁𝑍

12
)𝛼+

𝑀𝑍

24
)+

𝐸

120
(𝑀𝛼 + N𝛼2 +

𝑍)2+4𝐸15 (𝑀𝛼 +N𝛼2+𝑍) (N2𝛼312+𝑀𝑁𝛼28+(𝑀224+𝑁𝑍12)𝛼+𝑀𝑍24))𝑦6     

     (35) 

At the boundary condition 𝜃(1) =1, the value of 𝛽 is obtained from the equation (35)    

 

𝛽 = 1 − (
𝐸𝛼2

2
+

𝐸𝛼(𝑀𝛼 +N𝛼2+𝑍)

12
+
𝐹(𝑀𝛼 +N𝛼2+𝑍)2

12
+
𝐸𝛼

15
(

N2𝛼3

12
+

𝑀𝑁𝛼2

8
+ (

𝑀2

24
+

𝑁𝑍

12
)𝛼+

𝑀𝑍

24
)+

𝐸

120
(𝑀𝛼 + N𝛼2 + 𝑍)2+

4𝐸

15
 (𝑀𝛼 +

N𝛼2 + 𝑍) (
N2𝛼3

12
+

𝑀𝑁𝛼2

8
+ (

𝑀2

24
+

𝑁𝑍

12
)𝛼+

𝑀𝑍

24
) )  

           (36) 
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The Temperature profile obtained from equation (34) by calculating value of 𝛽.The value of physical parameters P, D, 

Fr, H, Bm and R are obtained by computing the value of 𝛽 through MATLAB.   

 

SKIN FRICTION COEFFICIENT 

 

The non-dimensional shearing stress on the upper plate in terms of local skin-friction coefficient is obtained and 

computed values are given in the Table 1. 

 

Sf=[𝜕𝑢/𝜕𝑦]𝑦=1 

   =Z+
𝑀𝑍

6
+  𝑀 +

𝑀2

6
+

𝑁𝑍

3
 𝛼 +  𝑁 +

𝑀𝑁

2
 𝛼2 +

𝑁2

3
𝛼3    (37) 

 

NUSSELT NUMBER 

 

The non-dimensional coefficient of heat transfer at the upper plate is obtained and computed values are given in the 

Table 2.    

Ns=-(𝜕𝜃/𝜕𝑦)𝑦=1 

   =(E𝛼2+4(
𝐸𝛼(𝑀𝛼  +N𝛼2+𝑍)

12
+
𝐹(𝑀𝛼  +N𝛼2+𝑍)2

12
)+6(

𝐸𝛼

15
(

N2𝛼3

12
+

𝑀𝑁𝛼2

8
+ (

𝑀2

24
+

𝑁𝑍

12
)𝛼+

𝑀𝑍

24
)+

𝐸

120
(𝑀𝛼 + N𝛼2 + 𝑍)2+

4𝐸

15
 (𝑀𝛼 +

N𝛼2 + 𝑍) (
N2𝛼3

12
+

𝑀𝑁𝛼2

8
+ (

𝑀2

24
+

𝑁𝑍

12
)𝛼+

𝑀𝑍

24
) ) 

           (38) 

 

RESULT AND DISCUSSION 

 

Velocity profile and Temperature profile are plotted to find the effect of various parameters. In figure 2 and 3, the 

effect of Hartman number on velocity profile is shown with relative viscosity 0.5 and 2 respectively as the Hartman 

number increases in case of relative viscosity 0.5, the fluid flows accelerates while in case of relative viscosity equal to 

2,the flow gets accelerated. The velocity of fluid decreases with the increase in Darcy number at P=0.5 while it 

accelerates in case of P=2 as shown in figure 4 and 5.In case P=0.5 the fluid velocity increases sharply as Forchheimer 

number increases from 5 to 10 but in case of P=2 ,the fluid flow is not much affected by the increase in Forchheimer  

number as in figure 6 and 7. With the increase in Reynolds number the flow retards in case of P=0.5, while it is  

accelerated in case of P=2 as  shown in figure 8 and 9.Also the impact of relative viscosity is shown in figure 10 in 

fluid flow, if the effective viscosity is more than the fluid viscosity than fluid flow  shown  as in figure .The 

temperature  of the fluid increases with the increase in Hartman number  as in figure 11 in case of P= 0.5 ,where P=2 

first the fluid temperature  increases and after that decreases with increase in Hartman number as shown in figure 12. 

With the increase in Darcy number the temperature shows decreasing trends with increase in Darcy number for 

P=0.5while the temperature increases with increase in Darcy number in case of P=2 as in figure 13 and 14. As the 

trends for fluid flow shows with increase in Forchheimer number as in figure 15 and 16. The Temperature decreases  

with increase in relative viscosity as in figure 17.The increase in Reynolds number and Brinkman number  increase the 

temperature of the fluid  in case of P=0.5 while  the temperature  decreases in case of P=2 as in figures 18,19,20 and 21 

respectively.   Table 1 shows that when ratio of effective viscosity to viscosity of fluid and Darcy number is increased 

than rate of Heat Transfer decreased and when Hartmann and Forchheimer number is increased than rate of heat 

transfer increased. There is slight increment in rate of heat transfer when Reynolds and Brinkman number is increased. 

The magnitude of skin-friction coefficient is computed at the Upper -plate and tabulated in Table 2. The skin friction 

coefficient is maximum when the viscosity of fluid is greater than the effective viscosity of fluid. Skin-friction 

coefficient is increased when Darcy number is increased. When the Value of Forchheimer number is between 5 and 20, 

than much decrement in skin friction coefficient, but when Reynolds number is increased than skin friction coefficient 

is slightly decreased.  

 

CONCLUSION 

 

There is slight increment in rate of heat transfer when Reynolds and Brinkman number is increased. When ratio of 

effective viscosity to viscosity of fluid and Darcy number is increased than rate of Heat Transfer decreased and when 

Hartmann and Forchheimer number is increased than rate of heat transfer increased. The skin friction coefficient is 

maximum when the viscosity of fluid is greater than the effective viscosity of fluid. The temperature of the fluid 

increases with the increase in Hartman number. 
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Table 1 Values  of Nusselt Number at the Upper Plate 

 

 P R D H F Bm Ns 

0.5 0.01 0.1 5 10 0.01 60.5971 

1 0.01 0.1 5 10 0.01 16.3457 

2 0.01 0.1 5 10 0.01 0.0133 

0.5 0.01 0.1 5 10 0.01 60.5971 

0.5 0.01 0.5 5 10 0.01 22.7306 

0.5 0.01 1 5 10 0.01 19.6926 

0.5 0.01 0.1 1 10 0.01 0.0129 

0.5 0.01 0.1 3 10 0.01 2.6734 

0.5 0.01 0.1 5 10 0.01 60.5971 

0.5 0.01 0.1 5 1 0.01 0.0014 

0.5 0.01 0.1 5 5 0.01 0.0015 

0.5 0.01 0.1 5 10 0.01 60.5971 

0.5 0.1 0.1 5 10 0.01 0.0015 

0.5 0.5 0.1 5 10 0.01 0.0018 

0.5 1 0.1 5 10 0.01 0.0024 

0.5 0.01 0.1 5 10 0.5 0.0732 

0.5 0.01 0.1 5 10 1 0.1438 

0.5 0.01 0.1 5 10 2 0.2773 

 

Table 2 Values of Skin -Friction Coefficient at the Upper Plate 

 

 P R D H F Sf 

0.5 0.01 0.1 5 10 -63.5293 

1 0.01 0.1 5 10 -31.8536 

2 0.01 0.1 5 10 3.0250 

0.5 0.01 0.1 5 10 -63.5293 

0.5 0.01 0.5 5 10 -37.1335 

0.5 0.01 1 5 10 -34.2804 

0.5 0.01 0.1 1 10 -0.5803 

0.5 0.01 0.1 3 10 -17.1536 

0.5 0.01 0.1 5 10 -63.5293 

0.5 0.01 0.1 5 1 3.6467 

0.5 0.01 0.1 5 5 3.7227 

0.5 0.01 0.1 5 10 -63.5293 

0.5 0.1 0.1 5 10 3.6474 

0.5 0.5 0.1 5 10 3.6144 

0.5 1 0.1 5 10 3.5874 
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