

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 13 Issue 5, May-2024, Impact Factor: 8.375

Page | 221

Automated UI Testing on Frontend of a Web

Application

Shivam Dhonde
1
, Atharva Joshi

2
, Tanmay Jadhav

3
, Shital Hote

4
, Mr. Manish Jansari

5

1,2,3,4

Final Year, Department of Computer Engineering Pune Institute of Computer Technology, Pune
5
Assist. Professor, Department of Computer Engineering Pune Institute of Computer Technology, Pune

ABSTRACT

"This paper delves into the critical role of automated testing within software engineering practices, focusing on its

profound impact on software testing methodologies. It illuminates the crucial function of automated testing in

gauging the efficacy and capabilities of software programs, ensuring their quality and reliability. Furthermore, the

paper navigates through the complexities of measurement guidance, addressing discrepancies and emphasizing the

indispensability of automation in testing processes. It offers comprehensive insights into the evolving landscape of

automation solutions, particularly highlighting techniques such as XPath generation from HTML structures for

facilitating thorough UI testing. The primary objective of this study is to provide a nuanced understanding of the

practical application of automated testing in software development, elucidating its far-reaching effects on software

performance and development agility. In essence, the paper sheds light on contemporary practices that harness

automation to bolster software development endeavors and foster innovative strides in software testing and

engineering, ultimately bolstering the dependability of UI testing."

Index Terms—Behavior-driven development (BDD), Modeldriven approach, Automated Testing, Behave, XPath,

GUI Testing

INTRODUCTION

Software design is the design and application of sound engineering principles to create suitable software that is both

reliable and works on real systems. Creating a good software product requires a good development process. Software

development is a human activity that involves many tasks. These activities; Analysis, design, implementation and testing all

lead to the creation of the final product. Because these activities occur constantly during development, it takes time to

create a working version of the system. Software testing is one of the most important activities in software development

used to define and verify software systems. Testing helps software developers ensure that the software they create performs

its intended function and determines whether any problems are fixable. As the software development life cycle is a complex

process, there is an urgent need to deliver new products within the stipulates time. In the software industry, automation

plays an important role in test development. Various automation tools are available to streamline the testing process.

Automation in UI testing is a vital component of modern software development, aiming to streamline the testing process

and enhance efficiency. By leveraging automation tools and frameworks, organizations can achieve faster test execution,

improved test coverage, and more reliable results. This paper explores the role of automation in UI testing, highlighting its

importance in accelerating the software development lifecycle and ensuring the delivery of highquality products.

Additionally, it discusses the challenges faced in traditional manual testing approaches such as Human error, Resource

Intensive, Limited Coverage, Time Consuming, etc and how automation addresses these issues. Through real-world

examples and case studies, the paper demonstrates the impact of automation on reducing time-to-market and enhancing

overall software quality.

AUTOMATION IN GUI TESTING

Automation plays an important role in GUI testing. It helps to reduce time taken for GUI testing and increase the efficiency.

Overall, using automation in GUI testing would drastically impact the process of GUI testing. Here are few points

regarding Automation in GUI testing as follows:

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 13 Issue 5, May-2024, Impact Factor: 8.375

Page | 222

A. Role of Automation in UI Testing

Automated UI testing is a critical component of software development, ensuring the robustness and reliability of web

applications. It allows for the rapid execution of test cases compared to manual testing. Automation enables testers to cover

a broader range of test scenarios, including edge cases and boundary conditions.

B. Dynamic Element Identification

One of the challenges in traditional UI testing lies in the identification of dynamic elements within web interfaces.

Automated UI testing addresses this issue by locating elements using Xpath. This dynamic element identification ensures

that the test scripts remain robust even in the face of evolving web applications.

C. Self-learning Test Automation

Self-learning in automated UI testing refers to the ability of testing frameworks or tools to adapt and improve their testing

capabilities based on past test execution results and experiences. Through continuous feedback loops, the testing system

learns from test results and refines its understanding of the application under test. This adaptive capability significantly

reduces maintenance efforts and ensures the sustainability of UI test automation in the long run.

D. Test Case Generation and Optimization

Automation generates test cases based on the extracted HTML structure and XPath of interactive elements. It maximizes

test coverage while minimizing redundancy and resource consumption. This automated test case generation minimizes the

manual effort required for test script development and maintenance.

E. Intelligent Test Execution

Intelligent Test Execution prioritizes test cases based on factors such as criticality, risk, and dependencies. Highpriority

tests are executed first to provide faster feedback on critical functionalities or areas of the application. It Analyzes code

changes and their impact on the application to intelligently select a subset of regression tests that are most relevant to the

changes.

F. Enhancing Test Coverage

Traditional UI testing often struggles to achieve comprehensive test coverage due to resource limitations. Enhancing test

coverage in automated testing involves strategies such as requirement-based testing to ensure comprehensive alignment

with specifications, boundary value analysis to assess the application’s behavior at critical limits, and exploratory testing

sessions to uncover unforeseen scenarios and usability issues beyond scripted tests

 IMPLEMENTATION

A. Input website URL

The initial step of the proposed methodology involves identifying and specifying the URL(s) of the website(s) or web

application(s) that require UI testing. This could include the mainly landing page.

B. Extract HTML structure of web pages

After the website URLs are determined, we extracted the HTML structure of the web pages programmatically. This process

typically involves web scraping using specialized tools or libraries. Web scraping involves fetching the HTML content of

web pages using HTTP requests and parsing the retrieved HTML documents to extract relevant information such as tags,

attributes, and text content. Then we analyzed, the extracted HTML structure to identify the hierarchy of elements,

including divs, spans, inputs, buttons, forms, and other UI components. This information serves as the foundation for

generating XPath expressions and defining test scenarios.

C. Generate XPath for UI elements

The objective of this step is to effectively identify and interact with UI elements on the web application under test using

XPath expressions in Selenium with Python Behave framework. To identify the inetractive useful elements from the

website we have used the selenium different methods such as by its class name, id, text, aria-label, etc. There are two

strategies of the xpath i.e. Absolute xpath and relative xpath, so we used absolute full xpath which is unique.

Sample XPath of "userName":

/HTML[1]/BODY[1]/DIV[1]/DIV[2]/DIV[1]/DIV[2]/DIV[1]/

MD-CONTENT[1]/FORM[1]/DIV[1]/DIV[1]/MD-INPUT-

CONTAINER[1]/INPUT[1]

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 13 Issue 5, May-2024, Impact Factor: 8.375

Page | 223

By genearting this xpaths for each element respectively, we tested it according to the need and checked whether is it

possible go with this approach or is there is correction reuired or not if yes then of course go with that. Incorporating XPath

expressions within Selenium with Python Behave framework facilitates precise and efficient UI element identification,

contributing to the overall effectiveness of automated testing efforts.

D. Create a feature file for test scenarios

After extracting the HTML structure of web pages and generating XPath expressions for UI elements, feature file is created

automatically to determine test scenarios to define the test scenarios and behaviors to be validated through UI testing. A

feature file is typically written in a human-readable format using a behavior-driven development (BDD) framework such as

Gherkin syntax. Gherkin allows for clear and concise representation of test scenarios in a structured format. Each feature

file consists of one or more scenarios, each representing a specific test case or user story Steps within a scenario are defined

using keywords such as Given, When, and Then, representing the initial state, user actions, and expected outcomes,

respectively.

For example:

Feature: Login to eHub Application

Scenario: User logs in with valid credentials

Given I launch Chrome Browser

When I am on the login page

When I enter the username "Test@user" and password "Test@pass"

And I click the login button

Then I should be logged in successfully

E. Execute UI tests based on feature files

After creating feature file we go for the step defintion implementation part. Step definitions in the context of Behavior-

Driven Development (BDD) frameworks such as Behave provide the implementation logic for the scenarios outlined in the

feature files. Each step definition corresponds to a specific step written in the feature files using Gherkin syntax, such as

Given, When, and Then. Generated feature file is then mataches with its step definition to execute the steps taken by the

webdriver to execute the implementation. During test execution, Behave matches these steps to their respective step

definitions based on textual similarity, ensuring that the appropriate automation logic is executed for each step. For

execution follows steps are required:

Setup: Ensuring the Selenium WebDriver set up and initialized in your testing environment. This includes importing

necessary libraries and configuring the WebDriver. Running Tests: Executing the Behave test suite using the command-

line interface or an integrated development environment (IDE) that supports Behave. cmd for behave

F. Adapting XPaths for dynamic changes

In automated testing, robust and resilient XPath expressions are essential for accurately identifying UI elements on web

pages. However, web applications are prone to changes in their structure, such as updates to HTML attributes,

modifications in element positioning, or alterations in the DOM hierarchy. To ensure the longevity and reliability of

automated tests, it is crucial to implement strategies for adapting XPath expressions to accommodate dynamic changes in

the application. Through this way we can adapt the xpaths accordingly the element presents on website. XPath expressions

can be made more resilient to changes in the application’s UI structure, thereby enhancing the maintainability, flexibility,

and scalability of automated testing efforts. This can be acheived through our xpath approach.

G. Collecting and presenting test results

After test execution, results including pass/fail statuses, error messages are collected and logged Test results are aggregated

and presented in a comprehensive format using reporting tools

Providing insights for continuous improvement The collected test results serve as valuable feedback for identifying

patterns, trends, and recurring issues in the software under test. Insights derived from test results are used to drive

continuous improvement efforts, including refining test cases, enhancing test coverage, and optimizing testing strategies.

RESULTS AND DISCUSSION

Automating test cases significantly enhances time efficiency compared to manual testing, as it intelligently generates and

executes test cases. This approach not only saves time but also ensures thorough testing coverage and consistency in

results. Taking Sarvatra’seHub website as an example, which is a comprehensive platform offering a wide range of

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 13 Issue 5, May-2024, Impact Factor: 8.375

Page | 224

services, including but not limited to ecommerce, booking systems, and content management. With its extensive database

and intricate user management system, ensuring the reliability and functionality of the website is paramount. The frontend

of Sarvatra’seHub website is built using a combination of AngularJS, HTML, CSS, and Bootstrap, showcasing a modern

and user-friendly interface. However, with the complexity of the website’s features and the continuous updates and changes

in web technologies, manually testing every aspect of the website becomes impractical and time-consuming.

Lets go through the implementation steps for a Frontend Website.

Step 1: Consider website:
https://uatehub.sarvatra.in:6443/ehubuat1/#!

/login

Step 2: Extract HTML structure of web page: We are extracting the HTML structure of a web page and identify the

elements on the basis of id, name, area-label, class, type, etc.

for index, element in enum(interactive_elements):

Get the element name based on text content, id, class, or type

element_name = (

element.get_attribute("id") or element.get_attribute("name") or element.text.strip() or element.get_attribute("aria-

label") or element.get_attribute("class") or element.get_attribute("type") or f"Element{index}"

)

Step 3: Generate XPath for finding interactive elements: we are generating the xpaths of this interactive elements. We

can use this XPath to locate the element while performing automation testing

{

"userName": "/HTML[1]/BODY[1]/DIV[1]/

DIV[2]/DIV[1]/DIV[2]/DIV[1]/MD-CONTENT[1]

/FORM[1]/DIV[1]/DIV[1]/INPUTCONT[1]/INP[1]",

"password": "/HTML[1]/BODY[1]/DIV[1]/DIV[2]/

DIV[1]/DIV[2]/DIV[1]/MD-CONTENT[1]/FORM[1]/

DIV[1]/DIV[2]/MD-INPUT-CONTAINER[1]/INPUT[1]"

}

Step 4: Create a feature file:
Now, the feature file has been created. Below is an example of how the feature file appears.

{

Feature: Login to eHub Application

Scenario: User logs in with valid credentials

Given I launch Chrome Browser

When I am on the login page

When I enter the user "Agent_22" and pass "Test@12"

And I click the login button

Then I should be logged in successfully

}

Step 5: All steps that are written in the step definition are executed/implemented:
Now this feature file is executed and the GUI testing is executed automatically. Below are the screenshots of the execution

process.

Fig. 1.Login page Test case implementing

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 13 Issue 5, May-2024, Impact Factor: 8.375

Page | 225

Fig. 2.Login page Test case implementing

Step 6: Collecting and presenting results

Fig. 3. Allure Report (Fig A)

Once the execution is done, we get the detailed reports about the testcases on Allure Software. We also get the time taken to

execute each test case in this Allure report. Below are the screenshots of the allure reports (fig 3, fig 4). This way the

overall implementation of all step definitions of feature file is executed and we get the final results.

Fig. 4.Allure reports (Fig B)

This majorly uses the concept of XPaths for locating the interactive elements and then executing the feature file. We also

get the details about the results which includes the number of test cases Passed/Failed, etc.

CONCLUSIONS

In conclusion, the implementation of Automation in UI testing represents a significant advancement in software quality

assurance, offering a more efficient, reliable, and scalable approach to validating the user interface of modern web

applications. By leveraging techniques such as web scraping, XPath generation, and automated test case generation, we

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 13 Issue 5, May-2024, Impact Factor: 8.375

Page | 226

have demonstrated the ability to systematically extract HTML structures, identify UI elements, and define test scenarios in

a human-readable format Furthermore, our methodology encompasses adaptive strategies for handling dynamic changes in

web environments, ensuring the robustness and stability of UI tests across different states of the application

REFERENCES

[1]. F. Macchi, P. Rosin, J. M. Mervi and L. Turchet, "Image-based Approaches for Automating GUI Testing of

Interactive Webbased Applications," 2021 28th Conference of Open Innovations Association (FRUCT), Moscow,

Russia, 2021, pp. 278-285, doi: 10.23919/FRUCT50888.2021.9347592.

[2]. F. Ricca, M. Leotta, and A. Stocco, “Three open problems in the context of e2e web testing and a vision: Neonate,”

Advances in Computers, 01 2018.

[3]. K. P. Moran, C. Bernal-Cardenas, M. Curcio, R. Bonett, and D. Poshy- ´ vanyk, “Machine learning-based

prototyping of graphical user interfaces for mobile apps,” IEEE Transactions on Software Engineering, 2018.

[4]. M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Automated migration of DOM-based to visual web tests,” in

Proceedings of 30th Symposium on Applied Computing, ser. SAC 2015. ACM, 2015, pp. 775–782

[5]. P. Tonella, F. Ricca, and A. Marchetto, Recent advances in web testing, Adv. Comput. 93 (2014), 1–51.

http://doi.org/10.1016/B9780-12-800162-2.00001-4.

[6]. M. Leotta, Z. Oliveira, A. Memon, Approaches and tools for automated end-to-end web testing, Adv. Comput. 101

(2016), 193–237. http://doi.org/10.1016/bs.adcom.2015.11.007.

[7]. E. Alégroth, Z. Gao, R. Oliveira, A. Memon, Conceptualization and evaluation of componentbased testing unified

with visual GUI testing: an empirical study, 2015 IEEE 8th International Conference on Software Testing,

Verification and Validation (ICST), 2015, pp.

[8]. 1–10. http://doi.org/10.1109/ICST.2015.7102584.

[9]. Xie, X., Xu, B., Nie, c., Shi, L., and Xu, L. 2005. Configuration Strategies for Evolutionary Testing. In Proceedings

of the 29th Annual international Computer Software and Applications Conference Volume 02 (July 26 - 28, 2005).

COMPSAC. IEEE Computer Society, Washington, DC.

[10]. Benoit Baudry, Automatic Test Case Optimization: A Bacteriologic Algorithm, IEEE SOFTWARE Published by the

IEEE Computer

[11]. Society, 2005.

[12]. A. Bertolino "Software Testing Forever: Old and New processes and techniques for Validating Today’s

Applications", Keynote at 9th International Conference Product-Focused Software process Improvement (PROFES

2008), Monte Porzio Catone, June 2008, LNCS 5089 , 2008.

[13]. V. Mohan, D. Jeya Mala "IntelligenTester -Test Sequence Optimization framework using Multi-Agents", Journal of

Computers, June 2008.

[14]. Memon, A M., Soffa, M. L. and Pollack, M. E., Coverage criteria for gui testing. ESECIFSE9: Proceedings of the

8th European software engineering conference held jointly with 9th ACM SIGSOFT international symposium on

Foundations of software engineering, New York, NY, USA, 2001, ACM Press, pages 256-267

[15]. L.C. Briland.,“On the many ways Software Engineering can benefit from knowledge engineering”, Proc. 14th

SEKE, Italy, pp3-6, 2002.

[16]. Benoit Baudry, Automatic Test Case Optimization: A Bacteriologic Algorithm, IEEE SOFTWARE Published by the

IEEE Computer

[17]. Society, 2005.

[18]. P. McMinn, “Search-based test data generation: A survey”, Journal on Software Testing, Verification and Reliability,

14(2):105–156, June 2004.

[19]. Partridge, D.” The relationships of AI to software engineering”, Software Engineering and AI (Artificial

Intelligence), IEE Colloquium on (Digest No.087), Apr 1992.

[20]. Bennett, S.; Linkens, D.A.; Tanyi, E.B.; Scott, A . “Application of AI and model building techniques to software

engineering”, Software Engineering and AI (Artificial Intelligence), IEE Colloquium on (Digest No.087), Apr 1992.

[21]. Partridge, D.” The relationships of AI to software engineering”, Software Engineering and AI (Artificial

Intelligence), IEE Colloquium on (Digest No.087), Apr 1992.

[22]. Last, M., Kandel, A., and Bunke, H. 2004 Artificial Intelligence Methods in Software Testing (Series in Machine

Perception &Artifical Intelligence " Vol. 56). World Scientific Publishing Co., Inc.

[23]. Partridge D. “To add AI, or not to add AI?, In Proceedings of Expert Systems, the 8th Annual BCS SGES Technical

conference, pages 313, 1988.

[24]. E. Borjesson and R. Feldt, "Automated System Testing Using Visual GUI Testing Tools: A Comparative Study in

Industry," 2012 IEEE Fifth International Conference on Software Testing, Verification and Validation, Montreal,

QC, Canada, 2012, pp. 350-359, doi: 10.1109/ICST.2012.115.

International Journal of Enhanced Research in Science, Technology & Engineering

ISSN: 2319-7463, Vol. 13 Issue 5, May-2024, Impact Factor: 8.375

Page | 227

[25]. Alegroth E, Feldt R, Olsson H (2013a) Transitioning Manual System Test Suites to Automated Testing: an Industrial

Case Study. In: IEEE Sixth international conference on software testing, verification and validation, ICST 2013.

IEEE, pp 56–65

[26]. Alegroth E, Nass M, Olsson H (2013b) JAutomate: a tool for systemand acceptance-test automation. In: IEEE Sixth

international conference on software testing, verification and validation (ICST), 2013. IEEE, pp 439–446

[27]. Berner S, Weber R, Keller R (2005) Observations and lessons learned from automated testing. In: Proceedings of the

27th international conference on software engineering. ACM, pp 571–579

[28]. Cadar C, Godefroid P, Khurshid S, Pasareanu CS, Sen K, Tillmann N, Visser W (2011) Symbolic execution for

software testing in practice: preliminary assessment. In: 33rd international conference on software engineering,

ICSE 2011. IEEE, pp 1066–1071

[29]. Grechanik M, Xie Q, Fu C (2009a) Creating GUI testing tools using accessibility technologies. In: International

conference on software testing, verification and validation workshops, 2009, ICSTW’09. IEEE, pp 243–250

[30]. Grechanik M, Xie Q, Fu C (2009b) Experimental assessment of manual versus tool-based maintenance of GUI-

directed test scripts. In: IEEE international conference on software maintenance, ICSM 2009. IEEE, pp 9–18

