Trans-Sasakian Manifold with a Semi Symmetric Metric Connection

Savita Verma
Department of Mathematics, Govt. P.G. College, Raipur (Maldevata), Dehradun Uttarakhand, India

Abstract

Oubina, J.A.[1] defined and initiated the study of Trans-Sasakian manifolds. Blair [2], Prasad and Ojha [3], Hasan Shahid [4] and some other authors have studied different properties of C-R-Sub -manifolds of TransSasakian manifolds. Golab, S. [5] studied the properties of semi-symmetric and Quarter symmetric connections in Riemannian manifold. Yano, K. [6] has defined contact conformal connection and studied some of its properties in a Sasakian manifold. Mishra and Pandey [7] have studied the properties in Quarter symmetric metric F-connections in an almost Grayan manifold. In this paper we have studied the properties of a Trans- Sasakian manifold equipped with a semi-symmetric metric connection.

Key words: Riemannian curvature tensor, Trans-Sasakian manifold, C-R-Sub -manifolds of Trans-Sasakian manifolds, Semi-symmetric and Quarter symmetric connections in Riemannian manifold, Almost Grayan manifold.

INTRODUCTION

Let $\mathrm{M}_{\mathrm{n}}(\mathrm{n}=2 \mathrm{~m}+1)$ be an almost contact metric manifold endowed with a (1,1)-type structure tensor F , a contravariant vector field T, a -1 form A associated with T and a metric tensor ' g ' satisfying :---
(1.1)(a) $F^{2} \mathrm{X}=-\mathrm{X}+\mathrm{A}(\mathrm{X}) \mathrm{T}$
(1.1)(b) $\mathrm{FT}=0$
(1.1)(c) $\mathrm{A}(\mathrm{FX})=0$
$(1.1)(\mathrm{d}) \mathrm{A}(\mathrm{T})=1$
and
(1.2)(a) $\mathrm{g}(\bar{X}, \bar{Y})=\mathrm{g}(\mathrm{X}, \mathrm{Y})-\mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{Y})$

Where
(1.2)(b) $\bar{X} \stackrel{\text { def }}{=} \mathrm{FX}$

And
(1.2)(c) $g(T, X) \stackrel{\text { def }}{=} A(X)$

For all C^{∞} - vector fields X, Y in M_{n} also, a fundamental 2-form ' F in M_{n} is defined as
(1.3) ' $\mathrm{F}(\mathrm{X}, \mathrm{Y})=\mathrm{g}(\bar{X}, \mathrm{Y})=-\mathrm{g}(\mathrm{X}, \bar{Y})=-\mathrm{F}(\mathrm{Y}, \mathrm{X})$

Then, we call the structure bundle $\{\mathrm{F}, \mathrm{T}, \mathrm{A}, \mathrm{g}\}$ an almost contact-metric structure [1]
An almost contact metric structure is called normal [1], if
(1.4)(a) $(\mathrm{dA})(\mathrm{X}, \mathrm{Y}) \mathrm{T}+\mathrm{N}(\mathrm{X}, \mathrm{Y})=0$

Where
$(1.4)(b)(d A)(X, Y)=\left(D_{X} A\right)(Y)-\left(D_{Y} A\right)(X), D$ is the Riemannian connection in M_{n}.
And
(1.5) $\mathrm{N}(\mathrm{X}, \mathrm{Y})=\left(D_{X}^{-} \mathrm{F}\right)(\mathrm{Y})-\left(D_{Y}^{-} \mathrm{F}\right)(\mathrm{X})-\overline{\left(D_{X} F\right)(Y)}+\overline{\left(D_{Y} F\right)(X)}$

Is Nijenhenus tensor in M_{n}.
An almost contact metric manifold M_{n} with structure bundle $\{\mathrm{F}, \mathrm{T}, \mathrm{A}, \mathrm{g}\}$ is called a Trans-Sasakian manifold [3]\&[1],if
(1.6) $\left(\mathrm{D}_{\mathrm{X}} \mathrm{F}\right)(\mathrm{Y})=\alpha\{\mathrm{g}(\mathrm{X}, \mathrm{Y}) \mathrm{T}-\mathrm{A}(\mathrm{Y}) \mathrm{X}\}+\beta\left\{{ }^{〔} \mathrm{~F}(\mathrm{X}, \mathrm{Y}) \mathrm{T}-\mathrm{A}(\mathrm{Y}) \bar{X}\right\}$

Where, β are non -zero constants.
Itcan be easily seen that a Trans-Sasakian manifold is normal. In view of (1.6) one can easily obtain in M_{n}, the relations
(1.7) $\mathrm{N}(\mathrm{X}, \mathrm{Y})=2 \alpha^{\mathrm{c}} \mathrm{F}(\mathrm{X}, \mathrm{Y}) \mathrm{T}$
$(1.8)(\mathrm{dA})(\mathrm{X}, \mathrm{Y})=-2 \alpha^{\mathrm{c}} \mathrm{F}(\mathrm{X}, \mathrm{Y})$
$(1.9)\left(\mathrm{D}_{\mathrm{X}} \mathrm{A}\right)(\mathrm{Y})+\left(\mathrm{D}_{\mathrm{Y}} \mathrm{A}\right)(\mathrm{X})=2 \beta\{\mathrm{~g}(\mathrm{X}, \mathrm{Y})-\mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{X})\}$
$(1.10)\left(\mathrm{D}_{\mathrm{X}}{ }^{‘} \mathrm{~F}\right)(\mathrm{Y}, \mathrm{Z})+\left(\mathrm{D}_{\mathrm{Y}}{ }^{\prime} \mathrm{F}\right)(\mathrm{Z}, \mathrm{X})+\left(\mathrm{D}_{\mathrm{Z}}{ }^{\prime} \mathrm{F}\right)(\mathrm{X}, \mathrm{Y})$

$$
=2 \beta\left[\mathrm{~A}(\mathrm{Z})^{‘} \mathrm{~F}(\mathrm{X}, \mathrm{Y})+\mathrm{A}(\mathrm{X}) \cdot \mathrm{F}(\mathrm{Y}, \mathrm{Z})+\mathrm{A}(\mathrm{Y}) \cdot \mathrm{F}(\mathrm{Z}, \mathrm{X})\right]
$$

$(1.11)(\mathrm{a})\left(\mathrm{D}_{\mathrm{X}} \mathrm{A}\right)(\mathrm{Y})=-\alpha^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Y})+\beta\{\mathrm{g}(\mathrm{X}, \mathrm{Y})-\mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{Y})\}$
$(1.11)(\mathrm{b})\left(\mathrm{D}_{\mathrm{X}} \mathrm{T}\right)=-\alpha \bar{X}+\beta\{\mathrm{X}-\mathrm{A}(\mathrm{X}) \mathrm{T}\}$
REMARK (1.1): In the above and in what follows, the letters $X, Y, Z \ldots$..etc. an C^{∞} - vector fields in M_{n}.

ON A SEMI -SYMMETRIC METRIC CONNECTION IN TRANS-SASAKIAN MANIFOLD

We consider a semi-symmetric metric connection B given by [8]
(2.1) $\mathrm{B}_{\mathrm{X}} \mathrm{Y}=\mathrm{D}_{\mathrm{X}} \mathrm{Y}+\mathrm{A}(\mathrm{X}) \mathrm{Y}-\mathrm{g}(\mathrm{X}, \mathrm{Y}) \mathrm{T}$

Whose torsion tensor is given by
(2.2) $\mathrm{S}(\mathrm{X}, \mathrm{Y})=\mathrm{A}(\mathrm{Y}) \mathrm{X}-\mathrm{A}(\mathrm{X}) \mathrm{Y}$

The curvature tensor with respect to B, say $R(X, Y, Z)$ is given by
(2.3) $\mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{B}_{\mathrm{X}} \mathrm{B}_{\mathrm{Y}} \mathrm{Z}-\mathrm{B}_{\mathrm{Y}} \mathrm{B}_{\mathrm{X}} \mathrm{Z}-\mathrm{B}_{[\mathrm{X}, \mathrm{Y}]} \mathrm{Z}$

Using (2.1) in it,we get
(2.4) $R(X, Y, Z)=K(X, Y, Z)+\left(D_{X} A\right)(Z) Y-\left(D_{Y} A\right)(Z) X$
$-g(Y, Z) D_{X} T+g(X, Z) D_{Y} T+A(Z) A(Y) X-A(Z) A(X) Y$
$+g(X, Z) Y-g(Y, Z) X-A(X) g(Y, Z) T-A(Y) g(X, Z) T$
Again, using (1.11)(b) in (2.4), we obtained
(2.5) R(X,Y,Z)=K(X,Y,Z) $+\alpha\left\{{ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-{ }^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}+\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \bar{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \bar{Y}\right\}$
$+(2 \beta+1)\{g(X, Z) Y-g(Y, Z) X\}$
$-(\beta+1)\{\mathrm{A}(\mathrm{Y}) \mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{T}-\mathrm{A}(\mathrm{X}) \mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{T}+\mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{Z}) \mathrm{T}-\mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z}) \mathrm{X}\}$
Contracting (2.5) with respect to X, we get
(2.6)(a) $R(Y, Z)=\operatorname{Ric}(Y, Z)+\alpha(n-2){ }^{\prime} F(Y, Z)-\{(2 n-3) \beta$

$$
+(\mathrm{n}-2)\} \mathrm{g}(\mathrm{Y}, \mathrm{Z})+(\beta+1)(\mathrm{n}-2) \mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z})
$$

Or
(2.6)(b) $\mathrm{R}(\mathrm{Y})=\mathrm{K}(\mathrm{Y})+\alpha(\mathrm{n}-2) \bar{Y}+\{(2 \mathrm{n}-3) \beta+(\mathrm{n}-2)\} \mathrm{Y}$ $+(\beta+1)(\mathrm{n}-2) \mathrm{A}(\mathrm{Y}) \mathrm{T}$
Contracting which with respect to Y , we get
(2.6)(c) $\mathrm{r}=\mathrm{k}-2 \beta(\mathrm{n}-1)^{2}-(\mathrm{n}-1)(\mathrm{n}-2)$

Where $R(Y, Z)$, r are Ricci tensor and scalar curvature with respect to B and Ricci and k are respectively the same with respect to Riemannian connection D.

Now, suppose the curvature tensor with respect to B vanishes, i.e. $R(X, Y, Z)=0$ then from (2.6)(c), we see that the manifold M_{n} is of constant scalar curvature k and is given by
(2.7) $\beta=\frac{k}{2(n-1)^{2}}+\frac{(n-2)}{2(n-1)}$

Also the equation (2.6)(a), in view of the above fact and (2.7) becomes
(2.8) $\operatorname{Ric}(Y, Z)=-\alpha(n-2) \cdot F(Y, Z)+\frac{k}{2(n-1)^{2}}[(2 n-3) g(Y, Z)$
$-(n-2) A(Y) A(Z)]+\frac{(n-2)}{2(n-1)}[(4 n-5) g(Y, Z)-(3 n-4) A(Y) A(Z)]$
Barring Y in (2.8), we have
(2.9)(a)Ric $(\bar{Y}, Z)=\alpha(n-2) g(\bar{Y}, \bar{Z})+\frac{(2 n-3)}{2(n-1)^{2}} \mathrm{k} \cdot \mathrm{F}(\mathrm{Y}, \mathrm{Z})+\frac{(n-2)(4 n-5)}{2(n-1)}{ }^{\prime} \mathrm{F}(\mathrm{Y}, \mathrm{Z})$

Further, barring Z in (2.8), we obtained
(2.9)(b) $\operatorname{Ric}(\mathrm{Y}, \bar{Z})=-\alpha(\mathrm{n}-2) \mathrm{g}(\bar{Y}, \bar{Z})+\frac{(2 n-3)}{2(n-1)^{2}} \mathrm{k} \cdot \mathrm{F}(\mathrm{Z}, \mathrm{Y})+\frac{(n-2)(4 n-5)}{2(n-1)} \mathrm{F}(\mathrm{Z}, \mathrm{Y})$

Adding (2.9)(a) and (2.9)(b), we get
(2.10) $\operatorname{Ric}(\bar{Y}, Z)+\operatorname{Ric}(Y, \bar{Z})=0$

Thus, we have
THEOREM (2.1): Let M_{n} be a Trans-Sasakian manifold admitting a semi -symmetric metric connection B by (2.1)
Let the curvature tensor with respect to B vanish, then M_{n} is of constant scalar curvature and
$\operatorname{Ric}(\bar{Y}, Z)+\operatorname{Ric}(Y, \bar{Z})=0$
Holds good in M_{n}.
Now, from (2.9)(a) and (2.9)(b), we have
(2.11) $\mathrm{K}(\bar{Y})=\overline{K(Y)}=\alpha(\mathrm{n}-2)\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\}+\frac{(2 n-3)}{2(n-1)^{2}} \mathrm{k} \bar{Y}+\frac{(n-2)(4 n-5)}{2(n-1)} \bar{Y}$

Contracting which with respect to Y , we have
$\alpha(\mathrm{n}-1)(\mathrm{n}-2)=0$
which gives $\alpha=0$,for $\mathrm{n}>2$
then, we have
THEOREM (2.2): A Trans-Sasakian manifold $M_{n}, n \geq 3$, equipped with a semi-symmetric metric connection B given by (2.1) becomes a $(0, \beta)$ type Trans Sasakian manifold if the curvature tensor with respect to B vanishes.

CONCLUSION

If in a Trans-Sasakian manifold admitting a semi -symmetric metric connection B, and if curvature tensor with respect to B vanish, then M_{n} is of constant scalar curvature and $\operatorname{Ric}(\bar{Y}, Z)+\operatorname{Ric}(Y, \bar{Z})=0$, Holds good in M_{n}. Again A Trans-Sasakian manifold $M_{n}, n \geq 3$, equipped with a semi-symmetric metric connection B becomes a $(0, \beta)$ type Trans Sasakian manifold if the curvature tensor with respect to B vanishes.

REFERENCES

[1]. Obina, J.A. : New classes of almost contact metric structure publ.Math.32(1985), pp 187-193.
[2]. Blair, D.E.: Contact manifold in Riemannian geometric lecture note in Math. Vol.509, Springer Verlag, N.4(1978).
[3]. Prasad, S. and Ojha, R.H.: C-Rsubmani folds of Trans -Sasaki an manifold, Indian Journal of pure and Applied Math. 24(1993)(7 and 8),pp.427-434.
[4]. Hasan Shahid, M.: C-R sub manifolds of Trans Sasakian manifold, Indian Journal of pure and Applied Math. Vol. 22 (1991), pp.1007-1012.
[5]. Golab, S.: On semi-symmetric and quarter symmetriclinear connections;Tensor,N.S.;29(1975)
[6]. Yano, K.: On contact conformal connection; KodiaMath.Rep.,28(1976),pp.90-103.
[7]. Mishra, R.S. and Pandey, S.N.: On quarter symmetric metric F-connections; Tensor, N.S.Vol.31(1978), pp1-7.
[8]. Pandey, S.N.:Some contribution to Differential Geometry of differentiable manifolds, Thesis (1979), B.H.U. Varanasi (India)

